Real-time process plant fault diagnosis


Operators can become confused while diagnosing faults in process plant while in operation. This may prevent remedial actions being taken before hazardous consequences can occur. The work in this thesis proposes a method to aid plant operators in systematically finding the causes of any fault in the process plant. A computer aided fault diagnosis package has been developed for use on the widely available IBM PC compatible microcomputer. The program displays a coloured diagram of a fault tree on the VDU of the microcomputer, so that the operator can see the link between the fault and its causes. The consequences of the fault and the causes of the fault are also shown to provide a warning of what may happen if the fault is not remedied. The cause and effect data needed by the package are obtained from a hazard and operability (HAZOP) study on the process plant. The result of the HAZOP study is recorded as cause and symptom equations which are translated into a data structure and stored in the computer as a file for the package to access. Probability values are assigned to the events that constitute the basic causes of any deviation. From these probability values, the a priori probabilities of occurrence of other events are evaluated. A top-down recursive algorithm, called TDRA, for evaluating the probability of every event in a fault tree has been developed. From the a priori probabilities, the conditional probabilities of the causes of the fault are then evaluated using Bayes' conditional probability theorem. The posteriori probability values could then be used by the operators to check in an orderly manner the cause of the fault. The package has been tested using the results of a HAZOP study on a pilot distillation plant. The results from the test show how easy it is to trace the chain of events that leads to the primary cause of a fault. This method could be applied in a real process environment.

Divisions: College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry
Additional Information: Department: Chemical Engineering and Applied Chemistry If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: Real-time,process plant,fault diagnosis
Last Modified: 08 Dec 2023 08:23
Date Deposited: 25 Nov 2010 11:52
Completed Date: 1989
Authors: Fisal, Zahedi B.


Export / Share Citation


Additional statistics for this record