Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately

REAL-TIME PROCESS PLANT
FAULT DIAGNOSIS

ZAHEDI BIN FISAL
Doctor of Philosophy

THE UNIVERSITY OF ASTON IN BIRMINGHAM

April 1989

This copy of the thesis has been supplied on condition that anyone
who consults it is understood to recognise that its copyright rests
with its author and that no quotation from the thesis and no

information derived from it may be published without the author's
prior, written consent.

The University of Aston in Birmingham

Real-time Process Plant
Fault Diagnosis

Zahedi Bin Fisal PhD 1989
SUMMARY

Operators can become confused while diagnosing faults in process
plant while in operation. This may prevent remedial actions being
taken before hazardous consequences can occur. The work in this
thesis proposes a method to aid plant operators in systematically
finding the causes of any fault in the process plant. A computer aided
fault diagnosis package has been developed for use on the widely
available IBM PC compatible microcomputer. The program displays a
coloured diagram of a fault tree on the VDU of the microcomputer, so
that the operator can see the link between the fault and its causes.
The consequences of the fault and the causes of the fault are also
shown to provide a warning of what may happen if the fault is not
recmedied. The cause and effect data needed by the package are
obtained from a hazard and operability (HAZOP) study on the process
plant. The result of the HAZOP study is recorded as cause and
symptom equations which are translated into a data structure and
stored in the computer as a file for the package to access. Probability
values are assigned to the events that constitute the basic causes of
any deviation. From these probability values, the a priori probabilities
of occurrence of other events are evaluated. A top-down recursive
algorithm, called TDRA, for evaluating the probability of every event
in a fault tree has been developed. From the a priori probabilities, the
conditional probabilities of the causes of the fault are then evaluated
using Bayes' conditional probability theorem. The posteriori probability
values could then be used by the operators to check in an orderly
manner the cause of the fault. The package has been tested using the
results of a HAZOP study on a pilot distillation plant. The results
from the test shows how easy it is to trace the chain of events that
leads to the primary cause of a fault. These method could be applied
in a real process environment.

Key words : Fault Diagnosis, HAZOP, Cause and Symptom Equations,
Fault Tree, Bayes' Theorem, Probability

ACKNOWLEDGEMENTS

The author wishes to express his profound gratitude and appreciation
to the following persons and institutions without whom, this thesis

would not be a success.

e Dr. M.C. Jones for supervising this research work from December

1984 to August 1987.

e Dr. J.P. Fletcher who took over the supervision from September

1987.

e Mr. T.O. Folami for his advice on matters concerning the pilot

distillation plant.

e Mr. Jason Court of Tektronix UK Ltd. for his kind assistance in

obtaining the colour hardcopy from the VDU of the computer.

e The National University of Malaysia, the author's employer, for
granting study leave so that the author could pursue his further

studies at the University of Aston.

e The Government of Malaysia for sponsoring the author

throughout his study at the University of Aston.

To:
My loving parents,

Fisal and Asmah

My loving and patient wife,
Rukiah

And my lovely children,
Farah Dayana
Ihsanulfitri

Asma’ Amirah

LIST OF CONTENTS

CHAPTER ONE
1. INTRODUCTION

CHAPTER TWO
2. FAULT DIAGNOSIS

24
2.2

2.3

Introduction

Aspects of Fault Detection

2.2.1 Modeling and Estimation Methods

2.2.2 Pattern Recognition Methods
Techniques of Fault Diagnosis

2.3.1 Introduction

2.3.2 Fault Diagnosis Using Fault Dictionaries

2.3.3 Fault Diagnosis Using Functional Model Equations

2.3.4 Fault Diagnosis Using Signed Digraph
2.3.5 Fault Diagnosis Using Fault Trees
2.3.6 Fault Diagnosis Using Lxpert Systems

2.4 Human Factors Aspects in Fault Diagnosis

CHAPTER THREE
3. HAZARD AND OPERABILITY STUDILES AND FAULT TREE
ANALYSIS

3.1

3.2

3.3

Hazard and Operability Studies

3.1.1 Introduction

3.1.2 The HAZOP Study Team

3.1.3 Preparation for the HAZOP Study

3.1.4 The Team Review

3.1.5 Recording of Results

3.1.6 Problems with HAZOP

3.1.7 Computerisation of HAZOP Recordings
Cause and Symptom LEquations from IHAZOP
3.2.1 Coding of Deviations

3.2.2 Cause Equations

3.2.3 Symptom Equations

Fault Tree Analysis

3.3.1 Introduction

3.3.2 Terins Used in Fault Tree Analysis
3.3.3 Fault Tree Synthesis

3.3.4 Fault Tree From Cause and Symptom Equations
3.3.5 Fault Tree Evaluation

Page

15

24
24
26
28
30
31
31
31

41
Lo
46
51

54
54
5S4
55
57
59
63
64
65
65
66
70
73
75
75
76
78
81
81

CHAPTER FOUR
4. FAULT TREE PROBABILITY CALCULATIONS
4.1 Introduction
4.2 Laws of Boolean Algecbra
4.3 Failure Probability Data
4.3.1 Introduction
4.3.2 Mean Time Between Failures
4.3.3 Probability Density Functions
4.3.3.1 Negative Exponential Distribution
4.3.3.2 Weibull Distribution
4.3.4 Failure Probability for Standby Safety
Equipments
4.4 Principles of Fault Tree A Priori Probability Evaluation
4.4.1 Introduction
4.4.2 Probability Rules
4.4.3 Probability Evaluation of Fault Trees With
Repeated Events
4.4.4 Probability Evaluation Using Minimal Cut Sets
4.4.5 Conclusion
4.5 Probability Evaluation Algorithms Using Minimal Cut
Sets
4.5.1 Introduction
4.5.2 Algorithms For Generating Minimal Cut Sets
4.5.2.1 Introduction
4.5.2.2 Top Down Algorithms For Determining
Minimal Cut Sets
4.5.2.3 Bottom Up Algorithms For Determining
Minimal Cut Sets
4.5.3 Algorithins For Probability Calculations Using
Minimal Cut Sets
4.5.3.1 Introduction
4.5.3.2 Techniques For Manipulating Intersections
Of Minimal Cut Scts
4.5.3.3 The Disjoint Cut Set Technique
4.5.4 Discussion And Conclusion
4.6 Probability Calculations Directly from Fault Trees
4.6.1 Introduction
4.6.2 Algorithims For Direct Evaluation Of Fault Tree
Probabilities
4.6.3 The Top Down Recursive Algorithm - TDPP
4.6.4 Discussion And Conclusion

Page

85
85
87
91

91

92
93
94
95

97
98
98
99

101
105
109

110
110
110
110

111

116

119
119

120
122
125
126
126

127
128
134

4.7

Fault Tree Posteriori Probability Lvaluation
4.7.1 Introduction

4.7.2 Baye's Theorem

4.7.3 Conditional Probability Of Causal Events

4.7.4 Conditional Probability Of Consequent Events
4.7.4.1 Conditional Probability Of The Consequences

Of An Event Which Has Occurred

4.7.4.2 Conditional Probability Of The Consequences

Of A Causal Event
4.7.5 Discussion And Conclusion

CHAPTER FIVE
5. THE DIAGNOSIS PACKAGE

5.1

5.2

(5]
W

5.4

Introduction
The Data Preparation Program - TRANSLAT
5.2.1 Fault Tree Data File Structure
5.2.2 Translation Of Causc And Symptom Equations
5.2.2.1 Description Of Subroutine CAUSE
5.2.2.2 Description Of Subroutine SYMPTOM
5.2.3 Primary Events File :
5.2.4 Probability Calculation
5.2.4.1 Introduction
5.2.4.2 The Improved Top Down Recursive
Algorithm - TDRA
5.2.4.3 Implementation Of TDRA
The Fault Tree Display
5.3.1 Introduction
5.3.2 Structure Of The Fault Tree Display
5.3.3 The Fault Tree Display Program
5.3.3.1 The Main Program - DISFAULT
5.3.3.2 Description Of Subroutine DISPLAY
5.3.3.3 Interrupt Service Routines
Posteriori Probability Calculation
5.4.1 Introduction
5.4.2 Description Of Subroutine CONPROB

5.4.3 Description Of Subroutines Called By CONPROB

5.4.4 Description Of Subroutine PPROB

CHAPTER SIX
6. MODEL FOR TESTING THE DIAGNOSIS PACKAGE
6.1 Introduction

Page

135
135
136
136
139

139

140
143

146
146
147
148
151

154
160
164
167
167

170
179
186
186
187
191
191
195
200
207
207
208

219

222
222

Page

6.2 The Pilot Distillation Plant 222
6.3 Instrumentation On The Pilot Plant 226
6.4 The Physical And Hazardous Propertics Of The
Distillation Components 229
6.5 The HAZOP Study On The Pilot Plant 231
6.5.1 Introduction 231
6.5.2 Malfunctions And Hazards To Be Avoided During
Operation Of Pilot Plant 231
6.5.3 Outcome From The HAZOP Study 233

6.5.4 Assigning Probability Values To Primary Events 246

CHAPTER SEVEN

7. RESULTS OF TESTING THE DIAGNOSIS PACKAGE 251
7.1 Introduction 251
7.2 Translation of Cause and Symptom liquations into the

Data Structure 2351
7.3 Probability Evaluation 254
7.4 Display of Fault Trees : 2535

7.4.1 Displays of Causes and Consequences of L10(12) 257
7.4.2 Displays of Causes and Consequences of Ci1(41) 267
7.5 Discussion 274
7.6 Conclusion 274

CHAPTER EIGHT
8. DISCUSSION, RECOMMENDATION FOR FUTURE WORK

AND CONCLUSION 276
8.1 DISCUSSION 276
8.1.1 Introduction 276
8.1.2 HAZOP in Relation to Fault Diagnosis 277
8.1.3 The Fault Tree Data File 280
8.1.4 Computation of Fault Tree Probabilities 281
8.1.5 The Fault Tree Display 283
8.1.6 Testing of the Diagnosis Package 283
8.1.7 Significance of the Diagnosis Package 285
8.1.7.1 Observability 286

8.1.7.2 Instrument Failure 287

8.1.8 Limitations of the Diagnosis Package 288
8.1.8.1 Time Lag for Fault Diagnosis 288

8.2 OTHER USES OF THE DIAGNOSIS PACKAGL 293
8.2.1 Introduction 293
8.2.2 Operator Training 9293

8.2.3 Reliability of Safety Devices and Measuring
Instruments
8.2.4 Operating Manuals
8.3 RECOMMENDATION FOR FUTURE WORK
8.4 CONCLUSION

LIST OF REFERENCES
APPENDICES
APPENDIX A : RULES FOR FORMULATING CAUSE EQUATIONS

APPENDIX B : SYMBOLS COMMONLY USED IN FAULT TREE
GRAPHICAL REPRESENTATION

APPENDIX C : FAILURE RATE AND HUMAN ERROR
PROBABILITY DATA

APPENDIX D : FEATURES OF MICROSOFT QUICKBASIC
APPENDIX E : SOURCE CODE OF THE PROGRAM TRANSLAT
APPENDIX F : SOURCE CODE OF THE PROGRAM DISFAULT

APPENDIX G : CONTENT OF THE FAULT TREE DATA FILE
HAZOP.COD

Page

294
294
295
297
299

309

310

314

315

319

321

345

400

Table
Table
Table
Table
Table
Table
Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table
Table

Table

Table

2.1

2.3

3.1 :
3.2

3.5

4.1

5.1
5.2

6.2 :

6.3:

6.3 a:

LIST OF TABLES

: Occurrence Of Major Accidents In The Chemical

Process Industry In The Twentieth Century

: Possible Fault Of Figure 2.1
2.2 3

Part Of Fault Dictionary Indicating Existence Of
Blockage In Exit Line Of Figure 2.1

: Shortened Fault Dictionary lFFor Buffer Tank

HAZOP Guide Words And Meanings

: HAZOP Study Team For A New Plant
3.3 :
3.4 :

HAZOP Study Team For An Existing Plant
Meaning Of Index Numbers In Parenthesis
Following A Line, Vessel Or Node Number

: Equipment Failure Modes Indicated By A Single

Number Or Letters In Parenthesis

: Rules For Boolean Manipulation

¢ Fault Tree Data Structure

Keys That Are Programmed To Do Certain Functions

: Colour Attributes Of Events In The Fault Tree

Display

: Indices To Represent Components In The Pilot Plant

Model

Single and Two Letter Symbols To Represent
Certain Plant Equipment Failure Mode

1 - Year Probabilities I'or Primary Events Of The
Pilot Distillation Plant

(continuation of table 6.3)

6.3 b : (continuation of table 6.3 a)

7.1

7.2 :

: Data Structure Containing The Translated

Information Of Equations 7.1 To 7.7
Results Of Manual A Priori And Posteriori
Probability Evaluations

10

Page

16

33

34
35

56
S8
58
67
68

89

149
190

192

233
233
248
249
250

253

256

Table
Table
Table
Table
Table

Table
Table
Table
Table

Table
Table
Table
Table
Table
Table

fRaR9a

c @

A
|
1

2
3

: Rules For Pipelines

(a) : (continuation of table A.l1)
(b) : (continuation of table A.1(a))
: Rules For Pipeline Junction

: Rules For Vessels

: Failure Rates For Chemical Plant Items
(a) : (contination of table C.1)

(b) : (continuation of table C.1 (a))

: Probabilities For Human Errors

: Content Of The File HAZOP.COD

(a) :
(b)
(c)
(d) :
(e)

(continuation

: {(continuation
: (continuation

(continuation

: (continuation

of table
of table
of table
of table
of table

G.1)

G.1 (a))
G.1 (b))
G.1 (c))
G.1 (d))

Page

310
3N

312
313
313

315
316
317
318

400
401

402
403
404
405

Figure
Figure

Figure

lligure

Figure
Iigure
I'igure
Figure

Figure

Figure
Iigure
Figure
ligure
ligure
Figure
Figure

lligure
Figure

Figure
Figure
liigure

Figure
Figure
Figure
I'igure

Figure
Figure

2.1 :
2.2

2.3

2.4

3.1
3.1 a:
3.2
3.3

3.4

4.1
4.2
4.3
4.4 :
4.5
4.6
4.7

15>]

3.3 ¢
5.4 :
5.8 ¢

5.5 a
55Db
5.6 :
5.l

5.8 :

5.8 a:

LIST OF FIGURES

Schematic Diagram Of A Bufter Tank
Method Of Combining Rules To Shorten Fault
Dictionary

: Signed Digraph For Buffer Tank System Of

Figure 2.1

: CE Graph For Pattern In Equation 2.3 On The

Signed Digraph Of Figure 2.2

: Flowsheet Of HAZOP Procedure

(continuation of figure 3.1)

: Part Of An Ammonia Let Down System
: Fault Tree After Combining Lquations 3.3, 3.4 and

3.5

: Fault Tree For The Combination Of Equations 3.1

And 3.6

: OR Gate
: AND Gate
: A Fault Tree With Secondary Events

Transformed Fault Tree Of Figure 4.3

: A Fault Tree By Fussell 132]

A Fault Tree With No Repeated Events

: Recursion Trace Of Algorithim TDPP On Fault Tree

Of Figure 4.5

: Part Of Data File For Fault Tree Of Figure 4.1
: Part Of Data File Containing Information About

Equation 5.1

Feed Tank System

Flowchart Of Subroutine CAUSE

Various Stages Of Translating Equation 5.4 Into
Data File

: (continuation of figure 5.5)

: (continuation of figure 5.5 a)

IFlowchart Of Subroutine SYMPTOM

Part Of Data File For Symptom Equations 5.5, 5,6
And 5.7

Flowchart Of Subroutine PRIMARY
(continuation of figure 5.8)

Page

32

42

43

61
62
71

82

82

87
87
88
90
108
108

133

150

150
152
155

161
162
163
165

165
168
169

ligure
ligure
Figure
Flgure
Figure
l'igure
l'igure
I'igure
Figure
Figure
l'igure

liigure

ligure

Figure
Figure

5.9 : Flowchart Of Subroutine PROB
5.9 a : (continuation of figure 5.9)

(%]

.9 b : (continuation of figure 5.9 a)

.9 ¢ : (continuation of fipure 5.9)

.9 d : (continuation of figure §.9 c)

.10 : Flowchart Of Subroutine CONPROB
A1 : Flowchart Of Subroutine REPROBI

12 : Flowchart Of Subroutine REPROB2
.13 : Flowchart Of Subroutine REPROB3
.14 : Flowchart Of Subroutine REPROB4
15 : Flowchart Of Subroutine PPROB

5 a : (continuation of figure 5.15)

{5, T %> T ¥ B ¥, B> T ¥ B 2> B %> [
s

g |
6.1 : Schematic Diagram Of The Pilot Distillation Plant
8.1 : Schematic Daigram Of A Buffer Tank

8.2 : Fault Tree Display Showing Causcs And
Consequences Of High Liquid Level In Vessel Cl

13

Page

181

182
183
184
185
212
214
215
217

218
220
221

223

278

290

I’late

Plate

Plate

Plate

Plate

Plate

Plate

Plate

Plate

Plate

7.1

7.2

7.4:

7.5

7.6:

v i £

7.8 :

7.9:

LIST OF PLATES

: Initial Display For The Alarm Lvent L10(12)

Display After Pressing The F1 And IF2
Function Keys

: Display After Directing Cursor To L9(12) And

Pressing The F9 Function Kcy

Display After Directing Cursor To N2(§21) And
Pressing The F9 Function Key

: Display Showing One Of The Final Conscquences

Of L10(12), i.e., L11(521)

Display Showing The Propagation Of laults From
The Primary Events To One Of The Top Most
Consequences Of L10(12)

Display Showing The Causes And Consequences Of
The Alarm Event C1(41) And Also The Message For
The User To Input Name Of An Event To View Its
Causes And Consequences, Activated By Pressing
The ALT And A Keys Together

Display Of Causes And Conscquences Of C1(71)
Which Was Input From The Keyboard From The
Display In Plate 7.7

Display Showing The Primary Causes Of C1(41)
Via The Secondary Event C1(71) And The Chain Of
Consequences To RB1(41)

: Display Showing The Effect When The Fault

Column, Originally As Shown In Plate 7.9,
is Scrolled Downwards By Pressing The F6
Function Key Twice

}4._

Page

258

259

261

263

264

2606

268

269

272

273

CHAPTER ONE

1. INTRODUCTION

Human requirements are met using natural resources. The
chemical process industries have evolved to efficiently change the
natural materials to a more wuseful form. For many such
transformations, energy in the form of heat, pressure or motion is
involved, in ecither a single form or in some combination. The presence
of physical energy can be potentially destructive if not handled
properly. This can cause loss of containment and result in explosions,
serious fire or release of toxic material. This thesis is about a method
of analysing a chemical process so that accidents, arising from loss of
containment of materials in the process, causing major hazards can be

prevented.

Marshall [1] states that the beginning of the era of major
chemical hazard is said to have started at Opau, Ludwigshafen in
Germany when on the 21st September 1921 a store containing about
4000 tonnes of ammonuim nitrate mixture to be used as a fertilizer
exploded, killing over 500 people. Since then there have been many
other major incidents causing many injuries and fatalities. Table 1.1
lists some of the incidents that have occurred on chemical process

plants. The reported incidents are given in references [2] and [4].

It can be seen from Table 1.1 that many of the reported accidents
have occurred since the Second World War. It is during this period and

up to the present day, that there have been rapid developments in the

Table 1.1

Occurrence of Major Accidents in the Chemical

Process Industry in the Twentieth Century

Date Location Nature of incident No. of
fatalities
1|1 13/12/26 | St. Albans Release of Chlorine 19
France
2 | 28/5/28 | Hamburg Release of Phosgene 11
Germany
3| 13/12/29 | Syracuse Release of Chlorine 1
New York, USA
4 | 24/12/39 | Zarnestl Release of Chlorine 60
Rumania
5| 20/10/44 | Cleveland Fire involving liquified natural 128
Ohio, USA gas
6 | 5/11/47 Rauma, Finland| Release of Chlorine 19
7 | 28/7/48 | Ludwigshafen Explosion involving dimethyl 207
Germany ether
8| 4/4/52 Walsum Release of Chlorine 7
Germany
914/6/64 Antwerp Explosion involving ethylene 4
Belgium oxide
10| 4/1/66 Feyzin, France | Fire involving propane 17
11 | 8/8/67 Lake Charles Explosion Involving Isobutane 7
Louisiana,USA
12 | 21/1/68 | Pernis, Holland| Explosion involving mixed 2
hdrocarbons
13 | 10/8/ 71 Amsterdam Explosion involving butadiene 8
Holland
14 | 1/6/74 Flixborough Explosion involving 28
UK cyclohexane
15 | 10/2/75 | Antwerp Explosion involving ethylene 6
Holland
16 | 25/2/75 | Longview Explosion involving ethylene 4
Texas, USA
17 | 7/11/75 Beek, Holland | Explosion involving propylene 14
18 | 3/4/77 Umm Said Explosion and fire involving 6
Qatar natural gas liquids
19 19/11/84 | Mexico City Explosion and fire involving 144
Mexico liquified petroluem gas
20 | 3712785 Bhopal, India Release of methyl isocyanate 3000

-.16_

chemical, petrochemical and petroleum industries. Plants have grown
in size, typically by a factor of 10 [6], since it was thought that there
was no need to limit the throughput, particularly if the process was
continuous rather than batchwise. Plants built in this period are often
single stream. They use long sequential process trains with
considerable recycle. Processes have become complex, using large
items of high performance equipment. Operating conditions have
become more severe, such that the operation of such plants s
relatively difficult. Complex instrumentations and highly centralised

control systems are used to reduce manning levels.

The above developments have rcesulted in an increased potential
for major accidents to occur. The most frequent accident is loss of
containment of 1materials. This can result in toxic release or
production of a vapour cloud sufficiently large as to cause a serious
fire or explosion. When such accidents do occur, losses in human,

economic and ecological terms are likely.

Concern about the safe operation of plants has developed ever
since steam boilers were used to provide power and heat in factories
towards the end of the nineteenth century. At that time boliler
explosions were frequently occurring, producing many casualties [2].
Most of the industrial safety activities and legislation on safety since
then have been based entirely on the humanitarian principle that
prevention of personal injury was the main consideration [7). One such

law in Britain to impose health and safety duties on people at work is

the Factories Act 1961.

Lessons from major accidents have changed the approach to
industrial safety from programmes concerned solely to minimise the
risk of personal injury to the concept that safe working is an integral
part of the efficient operation of a plant. This implies that preventing
accidental damage to plant, machinery, buildings, processes, raw
materials and the environment surrounding the plant, known commonly
as loss prevention, is as important as preventing accidents to
employees in the plant and people elsewhere. The United Kingdom
lHealth and Safety at Work Act 1974 which is superimposed on the
Factories Act 1961 not only provides protection for people at work but
also includes provisions for prevention of risk to the health and
safcty of the general public which may arise from work activities [8].
The Act therefore provides for means of controlling major hazards to

be introduced as statutory regulations.

Even before the year in which the Health and Safety at Worl; Act
was passed, there was already concern in the United Kingdom about
major hazards that could arise in chemical process plants [9]. The
Robens Committee set up in 1970 to look into the matter of health and
safety at work recognised the potential for major hazards to occur in
the industry and in their report [5] recommended two steps to be
taken in this area. The first was to set up a specialised unit within the
Factory Inspectorate to keep under surveillance those hazards which
had the potential for injuring the public. The second was to set up an
advisory committee to give advice on explosive and flammable
substances. It was only after the Flixborough disaster in 1974 [10, 19],
that the second recommendation was acted upon, when the Advisory

Committee on Major Hazards was set up by the Health and Safety

- 18 -

Commission to consider safety problems assoclated with large-scale
industrial premises conducting potentially hazardous operations. The

terms of reference given to the committee as stated in their first

report [3] are:

"To identify types of installation (excluding nuclear
Installation) which have the potential to present major
hazards to employees or to the public or the environment,
and to advise on measures of control, appropriate to the
nature and degree of hazard, over the establishment, siting,
layout, design, operation, maintenance and development of
such installations, as well as over all development, both
industrial and non-industrial, in the vicinity of such

installations.”

The Advisory Committee on Major Hazards sat for nine years and
in their deliberations produced three reports [3, 4, 5] where a
comprehensive series of recommendations were made. One of the
rccommendations was that special measures of a legislative character
were required, over and above the gencral provisions of the Health and
Safety at Work Act 1974, to take account of the need to safeguard the
public. At around the same time, the Curopean Community Directive on
the Major Accident llazards of Certain Industrial Activities [11] was
published. This is said by Marshall 1121 to have drawn heavily on
studies incorporated in the First and Second Reports of the Advisory
Committee on Major Hazards. As a result the Control of Industrial
Major Accident Hazards Regulations 1984 (CIMAIl Regulations) were

passed by the British Parliament. A requirement of the CIMAH

'9

Regulations is that all manufacturers must prove to the Health and
Safety Executive that they have identified existing major accident
hazards, adopted the appropriate safety measures, and provided the
persons working on the site with information, training and equipment

in order to ensure their safety.

One technique for hazard identification and assessment
recommended by the Advisory Committee on Major Hazards in their
Second Report [4] is hazard and operability study, known more
commonly as HAZOP [13,14,151. The origins and development of HAZOP
will be discussed in Chapter 3. A HAZOP study is normally carried out
by a team of experts who provide knowledge and experience
appropriate to the objectives of the examination and to the stage of
development of the project. An attempt is made to foresee every
concelvable fault that can occur on every plant item. This is done by
applying guide words such as NO, MORE, LESS, AS WELL AS, PART
OF, REVERSE and OTHER THAN in turn to process intentions such as
flow, temperature, pressure, liquid level or heat transfer. Causes of
these faults are noted and the possible consequences are predicted.
Data obtained from HAZOP study can be voluminous. Techniques have

been developed to structure the data. One such structure is the Fault

Tree [13, 16, 18].

Qualitatively a fault tree describes in pictorial form the paths
which can lead from a primary or basic event through any intermediate
sub-events, to a top event which usually is the hazardous failure.
Quantitatively a reliability study may be carried out using the fault

trece to calculate the probability of occurrence of a particular event

- 20 -

from basic events which can cause the failure. The basic events are at

the bottom of the tree.

Thus the HAZOP study with the aid of fault trees enables the
design engineer to see how potential fault conditions propagate in the
plant. In this way, a systematic modification of the plant design can
be made so as to reduce the probability of any hazardous event
occurring during plant operation L17]. Fault tree analysis can be used
to investigate the cost benefit and effectiveness of implementing

safety devices in process plants L17].

However, no matter how well a process plant is designed
incorporating all aspects to prevent losses and making it as safe as
possible, fault conditions may occur during plant operation. These
faults may be caused by unexpected equipment failures. Examples of
such failures are pumps not delivering the correct flowrate, control
valves not responding to required positions, measuring Instrument
malfunction giving wrong readings and lcakages due to worn seals or
gaskets. Hence to detect abnormal conditions during plant operation,
monitoring of the plant is an important function. In most modern
plants, the monitoring function is done by computer control systems
which raise an alarm if a process variable goes outside specified limits
or if some equipment is not in a specified state. However not all plant
faults are detectable by the process computer. Human operators are
needed to monitor the state of process variables which are not on-line
to the process computer and also to check for unusual events such as

leakages or measuring instrument malfunction.

21

Once an alarm has been raised, showing that an abnormal
condition has occurred, actions have to be taken by process operators
to prevent the fault propagating to other events which may be
hazardous. The plant may have to be shut down safely, by the operator
or by an automatic safety protection system, so that the fault can be
diagnosed and repairs can be made. This will incur financial losses due
to lost production and time while diagnosis and repairs are being

done.

However some fault conditions may not warrant such drastic
action. The fault can be diagnosed and corrective action taken whilst
the plant is still running. For this procedure to be successful, the
diagnostic and corrective tasks have to be completed within a period
of time dependent on the type of fault and the type of process
equipment involved. This time period is the time before the fault
develops to the point where a more scrious event may occur. The
corrective task may fail to address the fault, and then the plant has

to be shut down safely before serious consequences develop.

Diagnosing a fault condition and identifying its likely causes can
be a difficult and confusing task. Plant operators usually take
short-cut methods to check plant items which they think are the most
probable causes, without considering all the alternatives [33). This
course of action will not always be successful in finding the cause of
the fault. Also, so many alarms may occur simultaneously that plant
operators become confused. A systematic procedure for fault
diagnosis has the potential to simplity the information presented to

the operators. This simplifies the operator’'s task of finding the cause

*.2‘ -

of fault conditions whenever they occur. A computer system can be
used to implement such an effective fault finding method so that

appropriate corrective actions can be taken soon enough.

Studies have shown that operators respond much better to
diagrammatic representation than to a table or list of figures on a
sheet or on the visual display unit (VDU) of a computer [20]. Thus a
diagrammatic fault tree display on a VDU showing the alarmed event
can be used as the base for a computer-aided diagnosis system. Such a
display could show likely causes as branches of the fault tree and the
consequences if the fault is not remedied within a time limit. Further,
displaying of conditional probabilities of the likely causes will help
the operator to rank the likely causes to be checked and validated.

The time by which action should be taken can also be shown.

It has been the objective of this research to investigate and
develop a fault diagnosis system using a microcomputer. This is a
prototype for a system to aid plant operators to find causes of an
alarm during plant operation. An interactive package has been
produced to display on the VDU the possible causes of a fault
condition that is to be investigated in the form of a fault tree. The
package also displays the consequences of the fault condition and the
probability estimates of the possible causes. This objective has been

achieved to the point where the program can be demonstrated

analysing fault trees derived from a real plant.

- 23 -

CHAPTER TWO

2. FAULT DIAGNOSIS

2.1 : Introduction

A prime concern in the chemical industry is to prevent losses
either due to occurrence of major hazards or unscheduled stoppages or
poor product quality. This is achieved by monitoring process variables
and controlling their fluctuations within a desired range. In modern
process plants, the task of monitoring and controlling process
variables is almost entirely handled by an automatic control system,

which tends increasingly to be based on a process computer.

When operating conditions vary outside their designed limits,
the control system will generate alarm signals to notify operators the
existence of abnormal conditions in the plant. If the abnormal
conditions are left uncorrected, the variations of the process variables
could result in catastrophic events such as an explosion, fire or the
release of toxic chemicals. Some form of control or corrective actions
have to take place to prevent any accident that might propagate from
the fault. The form of control or corrective actions depends on the
specific occassion prevailing and the immediate goal that is to be

achieved at the time the fault has occured.
Rasmussen [21]1 outlines the appropriate actions to be taken

following the detection of an accidental maloperation. First, a

preselected set of critical variables is scanned to test whether there

...24_

exist a data pattern related to preplanned safety action such as
shutting down the plant. The goal for this action is to prevent damage
to the plant equipment involved which can lead to a more serious
accident. This sequence of actions can be performed by the operator,

but also is in fact the function behind an automatic safety system.

If no immediate danger is present, the subsequent intention may
be to compensate the effect of the fault. The objective is to avoid
drastic automatic safety actions by finding possible means for
counter-actions from the causal or functional flow of the system. The
effect of this action is to move the plant to a new state, not
necessarily similar to the original operating condition, so as to
protect it from adverse consequences without shutting down the

plant.

The two forms of action stated above can be done without

consideration of the primary cause of the situation.

The ultimate goal is to restore the normal condition prior to
occurence of the fault, whether or not the plant has been shut down
or compensatory action has been executed. This is achieved by locating

the components that cause the fault in order to be able to adjust or

repair them.

Diagnosis of process malfunctions can be a difficult task for
process operators because of the interactions of process components
174). Various methods of fault diagnosis have been proposed in order

to aid the process operator in finding the cause of a fault. Most of

the methods require the use of computers to help the operator in the
decision making process. This chapter reviews some of the computer

aided fault diagnosis methods that have been published.

2.2 : Aspects of Fault Detection

A fault in the process plant is easily detected by directly
checking measurable variables for upward or downward transgression
of fixed limits or trends. This supervisory task can be easily
automated using the process computer acting as a limit-value monitor,
sending an alarm signal whenever a variable exceed its intended limits.
However, this form of fault detection produces large number of

alarms. Lees [22] has discussed the defects of process alarm systems.

There are several factors which cause alarms to be numerous.
One is the confusion between alarms and statuses. A status indicates
that an item is in a particular state, for example, a pump not running.
If however the pump should be running but it is not, then this state
constitutes an alarm. The confusion arises when alarm displays are
also used as status displays. Thus if a section of a plant is not in use,
there may be a whole block of alarm signals permanently up on the

alarm display, even though these are strictly not alarm conditions.

Another cause of alarm proliferation is when the process has
a number of different states. For example, an alarm during normal
operation may not be a genuine alarm during startup. Alarms may also

occur due to maintenance work on instruments. A further cause of

_26..

alarms is when trip systems are activated. When a trip operates, it

tends to give rise to a number of consequential alarms.

The use of process computers has increased the scope for
improvements to alarm systems [23]. Such work on improved alarm
systems falls into two stages [22]. The first is the development of
alarm handling facilities such as types of alarm display and alarm
suppression. The types of display are closely related to the human
factors aspects of fault diagnosis. The second stage 1is the
development of facilities for analysing alarms and disturbances. The
purpose of such facilities is to separate real alarm signals from other
types of signals. The other types of signals include signals indicating
status, signals associated with mode of operation of the plant other
than the normal operation mode, signals expected as a result of
opecrator or trip action and spurious signals due to instrument

maintenance and instrument malfunction [22].

A general account of alarm analysis has been given by Leeset al
122, 23, 341. Most of the developments on computer based alarm
analysis have been done on nuclear power stations as described by Kay
[35], Welbourne [36]) and Patterson [37]. Proposals for applications in
the chemical industries have been made by Baarth and Maarleveld (381,
Andow et al [39, 401, Himmelblau [27, 29] and Berenblut and
Whitehouse [30]. The basis of the alarm analysis schemes reported by
the above authors is to create a data base containing the cause and
cffect relationship of a particular plant. A general analysis program
then interogates the data base in real time and builds up an analysis

of the alarms as they occur. Thus such alarm analysis systems not

- 27 -

only detects faults in the plant, but can also be extended to diagnose

the faults that cause the alarm.

Using either conventional alarms or alarm analysis methods,
various types of fault can be detected but only after the measured
variables have been considerably affected. There may not be enough
time for taking corrective actions after acknowledging the alarm. The
use of process computers enables the use of modeling and estimation
methods for earlier detection of faults. The discussion of modeling

and estimation methods is given in the next section.

2.2.1 : Modeling and Estimation Methods

Mathematical models of the plant are used to estimate values of
the process state variables, process parameters and quantities
characteristic to the process under normal operating conditions.
Process state variables can be measurable or unmeasurable. Process
parameters are constants or time dependent coefficients in the
process which appear in the process model that relate the output
signal to the input signals. Examples of process coefficients are
viscosity, heat capacities, transfer coefficients (heat and mass), and
resistances. Characteristic quantities are those that describe the
performance of the equipment such as efficiency (e.g. of heat
exchanger or steam generator), or fuel consumption per production
unit or time. These values provide the reference case whereby the

boundaries which define a fault or faults are set.

From measurements of observed responses in the steady state or
the unsteady state and for known (or unknown) process Iinputs,
process state variables, parameters or characteristic quantities are
estimated during plant operation using the same models. By comparing
these estimates with those of the reference case via statistical tests,

the existence of faults can be ascertained.

A benefit of modeling and estimation techniques is that faults
can be inferred based on unmeasureable process state variables or
parameters or characteristic quantities. Issermann [26] gives a
summary of how such detection techniques can be applied. A
comprehensive description of various tools in detecting faults in
chemical and petrochemical plants using modeling and estimation

techniques can be found in the book by Himmelblau [27].

Modeling and estimation techniques can only detect and
diagnose faults in the equipment under investigation. For example, the
cause of poor performance of heat exchangers can easily be pinpointed

to 28] :

1. fouling;

2. leakage between the tube side and shell side;
3. vibration and cracking;
4. corrosion;

5. improper original design for usage.

If the cause of malfunction of an equipment may be due to

interactions of other equipments, extensive modeling and computation

is required at the plant level [24]. A considerable amount of computer
time is needed to solve the model equations, particularly when
dynamic models are used. Thus, the modeling and estimation method

may not be practicable when applied to real-time fault detection and

diagnosis.

2.2.2 : Pattern Recognition Methods

In the pattern recognition approach, inference as to whether the
process plant is in a faulty condition is derived from patterns of the
measured variables. The patterns are actually combinations of the
fcatures of the measured variables. The features are descriptions of
the measured variables, for example, whether high, normal or low,
computed according to some criterion. Each combination determines
whether the plant is in either the normal state or in a certain class of
fault or an anomaly. An anomaly is when the feature combination
exhibits a physically impossible situation indicating that there may be

malfunctions in the measuring instrument.

Techniques in the pattern recognition method include cluster
analysis, acoustic analysis, vibration analysis and fault dictionaries.
Himmelblau [29) gives a comprehensive description of these methods.
Of the techniques mentioned, the fault dictionary is more of a method

for diagnosing faults and is described later in the chapter.

2.3 : Techniques of Fault Diagnosis

2.3.1 : Introduction

Some of the techniques of fault detection described previously
are in actual fact aids for fault diagnosis. One method of fault
diagnosis is the pattern recognition approach such as the use of fault
dictionaries or decision tables as proposed by Berenblut and
Whitehouse [30]. There are other methods of fault diagnosis using the
pattern recognition approach. These methods differ in the way the
cause and effect relationships of process variables are obtained and
also the way the dlagnosis algorithm operates. The following sections

describe briefly some of the techniques of fault diagnosis.

2.3.2 : Fault Diagnosis Using Fault Dictionaries

A fault dictionary is a set of decision rules where each rule is
represented by a combination of the features of the measured
variables. To each rule is ascribed the fault or faults that cause the

outcome of the feature combination. The application of this form of

fault detection and diagnosis has been discussed by Berenblut and
Whitehouse [30]. In fact their work was a result from a project called
“Anticipator" as described by Munday [31]. Basically, "Anticipator” is a
surveillance system designed to provide real-time analysis of plant
variables during operation and to recognise existence of hazard

conditions or events that may lead to hazard conditions.

~ 3 -

To illustrate the application of the fault dictionary, consider the
buffer tank system taken from the paper by Berenblut and Whitehouse
[30]. as shown in figure 2.1. This system includes a feed-back control
loop which regulates the outflow rate to maintain the tank level, Hi,
more or less constant. In addition, the inflow and outflow rates are

themselves measured. During normal operation, the valves V1 and V4

are closed.

T

A J

- 'm { . :
L2
‘ —%42 cvi | e
: E2)

D]

V4

Vi

Figure 2.1 : Schematic diagram of a buffer tank [30].

If at some instant in time F1 and CV1 are in their normal range,
and F2 is in the low range, the combination of these features indicates
that there is a blockage in the exit line. If no corrective action is

taken, the level in the tank will increase and eventually overflow.

- 37 -

A matrix can be built up where each row represents the features
of a measured variable and each column, known as the feature vector,
represents the combination or pattern of the features of the measured
variables. Each feature vector describes the existence of an event or
some events. A complete set of feature vectors makes up the matrix

that comprises the fault dictionary.

Each event that causes the outcome of a particular feature
pattern is labelled so that it can be ascribed to its corresponding
feature vector in the last row of the matrix. A complete list of
labelled events for the case of the buffer tank in figure 2.1 is shown
in table 2.1. The features that describe the state of measured variables
arc also given labels, e.g. N for normal, H for high, L for low, C for
closed and O for open. The set of feature vectors corresponding to

the event that a blockage in the exit line exists is shown in table 2.2.

Table 2.1 : Possible fault conditions of figure 2.1 [30]

Label Event
1 Normal operation
2 Pipe leakeage between F2 and CV1
3 V4 open in error
4 Blockage in exit line
S Leak in tank
6 Abnormal throughput
A Anomaly or physically impossible combination

Table 2.2 : Part of fault dictionary indicating existence of

blockage in exit line of figure 2.1 [30]

Outcome (rule) 3 4 6 12 | 13 [15 | 21 | 22 | 24
Variables: F1 N N | N H| H| H| L L
CVvi N O O| N O O| N (@) 0
F2 L N L L N L L N L
Event 4 4 4 4 4 4 4 4 4

However, implementing fault dictionaries for fault detection and
diagnosis on a computer has certain limitations. This is because the
complexity of the fault dictionary increases drastically with the
number of measurable variables and the degree of quantization of the
measurements. For the case of the buffer tank in figure 2.1, the
number of possible patterns or rules that can be derived is 3* & 27, If
there are 10 variables that are measured in a plant, the number of
patterns would be 3'° = 59049. Thus it may not be practicable to
prepare a fault dictionary and store it in the computer if the number

of measurements become large.

Berenblut and Whitehouse [30] presented a method of reducing
the number of rules without affecting the outcome of the diagnosis.
This is done by combining rules which have the same event and all but
one of the variables have the same features. For example, rule

numbers 3, 12 and 21 can be combined into one pattern as shown in

figure 2.2.

..3‘_

Rule no. 3 12 21

Fi N H L =
- + ==

CVi1 N N N

F2 L L L L

Figure 2.2 : Method of combining rules to shorten fault dictionary

The feature for F1 is replaced by a dash to indicate a "don't
care" feature. This implies that whatever condition F1 is in, the
combination of the features of the other variables will indicate that
the event common to the three rules will have occurred. The shortened

fault dictionary for the buffer tank is shown in table 2.3.

Table 2.3 : Shortened fault dictionary for buffer tank (301

Rule 1 21 3 4 | 5| 6| 7 8| 9110 |11 (12 |13 |14 |15
F1 N} =) = =t == NI |LHB]L JL |N
CVi N[N|] N]O|L O]j]O]C| C|CIC|C|IN|N|O|O
F2 Nl H] L| N| H] L| N| H|] L |1 L{N|N{H|fH

Event 1 12,3 4| 4) 6| 423|235 S 6| S Al A| A

A requirement for using fault dictionaries or decision tables is
that plant measurements are correct and reliable. It is possible that a
measurement transmitted to the computer does not represent the
actual value of the variable. Consequently, the decision table may
cither indicate a normal operation whereas in actual fact an event has
occurred, or vice versa resulting in false alarms, or diagnosing the

wrong event that has occurred.

As an example, referring to figure 2.1 and table 2.3, suppose an
alarm is raised due to rule 12 indicating that there is a leak in the
tank. If there is a malfunction in F1 whereby the actual state of the
input stream is in the normal range such that normal operation still
prevails, then the alarm raised is false. On the other hand, If the
actual state of the input stream is in the low range, then rule 13
should have been applied indicating an anomaly. This anomaly may be
caused by malfunction in the level transmitter to the level controller

or the control valve not responding to commands from the controller.

To reduce the probability of false alarms, additional rules
involving duplicated measurements or indirect measurements may have
to be incorporated in the decision table [32]. Even if additional rules

are incorporated, the operator has to diagnose the cause of anomalies

or abnormal throughput.

An alternative method to overcome the shortcomings of the
fault dictionary is to relate a single measured variable which has
deviated from its normal range to all its possible causes, including

instrument malfunctions. For example, referring to table 2.3, the

cause of F2 being in the high state may be:

1) pipe leakage betwen F2 and CVI
2) V4 open in error
3) high state of the input stream, Fi

4) F2 indicating higher than what is actual.

The first two causes are the events due to rules 2 and 8. The
third cause comes from rule 5, the abnormal throughput. Whether this
cause is true or false is established by checking the state of F1 either
indirectly by the operator or directly on-line to the computer. If cause
number 3 proved to be the cause of F2 being high, then events that
leads to the high state of the input stream can be determined by
checking its cause and effect relationship upstream of the buffer tank.
The fourth cause, the measuring instrument malfunctlc‘m, takes care of
the anamolies due to the pattern of rules 14 and 15. Thus by one cause
and effect relationship, several rules are incorporated. By combining
with other cause and effect relations, the cause of a fault in the
process plant could be easily be diagnosed. The cause and effect
relationship is easily visualised {if it is put in a graphical

representation such as a fault tree.

Berenblut and Whitehouse proposed that data to build the fault
dictionary of a plant come from operability studies. An operability
study depends on the expertise of the designers of the plant as well
as the managers who operate the plant. Thus the fault diagnosis
method by Berenblut and Whitehouse Is experience orientated. A

detailed description of operability studies is given in chapter 3.

- 37 -

2.3.3 : Fault Diagnosis Using Functional Model Equations

Other than operability studies, the cause and effect relationship
between process state variables can be obtained logically from simple
models of the plant. The alarm analysis method for fault detection
and diagnosis described by Andow [39]; Andow and Lees [40]; and
Martin-Solis et al [41] uses functional model equations to represent

the relationship between variables of plant items.

In a functional equation, each of the process variables on the
left-hand side is a function of all the process variables on the
right-hand side. As an illustration, referring to figure 2.1 for the open

tank only, the relevant functional equations are 1L401]:

d H1
—= iz FUR; =~ B2) R— 2.1
dt
r2 = f(H1I,-P2) e 2.2

P2 is the pressure of the outlet stream. Equation 2.1 states that the
level in the tank will increase with either an increase in the inlet
flowrate or a decrease in the outlet flowrate. For equation 2.2, the
outlet flowrate will increase with either an increase of the tank level

or a decrease of the outlet pressure.

Other equipment including pipelines, valves, controllers and
many others can be modelled accordingly. From the topography of the
plant, and the functional equations of each plant item, a network of

process variables that interact with each other can then be

38

constructed. However, not all process variables are measured and
therefore do not have alarms on them. Thus a process alarm network
can be produced from the process variable network by eliminating all

those process variables on which there are no alarms.

Andow and Lees [39, 40] used a list processing technique to
store the process alarm network in the computer. Apart from the
alarms due to the measured variables, deduced alarms are also stored
together with their associated process alarms. Deduced alarms are
those associated with mechanical faults of the plant items, such as
leakages, sensor malfunction, blockages and valves wrongfully opened

or closed.

When a set of alarms occurs in real-time, the relations between
alarms are derived by interogating the process alarm network. In fact
the process alarm network is a form of an alarm tree. When a fresh
alarm occurs, a check is made to determine whether the alarm is part
of an existing alarm tree which is developing as the effect of an
cxisting prime cause alarm. If the fresh alarm is not part of the tree,
it is classed as another prime cause alarm. If it is part of the tree, it

is classed merely as a new alarm.

However, the alarm analysis system as described above is not
adequate for fault diagnosis. It was developed primarily to give the
relations between a set of alarms rather than to diagnose a mechanical
fault [50]. The information given from the alarm analysis |s
essentially restricted to an indication that a potential fault path

exists. Also, the alarm analysis using the process alarm network could

39

not Indicate that there may be several alarms that must occur

simultaneously to initiate a fresh alarm.

An alternative method wusing the same functional model
equations was developed by Martin—Solis et al [41). Instead of
producing the process variable network, Martin-Solis use mini-fault
trees to represent diagramatically the cause and effect relationship of
variables that have deviated from their intended values. The way a
variable can be caused to deviate is obtained from the relationship
found in the functional model equations. Thus, the deviated variable
on the left-hand side of the functional equation becomes the top
cvent of a mini-fault tree and the deviations of the right-hand side

variables become the base events of the tree connected by an OR gate.
Information additional to that given In the functional equations which

relates to mechanical failures are also added to the minl-fault tree.

A full fault tree is then synthesised by selecting a top event and
developing each branch of the tree using the appropriate mini-fault
trees. The characteristics and properties of a fault tree are described

in chapter 3.

An important advantage of the fault tree over the process alarm
network is that events that must simultaneously occur to cause the
top event of a mini-fault tree can be included by putting them below
an AND gate. Also, the state of unmeasured variables can be inferred
using the fault tree, whereas the process alarm network has all the

variables which could not raise alarm signals removed.

- 40 -

However, using the functional equations either to automatically
build up the process alarm network or the fault tree has some
limitations. The functional equations can only relate how an increase
or decrease of a variable effects other variables. The effect of
deviations such as no flow or reverse flow in the pipeline cannot be
obtained from the model equations. Functional models do not contain
logic about the combination of values of variables needed for some
outcomes. Knowledge of the process and engineering judgement are
essential to include such simultaneously occurring events as well as
mechanical malfunctions in the fault tree. The inclusion of
simultaneous occurring events and events due to mechanical failures

has to be done manually.

2.3.4 : Fault Diagnosis Using Signed Digraph

Another approach to modelling process plants is the use of
directed graphs or digraphs as it is well known. A signed digraph
consists of nodes representing the variables and directed branches
that connect the nodes that have a cause and effect relationships. A
positive or negative sign is assigned to each branch to indicate how
the initial node of the branch affects its terminal node. As an
illustration of what a signed digraph graph looks, consider the buffer
tank system as shown in figure 2.1. Using L1 and L2 to represent the

inlet and outlet flow rate respectively and H1 to represent the level in

the tank, the signed digraph is shown in figure 2.3.

41

cVvi \ L2

h 4

H1

F S

L1

Figure 2.3 : Signed digraph for buffer tank system of figure 2.1

A branch with a positive sign indicates that if the value of the
variable represented by the initial node increases or decreases, then
the value of the variable represented by the terminal nqde also
increases or decreases respectively. On the other hand, if the branch
has a negative sign, an increase or decrease in value of the initial node

will decrease or increase respectively the value of the terminal node.

From patterns of the measured variables, the signed digraph is
transformed to a cause-effect or CE graph [44]. The analysis of the
CE graph will determine the cause of a fault in the plant. Work on
fault diagnosis algorithms using the signed digraphs as models of
cvery equipment in the plant were reported by Tsuge et al [42, 43, 45];

Iri and Aoki [44]1; Shiozaki et al [46]; and Umeda et al [47].

As an illustration, consider the buffer tank of figure 2.1 and its
corresponding signed digraph as shown in figure 2.3 Suppose that F]
and F2 indicate that the respective inlet, L1, and outlet, L2, flow rates

are above the normal range, CV1! also indicates that its position is

42

above its normal range, and H1 is normal. The pattern of the measured

variables using the notation of Iri and Aoki [44] is:

tEl, Hi, CV1, P2) = (+,0,%,+) e 2.3

The positive signs assigned to the state variables indicate that the
deviations are due to the increase in value of the variables above the
intended limits. If the values of the state variables decreased below
the intended limits, then negative signs are assigned to the variables.
The zero assigned to a variable indicates that there is no change in its
state, as It is in the normal mode of operation. The CE graph to

represent the pattern of equation 2.3 is shown in figure 2.4.

+L1

Figure 2.4 : CE graph for pattern in equation 2.3 on the signed digraph

of figure 2.2

Normally, when a node representing a state variable is assigned
a zero, it is not included in the CE graph [44]. However, for the case
of the buffer tank, Hl is being controlled which suppresses the
tendency of the level in the tank becoming greater than its normal
range, such that Hl has a normal value. In order to take into account

the special roles of controllers and control elements, Iri and Aoki

- 43 -

[44] introduced special signs to represent the outcome of controlled

variables as if they are not controlled. Iri and Aoki use the sign ®
or (O to represent the state of a variable which would have the sign
+ or - respectively without control but which is not seen abnormal due
to the operation of the controller. The sign ®is assigned to H1 in
figure 2.3 because an increase in value of L1 will definitely increase

the level in the tank if H1 is not controlled.

In building up the CE graph from the signed digraph,
consistency must be maintained so that the cause and effect
rclationship is logically sound [44]. For example, referring to the
signed digraph of figure 2.3, the branch between the nodes L2 and HI
indicates that an increase in the value of L2 will decrease the value of
H1 if the level is not controlled. If the sign & iIs assigned to HIi, it
will not be logical since L1 is assigned the sign + and the branch
connecting the nodes L1 and H1 has the positive sign. So, to be
consistent, the branch connecting nodes L2 and H1 is removed in the

CE graph as shown in figure 2.4.

The nodes in the CE graph are termed as the strongly connected
components of the graph [44, 47]). If a strongly connected component
is not a terminal node connected with other initial nodes, then that
node is termed the maximum strongly connected component. The
method of fault diagnosis using the signed directed graph approach is
to search for the maximum strongly connected components in the CE
graph. If there is more than one maximum strongly connected
component found in the CE graph, then these nodes are termed the

candidates for the cause of the fault in the plant.

44

Not all the maximum strongly connected components found in a
CE graph can be the cause of the fault in the plant. The operator has
to manually check all the candidates to determine the actual cause of
the fault. For the case of the CE graph of figure 2.4, the maximum
strongly connected component is L1 and thus the cause of the pattern

in equation 2.3 is the high flow rate of the inlet stream.

Although fault diagnosis using the signed digraph is feasible, it
can only handle cases when state variables exceed their upper or lower
bounds. There is no facility for handling deviations such as reverse
flow or no flow. Also, the fault diagnosis algorithm requires that the
pattern of the measured variables be correct. Thus the reliability of
the measuring instruments is important. With this in mind, the
algorithm cannot diagnose that the cause of a fault in the plant is due
to instrument malfunction. Another drawback of theé signed digraph
method for finding causes of faults in chemical plant is the poor
diagnostic resolution. Tsuge et al [42] reported that the signed
digraph algorithm using on-line sensor data ylelded an average of 23

fault candidates out of 53 possibilities.

2.3.5 : Fault Diagnosis Using Fault Trees

From the previous discussions, it can be seen that fault
diagnosis with the aid of fault trees overcomes the drawbacks that
have been pointed out for other methods. An advantage of the fault

tree method over the methods that have been discussed above is that

operators can trace the cause and effect relationship of the various

deviations that can lead to the abnormal condition in the plant.

Previous work on fault diagnosis using fault trees has been
described by Lihou [62] and Martin-Solis et al [41]. A detaliled

description of fault trees is given in chapter 3.

2.3.6 : Fault Diagnosis Using Expert Systems

Another technique of fault diagnosis is the use of expert
systems to aid the operator in finding the cause of a fault. An expert
system is defined by Bramer (see reference 65) as "a computer system
which embodies organised knowledge concerning some specific area of

human expertise, sufficient to perform as a skilful and cost effective

consultant”.

An expert system may be viewed as comprising of four major

components [52] :

1. The knowledge base
2. The case specific data
3. The inference mechanism or inference engine

4. The man-machine interface
The knowledge base is the knowledge specific to the domain of

problems that the system is intended to solve. For the case of process

plant fault diagnosis, the knowledge consists of the cause and effect

- 46 -

rclationships of the deviations in the state variables, instrument
malfunctions and mechanical failures. Integrated into the knowledge
base could be knowledge obtained from proven rules and generally
acknowledged hypotheses such as the plant models; and subjective
knowledge obtained on the basis of long-term experience of experts.
One way of organising the logical structure of knowledgei for the fault
diagnosis system is in the form of production rules [52, 53, 541.

Production rules are conditional expression of the form [53] :

IF A THEN B .. 2.4
where A is the detectable consequence or fault, and B is the set of all
possible causes of A. If a failure is conditional on several causes,
then the rule can be expressed as:

IF A THEN C; ANDC,..ANDC;.. ANDC,, 2.5

where C;, 1 = 1 to n, are the causes that simultaneously must occur to
cause A. Another form of the production used by Kumamoto et al [54]

is:

IF A AND F THEN B ... 2.6

where A is the faulty state of the system, P is the observable fact

that qualifies A, and B is the cause that brought about the existence

of A and F.

4?.

The case-specific data are the knowledge about the particular
problem to be solved. It is used for keeping track of the problem
status, the input data for the particular problem, and the relevant

history of what has thus far been done.

The "inference engine" is the heart of the expert system. It is
just a computer program that uses the knowledge base and the
case-specific data in either a forward or backward inference chain to

obtain a solution to the problem.

The man-machine interface is fundamentally concerned with the
way the expert system presents its findings to the user. The usual
form of interface is in the form of an interactive dialogue between the

computer and the user. This is to enable specific data required by the
expert system to be supplied by the user. Reasons to justify every
step of the expert system's findings can be displayed whenever
required by the user. This enables the user to evaluate the assertions

during the cause isolation process [54].

There have been several publications on application of expert
system techniques for process plant fault diagnosis. A review of some
of the expert systems that have been published can be found in

reference [52]. Almost all the reported expert systems are prototypes.

Niida et al [55]1 described a prototype expert system for
diagnosing faults in a pressure relief system. The knowledge structure

is in the form of fault trees obtained from cause and effect analysis

of the system.

_48..

Kumamoto et al [84] give a simple example of an expert system
applied to fault diagnosis of a ship's engine cooling system. The
knowledge to represent the behaviour of the system is based on an

AND/OR tree structure compiled into IF-THEN rules.

Kramer and Palowitch [58] proposed that the diagnostic rules
that form the knowledge base of an expert system are to be obtained

from the signed digraph of the chemical process system. However,
problems associated with fault diagnosis using signed digraphs

described earlier will be inherent in the expert system.

Chester et al [56] described a prototype expert system called
FALCON for real-time fault diagnosis of chemical process p_lant.s. In
their system, the knowledge representation comes from interconnected
models of plant components that make up the process. The diagnosis
is based on causal model approach. In this approach, the models that
describe cause and effect relationships and observed data describing
the state of the process are used to reason out all the possible faults
that might be hypothesized. Yamada and Motoda [57] also use this

approach for fault diagnosis of a nuclear reactor power plant.

Nelson [59] also produced an expert system for diagnosing
nuclear reactor accidents called REACTOR. In his system, the
knowledge base contains two types of knowledge: function-orientated
knowledge and event-oriented knowledge. Function-orientated
knowledge describes the configuration of the reactor system and how
its components work together to perform a given function.

Event -oricntated knowledge describes the expected behaviour of the

- 49 -

reactor under known abnormal conditions. It is contained in a series

of production rules.

Other developments of expert systems specifically for
diagnosing faults have been reported by Andow [49]1, Sgurev et al [601,

Fox et al [61], and Klemes and Krus [53].

An advantage of the expert system technique for fault diagnosis
is the capability, on demand, of explaining the advice or action to be
taken. This is done by incorporating accumulated experience, judgment
and the heuristics of process engineers and operators into the
automated reasoning system. In theory, the use of expert systems for
fault diagnosis in real time, by direct access to plant measurements,
allows for plant operators to be able to diagnose any fault that
occurs during plant operation. Together with a fault tree display as an
interface to show how the fault propagates from its basic causes, a

better understanding of how the fault occurred can be obtained.

However, implementing expert system techniques in real time
fault diagnosis can have some problems. Plant status may change very
fast which implies that the response time for the diagnosis is critical.
Therefore a high inference speed is needed. Kramer [111] states that
for a large chemical plant, the number of rules may be as high as
10,000 to 100,000. Taking into account that the plant status may

change whilst the diagnosis is in process, an exhaustive search for the

cause of a fault may not be possible in real time.

- 50 -

2.4 : Human Pactors Aspects in Fault Diagnosis

The study of human behaviour in areas such as vigilance,
information processing and decision making is part of the discipline of
ergonomics or human factors [23]. Human factors also includes the
study on allocation of function between man and machine and the
design of equipments such as displays and controls that enhance the
perfomance of the human being In carrying out specific tasks. Such
human factors studies are needed to lidentify and solve difficulties
which may arise in developing man-machine systems [23]. The
following account discusses some of the human factors aspects

relevant to fault detection and diagnosis in the chemical plant.

Whenever an alarm sounds that an abnormal condition is present
in the chemical plant, it is expected that operators respond to
administer the fault that has occurred. Fault administration consists

of three stages [34]:

1. fault detection
2. fault diagnosis

3. fault correction

The task of administering faults requires that the operator
makes decisions in a complex or unforeseen situation. To be effective
in decision making, the operator must know the current state of the
plant. A study by Bainbridge [63) indicates that typically an operator
has a mental model of the state of the plant, that he extrapolates this

state into the future and that he then uses an overview display to

- 51 -

sample information at a frequency sufficient to confirm his
extrapolation. Thus a properly designed information display Is
important to almost all the operator's tasks including fault
administration. A good display is when the operator can obtain the
information required at a glance [22]. Conventional control panels and

mimic diagrams often give relatively good overview displays.

Edwards and Lees [34, 64] dealt in detail the human factors
aspects in process control. Although much of the knowledge given by
Iidwards and Lees is relevant to process control, it can be applied to
process alarm systems. The prime function of an alarm system is to

assist the operator in fault detection which is the first stage of fault

administration.

The second stage of the operator's task is fault diagnosis.
Rasmussen and Jensen [33] found that in the task of repairing
electronic equipment, man tends to explore first those paths
which on the basis of his experience he regards as the high probability
paths. Low probability paths are not considered until he is satisfied
that the high probability paths can be ruled out. This search strategy
according to Rasmussen and Jensen is quite efficient. By contrast, the
search strategy used by computer aided fault diagnosis methods
described earlier follow a fixed sequence regardless of probability
[22). The computer program would become more efficient if it follows
the human's search strategy. This can be done by including relevant

probability information into the fault diagnosis package.

..52_

When using a computer aided fault diagnosis system, the vbu is
an important interface for the operator to obtain information as well
as to give the relevant information required by the system. The design
of the display is crucial with respect to operator assimilation of the
information. Operators respond much better when the information is
presented diagramatically rather than a list of figures [20]. One form
of diagramatic representation is a fault tree. A fault tree aids the
operator in visualising the relationship between the abnormal
condition of the plant and all its possible cause. A detail description

of fault trees is given in chapter 3.

CHAPTER THREE

3. HAZARD AND OPERABILITY STUDY
AND FAULT TREE ANALYSIS

3.1 : Hazard And Operability Study

3.1.1 : Introduction

Hazard and operability studies, or HHAZOP as it is well known in
its abbreviated form, is a formal study of process plants aimed at
discovering potential causes of hazardous consequences or operating
difficulties [13,141. The concept of HAZOP is that a multidisciplinary
team reviews the plant methodically in a series of meetings with the
aim of detecting all possible ways in which the plant departs from the
intentions of its designers. It is based upon the supposition that most
problems are missed because the system is complex rather than

because of a lack of knowledge on the part of the design team [13],

Although the general objective of HAZOP is to identify hazards
and operability problems, the underlying reason for the study may be

varied. Examples of reasons for a study might be to:

1. Check the safety of a design.

2. Decide whether and where to build the plant.

3. Check operating and safety procedures.

4. Improve the safety of an existing plece of equipment.

Verify that safety instrumentation is reacting to the best

L

parameters.

- 54 -

6. Prepare data for fault diagnosis.

The key for a successful HAZOP is the use of word models to
stimulate thought and creativity during the study. The word models
consist of PROPERTY WORDS that focus attention on the designed
intention of plant items, and GUIDE WORDS that focus attention on
possible deviations. Typical property words are flow, pressure,
temperature and level. Guide words are simple words which are used
to qualify or quantify property words in order to guide and stimulate
the creative thinking process and so discover deviations. Examples of
guide words are NO, MORE, LESS and REVERSE. Table 3.1 shows the
different types of guide words and their meanings as published by the

Chemical Industries Safety and Health Council [66].

Once the purpose, objectives and scope of a HAZOP study have

been defined, the steps for carrying out the study are:

. Selection of the HAZOP team members.

2. Making preparations for the study.
3. Actual study carried out by the team.

4. Recording the results.

3.1.2 : The HAZOP study team
HAZOP study of a process plant is usually carried out by a team

of experts, each with their own specialisation. It is based on the

principle that several experts with different backgrounds can interact

55

Table 3.1 : HAZOP guide words and meanings [66]

Guide words

Meanings

Comments

No part of the intention
is achieved.

These refer to quantities
and properties such as
flowrates, temperatures,
concentrations and
pressures as well as
activities such as "HEAT'
and 'REACT".

All the design and
operating intentions are
achieved together with
some additional activity.

Only some of the
intentions are achieved.

NO or NOT The complete negation
of the design intent.
MORE Quantitative increase.
LESS Quantitative deccrease.
AS WELL AS Qualitative increase.
PART OF Qualitative decrease.
REVERSE Logical opposite of the

intention.

This is mostly applicable
to activities, for example
reverse flow or chemical

reaction.

OTHER THAN

Complete substitution.

Something quite different|
from the design intention
happens.

and identify more problems when working together, rather than
working separately and combining their results. Members of the team
are chosen to provide knowledge and experience appropriate to the

objectives of the study and the stage of development of the project.

The leader of the team who chairs meetings of the team need
not be an expert on the plant under study, but should be a person
cxperienced in the HAZOP technique whose job is to ensure that the
HAZOP guidelines are followed. Kletz [68] proposed that for a newly
designed plant and an existing plant, the composition of the study

team should be as shown in table 3.2 and table 3.3 respectively.

3.1.3 : Preparation for the HAZOP study

The preparative work for a HAZOP study involves obtaining the
necessary data and arranging the timetable for holding the meetings.
Typically, the data consists of various drawings in the form of line
diagrams, flowsheets, plant layouts, isometrics, and fabrication

drawings, which should be verified as up-to-date.

For a continuous plant, the existing flowsheets or pipe and
instrument drawings usually contain enough information for the study.
The sequence for the study is straightforward, starting at the
beginning of the process and progressively working downstream,
applying the guide words at specific study nodes which are usually
pipe sections and plant components where the process parameters

such as flow, temperature, pressure, level, heat exchange and others

- 57 -

Table 3.2 :

HAZOP study team for a new plant [68]

Team member

Comment

Design engineer

Process engineer
Commissioning
manager

Instrument design
engineer

Research chemist

Independent chairman

Usually a mechanical engineer and, at this
stage of the project, responsible for
minimising the cost but not for hazards
and operating problems.

Usually the chemical engineer who drew up
the flow sheet.

Usually a chemical engineer who will start
up and operate the plant.

Requirement for plant with sophisticated
control, alarm and trip systems.

If new chemistry is involved.

An expert in the HAZOP technique, not the
plant. Should ensure that the team follow
the proccdurc. Lcader of the team.

Table 3.3 : HAZOP

study tcam for an existing plant L68].

Team member

Comment

Plant manager

Process foreman

Plant engineer

Instrument manager

Process investigation
manager

Independent chairman

Responsible for operation.

Someone who knows what actually happens
rather than what is supposed to happen.

Responsible for mechanical maintenance
and therefore knowledgeable about many of
the faults that occur.

Responsible for instrument maintenance
including testing of alarms and trips.

Responsible for investigating technical
problems.

An expert in the HAZOP technique and
leader of the tecam

.58

have identified design intent. These study nodes are identified first

before the meetings are held.

For batch plants, the preparative work is more extensive,
primarily because of the sequential nature of the process. Thus,
operation sequences form a larger part of the HAZOP data. The
operations information can be obtained from operating instructions,
logic diagrams, or instrument sequence diagrams. If operators are
physically involved in the process rather than simply cont‘rolllng the
process, their activities are represented by means of process flow

charts.

3.1.4 : The Team Review

The HAZOP study provides opportunities for people in the team
to let their imagination go free and think of all possible ways in
which hazards or operating problems might arise, but at the same time
cover all malfunctions by applying a systematic procedure. The
approach to HAZOP study is to critically examine the full description
of the process laid down on the process and instrument diagrams and
seeks to answer definite questions in a systematic manner. This

method of critical examination approach was discussed by Elliott and

Owen [67].

Each part of the design will be subjected to a number of
questions to explore every conceivable way in which that design could

deviate from the design intention. This usually produces a number of

59.

theoretical deviations. Each deviation is then considered in order to
determine whether it is meaningful or unrealistic. If the deviation is
unrealistic, then the derived consequences will be rejected [67]. For
those that remain, some of the consequences may be trivial and would

not be considered further.

Figure 3.1 shows the procedure to critically examine the plant
during the HAZOP study. The success or failure of the examination

will be built on the following factors [671:

a) The completeness and accuracy of drawings and other data
used as the basis for the study.

b) The technical skills and Insights of the study team.

c) The ability of the study team to use the critical ea.(amlnatlon
approach as an aid to their imagination in visualising deviations,
causes and consequences.

d) The ability of the study team to maintain a sense of
proportion, particularly when assessing the seriousness of the

hazards which are identified.

Although the critical examination approach provides a
comprehensive analysis during the HAZOP study, the review team may
have to spend many hours on a single process and instrument diagram.
This will incur a significant expense to complete the study. Lihou [17]
has given a classified set of rules to speed up the HAZOP study as
well as to avoid producing ambigous or illogical cause and

consequence relationships for the deviations. These rules are given in

Appendix A.

&

l Select a flowsheet
v

—
A

| Sclect a vessel
¥
Explain the general intention of
vessel and its lines

)

e
M

' Select a line
¥
l Explain intention of line |

@

s (see figure 3.1a)

’Mark line as having been exa.mlnedl

< Have all lines been examined 7)N—°> onsider othey

l = lines

[Select an auxiliary I

Y

l Explain intention of auxiliary

A
. (see figure 3.1a)

Mark auxiliary as having been
examined

¥
<Have all auxiliaries been exnmlned'u}——’ Cousider ot ke

auxiliaries
lYes

l Proceed to selected vessel J
v

I Explain intention of vessel J

: (see figure 3.1a)

b

Mark vessel as having been

examined
¥
(A taed ? Consider other
Have all vessels been examine >"_) veisels
Yes
Mark flowsheet as having been
examined
¥
o imed? Consider other
(Have all flowsheet been examine >'_—‘ flowsheets
Yes
END

Figure 3.1 : Flowsheet of HAZOP procedure

61

7

Apply a guide word

T

Select a deviation pertaining to
guide word

prevent efficient operation 7

¥
(Is deviation possible 7 >N—o i R
deviations
,,,ch
Examine cause of deviation .
v
Examline conseguences]
y = Counslder other
< Is consequence hazardous or No |
)—" causes of

Yes

deviations

Will operator know that there
N ls deviation during operation 7

N
v

Conslder changes
in plant that will

lYen

tell operator

Conslider changes In plant or
methods that will prevent
deviation or make it less likely
to occur

v : No Consider other
(Is cost justified ? >—‘\- changes or agree
lYBB to accept hazard
Agree to changes.
Agrece to who Is responsible
for action.
v
(Has all causes been considered ? } No
lYes
o

P e

las all deviations been consldcred?\;

lYes

Has all guide words
been conslidered 7

.”/
N

>_._

Consider other

gulde words

nuation of figure 3.1)

Figure 3.1 a (conti

62 -

3.1.5 : Recording of results

During the team review of the plant, all the significant remarks
may not have been recorded. Thus it is essential that the team
members review the report produced from the HAZOP meetings and
then come together for a report review session. The process of
reviewing the recorded findings will often fine-tune these findings and
uncover others that were missed. The success of this process demands
a good recording scheme. One form of recording information obtained
during HAZOP study is by using a table of entries of guide word,
deviation, possible causes, consequences and action required [13].

Another form is by use of checklist 169,701].

Depending on the depth of the study, the team may not have to
follow strictly the direction of flow as laid down on the process and
instrument diagram [68]. If there is some unresolved doubt about an
equipment or a line, other parts of the plant have to be worked out
first so that sufficient information is gathered to provide data for its
solution. To keep track on the remote interactions and to keep the
operability records up to date may be quite difficult when using the
HAZOP table or check list. The team have to sieve through piles of
recorded results to get the relevant information. Retrieving the
required operability data becomes more difficult when modifications

are proposed to the process design during the study.

3.1.6 : Problems with HAZOP

Some of the shortcomings of HAZOP have been discussed
earlier. A problem is the time required to complete a HAZOP study. A
HAZOP study requires many hours of meetings to consider every plant
item of the chemical process. When modifications to the plant design
are proposed during the HAZOP study, more meetings are required to
consider whether there are any effects on the operation and safety of
the modified plant. Spending so much time on HAZOP can be very
costly and also affect the motivation of the experienced engineers of

the HAZOP team.

Another problem is the presentation of the accumulated data
from the HAZOP study so that it is easy to comprehend. The use of a
HAZOP table or a check list may not be the best way to relate a
deviation on one plant item to its basic causes. The way the HAZOP
data is presented is also important for evaluation of the reliability of
a plant item. Lawley L[13] proposed the use of a logic tree, which is a
form of fault tree, drawn manually from data compiled from the
HAZOP table, so that the team can visualise the relationship of each
deviation. The probability of occurrence of each deviation also can be
calculated from the relationship shown in the logic tree. However, it
can be difficult and time consuming to obtain the logic tree from the

HAZOP table, making sure that any deviation that is relevant is not

missed.

- 64 -

3.1.7 : Computerisation of HAZOP recordings

A way to overcome the problems with HAZOP discussed
previously is to use a computer to aid the HAZOP study. The use of a
computer to store the findings from the IHAZOP study and
automatically draw a fault tree on a suitable output device will enable
the study team to better comprehend the relationship between the
deviations considered. The study team can easily obtain and study the
necessary information if there are unexpected operating difficulties or
changes in the design intentions. Another benefit of computerisation
of the HAZOP data is that the effect of remote interactions can be

studied by using a fault tree display.

To obtain the desirable effects stated above, a suitable means of
computer storage of the data must be developed. A way to store the
HAZOP findings in the computer is to use Cause and Symptom
Iiquations, as devised by Lihou [71], to express the data recorded
during the HAZOP study. Cause and Symptom Equations are discussed

in detail in the next section.

3.2 : Cause and Symptom Equations from HAZOP

Lihou (711 showed that outcomes from HAZOP can be recorded
in terms of equations that can be stored in a computer. Deviations in a
pipeline or cquipment when any of the guide words Is applied to a
property word can be connected to its causes by Caunse Equations. The

way the equipment responds to a deviation can be described by a

Symptom Equation. The responses are at certain nodes in the
equipment which can be used to show connections between output
deviations of one plant item and input deviations of another. Thus the
cause and symptom equations represent the cause and effect
relationship of a plant item and also between one plant item and
another. Any modifications to the plant design can be accounted for

by adding more equations or by just changing some of the equations.

3.2.1 : Coding of Deviations

To make recording of cause and symptom equations compact,
Lihou [71] introduced a coding system whereby a fault on a plant item
is represented by the item identification code followed by a set of
numbers or letters within parenthesis. The numbers usually represent,
in order, the property word, guide word and, if appropriate, a chemical
component that is, or could be, present in the plant item. Letters and
single numbers are used in Lihou's notation to represent the failure
mode of process items. Tables 3.4 and 3.5 give examples of the

meanings of the numbers and letters when used to represent a fault in

a plant item.

As an illustration, consider a pipeline having the reference
number LINE101 on the process and instrument diagram. This line can
be simply be referred to as L101. The deviant state of no flow in this
line due to a malfunction can be recorded as L101 NO FLOW. The guide
word is NO and the property word is FLOW. Using Lihou's coding

system, and keeping in mind the order in which the indices are to

Table 3.4 : Meaning of index numbers in parenthesis following a line,

vessel or node number [71].

Index number Property word Guide word
1 Flow NO
2 Temperature LESS
3 Pressure MORE
4 Level AS WELL AS
5 Concentration PART OF /
FLUCTUATION
6 Absorb REVERSE
7 Heat transfer OTHER THAN

..67_

Table 3.5 : Equipment failure modes Indicated by a single index

number or letters in parenthesis 117].

Equipment Index number Letters and
type their
0 -1 1 meanings
Alarm Failed (FD) Failed
to danger
(IG) Ignored
Controller No signal Set too low | Sct too high
Control One or Giving less Giving more
Loop more valves | flow flow
closed
Level switch Set low or Set high or | (FD) Failed
stuck high stuck low to danger
(FS) Failed
spuriously
Line Fully Partly (L) Leaking
blocked blocked (BV) Blocked
valves
(RV) Re-
stricted
valves
Pneumatic Vent branch | Leaking to Open to
trip valve isolated vent vent
(3 way)
Switch Set low Set high (FD) Failed
(not level) to danger
(FS) Failed
safe
Transmitter | No signal Indicating Indicating
too low too high
Valve Closed or Insufficient-| Open or
blocked ly open or open too
passing much

bB

appear, the coded deviation is L101(11). The first index number 1 codes
the property word FLOW, The second index number, which is by
chance equal to 1, codes the guide word NO. It will read as FLOW NO.
The reason for the property word to precede the guide word is that it
is easier to record deviations on the operability sheet under groups of

process parameters such as flow, temperature and pressure.

If the deviant state of a chemical component needs to be
recorded, for example MORE CONCENTRATION of component A in line
LINE101, then the coded information will be L101(§31). The third
number, 1, in the parenthesis refers to component A. The codes to
represent chemical components will depend on the particular system

in use.

Although seven guide words are sufficient L71] , the list of
property words can be quite extensive. Examples of other property
words are React, Purge, Calorific Value, Ph and Viscosity. To avoid
ambiguity if there are more than 9 property words and chemical
components, slashes are used to separate the codes for the property
word, guide word and chemical components for all deviations [29]. For

example, the code to represent MORE CONCENTRATION of component

A in line L101 will be L101(5/3/1) instead.

The codes in table 3.5 are used to represent malfunctions of
equipments or control instruments. For example, the cause of no flow
in line L101 may be due to total blockage at some point in the line.

Therefore the code to represent this malfunction is L101(0).

_b{) =

3.2.2 Cause Equations

For a cause equation, deviation in a pipeline or equipment is
written at the left hand side of the equation followed by an equals
sign (=) which means "is caused by". On the right hand side of the
equation are the causes of the deviation separated by either plus signs
(+) or asterisks (*). The plus sign, representing the Boolean OR, is
used to indicate that the deviation is caused by either of the causes,
before and after the sign. The asterisk, representing the Boolean AND,
is used to indicate that the causes before and after the sign should

happen simultaneously to cause the deviation on the left hand side of

the equation.,

To illustrate how cause equations are formulated, consider
figure 3.2 which is part of an ammonia let-down system [30]. Input to
the vessel Cl via the line L1 is a two-phase mixture of cooled liquid
ammonia and synthesis gas containing some ammonia gas and traces of
methane. The vessel separates the two-phase flow where the synthesis
gas, plus some ammonia gas and methane, is discharged via line LS,
and the liquid ammonia containing dissolved synthesis gas leaves via
line L2. Liquid level in C1 is controlled at about 40% by LIC1. During
normal operation, valve V3 is always closed and Vi and V2 open. The

causes of no flow in line L2 could be written as:

(no flow, line L2) is caused by (no flow into line L2)
or (line L2 blocked)

or (line L2 valves blocked)

70

o I

H
LA
® 1
L
Cl
L1 L(/ E =
__+—| GT N (LI
@ 1/ \’/’
Ny
® }
M o
}
L2 [} {] = N R
Vi 1L.CVi v2
v3
Figure 3.2 : Part of an ammonia let down system [17].

The cause equation in its coded form is

L2(11) = N2(11)+L2(0)+L2(BV) .. 3.1

The cause equation for L2(BV) is

L2(BV)=Vi1(0)+LCVI(O)+V2(0) .. 3.2

which means that (line L2, valves blocked) is caused by one or more of

the valves V1, LCV1 or V2 being closed or blocked.

To show an example of the use of the AND operator, consider

the causes of loss of liquid level in vessel Cl which can be written as:

(no level, vessel C1) iIs cansed by (level transmitter LT! indicating
higher than actual)
or (level control loop giving too much
flow in line 2 AND low level alarm

failed to danger)

The coded cause equation is

Ci1(41) = LT1(1) + LCL1(1) #» LALKKFD) ... 3.3

1.T1(1) indicates a malfunction in the level transmitter. LCLi(1) and

LALI(FD) can be further developed to give the following cause

cquations:

72

LCL1(1) = LICI(-1) +LCVI(1)+V3(1) ... 3.4

LALI(FD) = LSL1(1) + LAL1(0) + LALIM(IG) ... 3.5

Equation 3.4 means that the level control loop, LCL1, giving too much
flow is caused by the set point of the level controller, LIC1, set too
low or the control valve, LCV1, open too much or the bypass valve, V3,
open. Equation 3.5 means that the low level alarm, LAL1, failed to
danger is caused by the low level switch, LSL1, set high or stuck low

or the low level alarm, LAL1, failed or ignored when activated.

3.2.3 : Symptom Equations

For symptom equations, the deviation in input streams to an
equipment is written at the left hand side of the equation followed by
a dash sign (-) which means "causes the following". On the right
hand side of the equation are responses to the deviation at certain
nodes in the equipment. If there are several nodal responses, these are
separated by asterisks to show that all the nodal responses in the
cquation will occur. The nodes are points where streams enter and
leave major equipment and each is given a unique number. In some
circumstances, output streams can also cause symptoms in the
cquipment from which the stream is leaving. For example, changes in

flow rate of an output liquid stream may cause responses in the liquid

level in the equipment.

?3

As an illustration, consider again figure 3.2. The consequences

of no flow into the vessel C1 via line | can be written as:

(no flow, line L1) causes the following (no flow at node 2)

AND (no flow at node 5)

The coded Symptom Equation has the form :

Li(11) - N2(11) « NS(1O) 3.6

Symptom equations are primarily used to connect the deviations
of input streams to the responses of the output streams of major
plant equipment. For example, from equation 3.1, one of the causes of
no flow in line L2 is the nodal response N2(11). Looking at the
symptom equation 3.6, N2(11) is a consequence of no flow in line LI.
Hence, it can be inferred that a cause of no flow in line L2 iIs the
deviant state of no flow in line L1. The causes of L1(11) are obtained
from developments of cause and symptom equations of lines and
equipments upstream of the vessel Cl. In this way, the cause and
effect relationship of deviant states between one plant item and

another, not necessarily adjacent to one another, can be obtained.

While the cause and symptom equations are concise, it is
difficult to comprehend. The relationships can more easily be
visualised by converting the cause and symptom equations into fault

trces. This can be done with a suitable computer program.

3.3 : Fault Tree Analysis

3.3.1 : Introduction

Fault tree analysis or FTA in its abbreviated form, is a deductive
technique that focuses on one particular fault and provides a method
for determining the causes of that fault. A fault tree as defined by
Himmelblau [72] is a diagrammatic description in the form of a logic
tree to show how an event may occur from sequences of faults and

fallure events. It makes use of logic symbols and text blocks to build
up the tree. The description of the logic symbols used In FTA are

given in Appendix B.

The method of FTA starts with the statement of an undesired
event, usually a system failure or an accident, and works backwards
through the plant configuration to trace equipment failures and
operational or procedural errors that may lead to the undesired event.
Thus, in a fault tree, the undesired event called the top event, is at
the top of the diagram and the sequences of events that may cause the

undesired event form the branches of the fault tree.

The advantage of the fault tree representation is that the
structure of the sequences and combinations of causes and effects are
clearly laid out for the human observer to trace and diagnose the
causes of an abnormal condition in a chemical plant. Fussell (73]

stated that the major values of FTA are in:

1) Directing the analyst to ferret out failures deductively.

- 78 =

2) Pointing out the aspects of the system important in respect of

the failure being considered.

3) Providing a graphical aid giving an appreciation of design to

those in management who are not directly involved.

4) Providing options for qualitative or quantitative system

reliability analysis.

5) Allowing the analyst to concentrate on one particular failure

at a time.

6) Providing the analyst with genuine insight into system

behaviour.

In addition, studies have shown that FTA is helpful in the field of
operator training, decision making, start up and shut-down
procedures, alarm analysis and in the writing of operating manuals

(74,75].

3.3.2 : Terms Used in Fault Tree Analysis

Different names and terms are used to describe the building

blocks and properties of the fault tree. Some of these are given

below.

..?6_

An accident or system failure is the term used to describe the
unplanned and unwanted occurrence of an event or a group or series
of events to produce a loss or a near loss. An example of an accident
is when a pressure vessel ruptures due to the internal pressure
exceeding the design limits of the vessel. An example of a system

failure is when a distillation column does not give the desired

separation as required.

A basic or primary event is the term used to represent a basic
cquipment fault or failure, or human error that requires no further
development into more basic faults or failures. If the fault under
investigation is a system failure, repair of the equipment fault or
failure will bring the system back to normal. An example of a primary

event is when a valve becomes blocked cutting off flow.

[

An intermediate or secondary event is the term used to represent
a fault event that results from the interactions of other fault events.
Usually, secondary events are deviations in process parameters. An
cxample is when the expected flowrate in a pipe line is not acheived.
To remedy a secondary event fault requires that the primary events

that cause it be repaired.

A common cause event is an event which causes multiple
intermediate events to occur. On the fault tree diagram, a common
cause event is repeated at several places on the fault tree. Another
name given to a common cause event is a repeated event. An example

of a repeated event is when cooling water supply Is cut off affecting

scveral units of the process.

- 77 -

The way the intermediate or secondary event develops depends
on the logic gate that defines the input conditions which must be met
in order for the event to occur. Logic gates that are most frequently
used to develop fault trees are the basic AND and OR Boolean
operators. The AND gate indicates that the output event occurs only
when all the input events occur. The OR gate indicates that the output
event occurs if any of the input events occur. Other logic gates
frequently in use are the Exclusive OR and the NOT gates [82, 94]1. An
Exclusive OR gate, sometimes given the abbreviation EOR or XOR, has
two input events and the output event occurs if either, but not both,

of the input event occur.

3.3.3 : Pault Tree Synthesis

For a large complex system such as a chemical plant, the
process of generating and analysing the fault trees can be time
consuming and expensive. Rasmussen stated that the WASH-1400
study on the assessment of accidental risk of a nuclear power plant
took about 25 man-years of effort to complete [77] . Several workers

have developed algorithmic methods and computer programs to

overcome this shortcoming.

Fussell [78) presented a method for fault tree synthesis of
electrical systems called the Synthetic Tree Model (STM). His method
constructs fault trees from input data consisting of failure transfer
functions of components in the system. The component failure

transfer functions are in actual fact mini-fault trees, in which the top

78

event is the component output failure and the basic events are the
component input failures. The fault tree of the whole system Iis
constructed by combining the relevant component mini fault trees. In
electrical systems, components have only two states and system
dynamics are not significant. These simple clements do not represent
fully the elements required for a chemical plant. Thus, the Synthetic
‘Tree Model is not well suited to a chemical process system where
system dynamics are important and process paramcters have variable
states. However, work done by Fusscll formed the basis of fault tree

applications in chemical processes taken up by other workers.

Powers and Tomkins [79,80] devised a systematic approach for
automated fault tree construction for chemical systems. In their
method, each unit in the process system is modelled by information
flow relatioﬁship as described by Rudd and Watson (81] instead of the
general unsteady state mass, energy and momentum transport
differential equations. Only the steady state mass energy and
momentum balances of the unit in question need to be solved to show
how a change in magnitude and direction of input variables affects the
output variables. Hence, by knowing the cause and effect relationship
that describe the behaviour of a unit, nearly all possible failure modes
can be predicted leading to the development of failure models for the
unit. The mini fault trees generated from the failure models formed

the basis for synthesizing a larger fault tree of the system for

investigating a hazard event.

Salem et al L82] usc decision tables to model failure modes of

chemical process components in their computer program called CAT

- 79 -

(Computer Automated Tree) for constructing fault trees. The
advantage of using decision tables is that modelling is not restricted
to the hardware of the system. Complex operator actions and
interactions that may produce a hazardous event also can be modelled.
Thus, a fault tree with the top event that may be caused by wrong

sequences of actions by operators can be constructed.

Lapp and Powers [51] presented another method of modelling
system failure modes which is the digraph (directed graph) model. A
computer package called Fault Tree Synthesis (FTS) was produced to

synthesise fault trees using the digraphs as data.

Andow and Lees [40] proposed the use of funct.lonal model
equations to model components in a process system. Their work was
related to process alarm analysis by a computer, whereby the data
structure as input to the program was synthesised from the functional
model equations and the plant topology. Martin-Solis et al [41] later
use the same type of modelling for their work in fault tree synthesis

for design and real-time fault diagnosis.

Fault trees can also be synthesised from HAZOP study of a
plant, as described by Lawley [13] and Kletz [14). The events in the
fault trees constructed are stated in sentences or short phrases which
requirec a lot of space and can be quite cumbersome. Also, the
extraction of relevant information from results of the HAZOP study,
usually in the form of HAZOP tables, can be quite difficult. However,
by using a coding system and representing the HAZOP information as
cause and symptom equations, as proposed by Lihou (17, 621, the

construction of fault trees is made easier.

- B0 -

3.3.4 : Fault Trees From Cause and Symptom Equations

Each cause equation is in actual fact a mini fault tree. As an
illustration, referring to figure 3.2, the fault treec of the undesired
event C1(41) is obtained by combining the cause equations 3.3, 3.4 and
3.5. as shown in figure 3.3. The symbols [__I_] and é denote the

OR and AND gates respectively.

For symptom equations, each nodal response is treated as a top
event and the deviation that cause the response is treated as the cause
of the top event. If there are several symptom equations having the
same nodal response, the deviations that cause the response are
trcated as inputs via an OR gate. Nodal responses in symptom
cquations are used as a bridge to rclate the deviant states of an
output stream to the deviant states of the iInput stream of an
cquipment. Referring to figure 3.2, the relationship of no flow in line
1.2 and no flow in line Ll Is expressed as the combination of cause
cquation 3.1 and symptom equation 3.6. The fault tree of this
combination is shown in figure 3.4. Thus, from the list of cause and
symptom equations from a HAZOP study, a large fault tree can be

built up and the propagation of abnormal states or faults from one

plant item to another can be easily traced.

3.3.5 : Fault Tree Evaluation

Once the fault tree has been constructed, it can be studied both

qualitatively and quantitatively. Qualitative evaluation refers to

Ci(41)

| 1
LT1(1) /I\

LCL1(1) LALI(FD)

— —
LIC(1) LCVI(1) V3(1) LSLICH) | |LALICO)| |[LALIIG)

Figure 3.3 : Fault tree after combining equations 3.3, 3.4 and 3.5

LZ2(11)

1
Nz2(11) L2(0)
L1(11)

L2(BV)

Figure 3.4 : Fault tree for the combination of equations 3.1 and 3.6

82

identifying the unique modes by which the top event can occur. The
unique modes of occurrence are termed minimal cut sets or mode
fallures. A cut set is a collection of basic events, such that when all
occur, the top event is guaranteed to occur. A minimal cut set is the
smallest group of basic events that must all simultaneously occur in
order for the top event to occur. The finite collection of all unique
minimal cut sets of a fault tree represents all the unique, non
redundant ways by which the top event can occur. Thus, the minimal
cut sets represent those set of events which are critical with regard
to the occurrence of the top event. For example, in the fault tree of
figure 3.3, if events V3(1) and LSLI(1) occur simultaneously, the top
event will occur. V3(1) and LSL1(1) form a minimal cut set of the

fault tree.

The minimal cut sets represent a source of information about
the state of the process and makes possible the calculation of process
performance. By assigning probability values to the basic events, and
using the minimal cut sets obtained, the probability of occurrence of
the top event can be calculated. The calculation of event probabilities

constitutes the quantitative evaluation of the fault tree.

Knowledge of the probability of the top event will determine
whether or not the risks involved are acceptable. If needed, changes in
the system can be made to reduce the risks involved. Decisions as to
what changes are to be made can be guided by looking into the events
comprising any minimal cut set for the system failure with significant
probability. With the proposed changes, the fault tree is restructured

to verify whether there is any significant reduction of the risks

.83

involved. This loop of evaluation, decision and verification is repeated
until an acceptable fault tree is obtained. This shows the importance
of minimal cut sets and probability evaluation of fault trees. Methods
and algorithms for obtaining minimal cut sets and fault tree

probabilities are discussed in detail in chapter four.

84

CHAPTER FOUR

4. PAULT TREE PROBABILITY CALCULATIONS

4.1 : Introduction

Fault trees are logical statements of various ways in which a
system can fall to perform a defined function. Although fault trees
are qualitative in nature, they provide a framework for quantitative
probabilistic analysis. The analysis consists of assigning probabilities
to each bottom event and combining them, as prescribed by the fault

tree, to obtain the probability of the top cvent.

The bottom events of a fault tree are assumed to be primary
events, in the sense that occurrence of a primary event is not effected
by other primary events and also will not affect the outcome of other
primary events. Therefore, the occurrence of each primary event is
independent of all other primary events. Thus for the purpose of
calculating the probability of the top event of a fault tree, the bottom

cvents are assumed to be statistically independent of each other.

The calculated probability values of top events can be used to
evaluate process design modifications sugpgested to reduce the risk of
any hazardous event occurring. The probability of occurrence of the
top event is reduced if the probability ot anv of the bottom events is
reduced. The signiticance of the reduction depends on the occurrence
of AND and OR gates in the fault tree. For bottom events connected

by an AND gate, significant reduction can be obtained by reducing the

probability of any of the bottom events. For the case of OR gates,
significant reduction can only be achieved by reducing those with the

larger probability.

In real-time fault diagnosis, probability estimates of events in
the fault tree can be used as a guide for searching out the cause of an
occurring alarm. Lihou [62] presented a strategy for checking the
possible causes of an alarm event with the aim of minimising the
probable time for fault finding, fault diagnosis and corrective action.
In his method, the time required to check each possible fault is
divided by the probability of that fault causing the alarm. The optimal

order for checking faults is in ascending order of this quotient.

However, the probability values that Lihou used are those
calculated a priori, i.e., before any event had actually happened. Once
there is an alarm, the probability of the alarm event has changed to
the value 1, indicating the existence of the alarm event. The
probabilities of causal events in the fault tree have to be recalculated
since there now exists the condition that a particular event has
occurred. The recalculated probability values known as conditional
probabilities or posteriori probabilities can then be used in the
strategy to search optimally for the cause of the alarm. The posteriori
probability provides a truer picture of which causal event is the most

likely cause of the alarm, for example is it a true of false alarm.
To facilitate quantitative analysis, it is convenient to represent

the fault tree in a mathematical form, and Boolean algebra is an

appropriate tool for this purpose. Once a fault tree has been

BG

represented by its equivalent Boolean equations, probabilities can be
evaluated by applying probability laws and axioms. There is an analogy
between the Boolean equations and the cause and symptom equations

of Lihou [71].

This chapter discusses how Boolean equations to mathematically
represent a fault tree are obtained, how probability data is obtained
and methods of evaluating a priori and posteriori probabilities of a

fault tree.

4.2 : Laws of Boolean Algebra

In the Boolean algebra of fault trees, the basic quantities are
the events. Each unique event is assigned a unique symbol for
convenience of notatidn and manipulation. Logical operators in the
fault tree, mainly AND and OR gates are simply graphical symbols
which represent Boolean operations on the various events. For
example, the OR gate is equivalent to the Boolean operator V and
represents the union of the events attached to the gate. The AND gate
is equivalent to the Boolean symbol A representing the intersection of
events. Figures 4.1 and 4.2 shows the fault trees and the equivalent

Boolean representation of OR and AND gates respectively.

5] [' ' !
L A | [B] L C]

T=AVBVZ(C T=AABAZC

Figure 4.1 : OR Gate Figure 4.2 : AND Gate

- 87 -

In general, fault trees involve several levels of secondary events
between the top undesired event and the bottom events. The fault tree
Is represented mathematically by writing an equivalent Boolean
equation for each gate. By eliminating the secondary events from these
equations, an expression is obtained which defines the top event in
terms of only the primary events. The primary events are those which
must be quantifiable to proceed with the analysis, l.e., for which if

data exist, the top event can be quantified by use of this equation.

To carry out the elimination of secondary events, basic laws of
Boolean algebra as shown in Table 4.1 [83] are used. To illustrate the
elimination and transformation of a fault tree, flgure 4.3 is used as an

example.

G2

e R

Figure 4.3 : A fault tree with secondary events

The Boolean expressions for the fault tree in figure 4.3 are:

T=6GvANG2Z 4.1
Gt=AVB 4.2
GZ=AVE GG 4.3

88

Table 4.1: Rules for Boolean Manipulation [83)

Property Boolean Expression
Commutative Law a) AVB=BVA
b) AAB=BAA
Associative Law a) AA(BAC)=(AAB)AC
b) AV(BDVC)=(AVB)VC
Distributive Law a) AANMBV C)=(AANABVIIAACQO
b) AVIBAC)=(AVBAWMWYV Q)
Idempotent Law a) ANA=A
b) AV A=A
Absorption Law a) AV(AAB)=A
b) AA(CAAB)=AAB
c) AN(CAVB)=A
Complemented Law a) AANA=0
b) AV A-=1
Reduction Law a) AV(AAB) =AVB
b) (AAB) V(AAB)=A
c) (AANB)V (AAB) = AAB

89.

Substituting the expressions for Gl and G2 into the expression for T:

T=(AvB)A(AVC . 4.4

The top event T is now expressed in terms of the primary events
A, B and C. Using the distributive and absorption laws of Boolean

algebra, equation 4.4 can be transformed into

T=A V(BAC) . 4.5

The transformed Boolean expression for T in equation 4.5 can
now be recast into the associated transformed fault tree as shown in

figure 4.4,

Figure 4.4: Transformed fault tree of figure 4.3

By transforming fault trees to simplified, equivalent forms, the
complexity and tediousness of quantification can be reduced. In

general, the transformed Boolean expression can be expressed as :

The terms M;, i=]1 to n, consist of intersections of primary events.

Another term commonly used for the expression in equation 4.6 is the

sum-of-products (SOP). The expression for M; is:

M= CyyACip A... ANCAN. ... ANCim .on. 4.7

where Cijk, k=1 to m, are primary cvents.

A property of the sum-of-products is that no M; is a subset of
another M; for all i and j and i % j, i.e., the primary events of M; are
not all contained in Mj. Mj is termed the critical path or minimal cut
sct of the fault tree. A minimal cut set can be intepreted as a unique
"failure mode” by which the top event can occur. In the example for
the fault trece in figure 4.3, the minimal cut sets are A and BAC,

which means that T occurs If A occurs or if both B and C occurs.

4.3 : Fallure Probability Data

4.3.1 : Introduction

A fault in a system may sometimes result from the breakdown
of a single component or from a combination of several component
failures. Failure probability data of equipment are obtained from
statistical data from past observations. One form of failure
probability data of equipment is what is termed the "mean time
between failures”. Other ways of represcnting fallure probability data
include the use of statistical distributions known as probability
density functions, derived froim past obscrvations of failures. These

include the binomial, multinomial, Poisson, negative exponential,

normal, lognormal, Weibull, rectangular, gamma, Pareto and extreme
value distributions. Hasting and Peacock |84] give a comprehensive
summary of the properties of the above mentioned distributions. Only

the negative exponential and Weibull distribution are discussed in this

section,

4.3.2 : Mean Time Between Failures

Mean time between failures, or MTBF as it is commonly known,
is a measure of the expected time between two consecutive failures.
Suppose that an equipment has failed N times, each time being
repaired and put back into service. The time interval between
successive failures i and i+] is t;. Assuming that the equipment is as
good as new after repair and the failures occurred randomly, then the

mean time between failures, MTBF, is given as

MTBF=(§tl)/N 4.8

The unbiased estimate 062 of the variance, 06?2 of MTBF from the

observed data is

N
82 - ”ﬁ‘——l iz::t(t, - mTBE)* L 4.9
From the value of &, the next occurrence of failure can be estimated
with a certain limit of confidence. Loosely spcaking, there is a 68%
probability that the next time of failure after repair, t, . will be in
the range MTBE-0 < taer S MTBF+ 6. Similarly, there is a 95¥%

probability that MTBF-26 < t,, < MTBF+23.

92

4.3.3 : Probablility Density Functions

If f(t) is the failure probability density function of an equipment
and F(t) is the probability that it experiences the first failure by time

t, given that it is good as new at time zero, then

t
F(t) = [fyde L
0

The probability that an equipment experiences a failure per unit
time, given that it was repaired and good as new at time zero and has

survived to time t is known as the failure rate of the equipment
denoted by r(t). It is obtained using the relation
f(t)
' 4.11

plt) = ————e T e
1 - F(t)

If the failure rate of a component is known, the failure

probability and the failure probability density function can be

cvaluated using the following identities:

1 - exp[—fr(t)dt] 4.12

0

1]

F(t)

f(t)

o

L
r(t)exp[*f rt)dt] 4.13

93.

4.3.3.1: Negative Exponential Distribution

The negative exponential distribution is defined as

f(t) = AXexp(-At)y . 4.14

Substituting equation 4.14 into equation equation 4.10 and integrating

between the limits, the failure probability is given as

Bit) =l -expl=-Xt) s 4.15

Substituting equations 4.14 and 4.15 into equation 4.11,

vt = X G 4.16

Hence, for negative exponential distributions, A is the failure

rate and is assumed to be independent of time or age or environmental

influence. Since the failure rate is constant, it is equivalent to the

reciprocal of the MTBF of the equipment.

MTBE=1{/x L 4.17

Thus for random occurence of failure whence the MTBF can be

evaluated, the failure probability and the failure probability density

function can be obtained using equations 4.12 and 4.13 respectively.

Suppose that the unit for the failure rate is per year. Equation

4.15 with t = 1 can be expanded as follows:

94.

F(1) = X = N /72! 4% N /3Y - .ivivee e 4.18

If X is 0.1 yr ! or less, the second and subsequent terms in equation
4.18 may be neglected making the failure probability and failure rate
have similar values. But this is not the case all the time because
failure probability and failure rate are two different statistics. Typical
values of failure rates for process plant equipments are shown in the

Appendix C.

4.3.3.2 : Weibull Distribution

Some equipment may not fail randomly. Breakdown may be due
to its design, quality of construction and the environment in which it
is placed. A general probability density function to take into account

these factors is the Weibull distribution and expressed as follows:

f(t)=(B/m(es/n) P texpt-cezn)® L 4.19

where
1 = scale parameter or the characteristic age of the equipment. A
high value indicates well designed cquipment, good quality

control, large factors of safety and operating below capacity.

B = shape parameter which defines the type of distribution.

95

Comparing equations 4.14 and 4.19 with B = 1 and n = MTBF will show
that the negative exponential distribution is a special case of the

Weibull distribution.

Lihou [85) summarised how the value of B found for equipment
influences the cause of failure. For equipment found with B < 1,
indicates incompetent or incomplete maintenance. When gradual
deterioration or wearout is the sole cause of failure, B values of 3 to
3.5 will be found. The probability density function will be nearly
symmetrically distributed about MTBF, corresponding to the well
known normal distribution. When failures are due to a combination of
deterioration and superimposed random overloads, values of between |

and 3 are found. When B = 1 the system is totally out of control and
failures occur randomly. Methods for finding the values of B and 3 are

discussed briefly in reference [84].

Substituting equation 4.19 into equation 4.10 and integrating

between the limits,
Bity=1~expt~(e/mi®y L 4.20

The failure rate is obtained by substituting equations 4.19 and 4.20

into equation 4.11.

r(t) = (Bs7y)Ceszy)fr 1.21

4.3.4 : Failure Probability For Standby Safety Equipment

Standby safety equipment such as trips, pressure relief valves
and non-return valves may fail and the failure will remain undetected
until there is a need. In order to detect failure of safety systems, they
are inspected and tested periodically. If the inter-inspection interval
is T (years), the proportion of time for which the system will remain
in the failed state during any test interval is called the Fractional
Dead Time (FDT). For the purpose of evaluating probabilities of fault
trees involving safety equipment, FDT is used to represent the failure
probability of the equipment. The value of FDT is obtained by the

relation:

DT = — [T EBtrde 4.22

= — t)at L. .
T 0

For the negative exponential distribution, which represents
random failures, substituting equation 4.15 into equation 4.22 and
integrating between the limits will give :

FDT =1 -4 -exp(-ATM} /AT ... 4.23
lixpanding equation 4.23 gives

EDT = AT/2! - (AT)2 /3" + (A3 /740 - 4.24

Typically AT <<1, making the sccond and subsequent terms of equation

4.24 insignificant. Hence equation 4.24 is reduced to

FDT = AT/2 4.25

_97..

A period of time is required during inspection and testing of
safety equipments known as the proof testing period. If t' is the proof
testing period, the fraction t'/T is considered as part of the fractional
dead time. During the testing period, human operators are needed to
monitor and perform certain operations to effectively simulate the
function of the safety devices. Suppose that the number of operations
needed is n and for each operation i there is an associated error

probability e;. The total fractional dead time is thus

n
FDT 5 XT725 % (VT2 D 8 s 4.26
i=t

4.4 : Principles of Fault Tree A Priori Probablility Evaluation

4.4.1 : Introduction

Once the probﬁbility failure data are assigned to primary events,
the probabilities of the top and secondary events of a fault tree can
then be evaluated. Basically there are two approaches for evaluating
the probability of non-primary events in a fault tree. One approach is
to evaluate the probability directly from its structure. This can be
done by traversing the fault tree from the bottom to the top,
evaluating first the probability of every secondary event which have
only primary events as its inputs and then, using the results obtained,
calculating the probabilities of other secondary events and eventually
the top event of the fault tree. Another approach is to express every

non-primary event in the fault tree as a sum-of-products. The

- 98 -

probabilities are then evaluated from the Boolean expressions
obtained. This involves determination of the minimal cut sets of the

event under consideration.

The following account in this section describes the rules and
axioms to carry out probability calculations.
4.4.2 : Probability Rules

Calculation of the probability of any non-primary event in a
tfault tree basically involves the intersection rule and union rule which

are described below.

1. Intersection Rule

If an event T which occurs only if all its causal events C; occur,

i =1to n, then the logical expression for T is

For all C; independent of each other, the probability of T is

P(T) = P(C)*P(C,)*......... sP(C,) 4.28
Generally,
per)y= [[pecp L 4.29

—
1]
-

99

2, Union Rule

If T can be caused by either of two of its causal events C, and

C,, the logical expression for T is

TeeNe, s 4.30

For C, and C, independent of each other, the probability of occurrence

of T is

P(T) = P(C,) + P(C,) - P(C,)*P(C,) ... 4.31

Generally, if T occurs due to any of its causal events C;, i=1 to

n, the logical expression for T is

The probability of occurrence of T for all independent C; is

n n i1
P(T) = D P(C) - D, D PIC)vP(C))
1=1 1=2 §=1
n 1-2 j-1
+ > > > PLC % P(C)) ¢ P(Cy)
i=3 j=2 k=1
_ n
=1 ey e 4.33
i-:1

- 100 -

A simpler expression for obtaining the probability of T involves
using the complement of events. For the event T not to occur, all the
C; must not occur. Hence the probability of event T not to occur, i.e.

probability of T is given as

n
P(Ty= Jlta-pPec»y L 4.34
i=1

Since T and T are mutually exclusive, the probability of occurrence of

T is simply

n
P(T)=1-J[t1-P(Cp) Cee 4.35
i=1

Another possible case is if all C; of equation 4.32 are mutually

exclusive. Then equation 4.33 is reduced to

n
P(T)= > P(C) 4.36
i=1

4.4.3 : Probability Evaluation of Fault Trees With Repeated Events.

Sometimes there exist some basic events appearing more than
once in a fault tree. Applying directly the probability laws in a bottom
up calculation of the top event probability will not give the correct
result. As an illustration consider the fault tree in figure 4.3 which

has a repeated event A,

- 101 -

P(G1)=P(A) + P(B) - P(A)«P(B) ... 4.37

PUGZ) = PLA) = PUC) = PCAY»PAC) = e 4.38

Since G1 and G2 are inputs to an AND gate to cause T, the

probability of T would be:

P(T) = P(G1)*P(G2) .. 4.39

However, G1 and G2 are not independent because both can be caused
by the repeated event A. Thus multiplying the values of the
probabilities of G1 and G2 as expressed in equation 4.39 will not give

the exact probability of T.

To overcome problems arising for probability calculations from
repeated events in a fault tree, special techniques have to be used.
Lihou and Jones [16] proposed the use of a Bayesian conditional
probability method. The method essentially states that when there are
several probable outcomes for an event of which there is no certain
knowledge that one or more of other events can cause its occurrence,
the probability of occurrence of the event is evaluated by considering

all the possibilities and simply adding their probabilities.

For example, suppose that T is the top event of concern and A is
an event appearing in several places in the fault tree. Two possible
outcomes need to be considered, i.e. the outcomes of T when A occurs
and when A does not occur. Expressed in probability terms, the

probability of occurrence of T is:

= 402 -

P(T) = P(T/A)*P(A) + P(T/A)*P(A) ... 4.40

where

P(T/A) is the probability of T given A has occurred,
P(T/A) is the probability of T given A does not occur,
P(A) is the probability of occurrence of A,

P(A) is the probability of non-occurrence of A =1 - P(A)

The evaluation of P(T/A) and P(T/A) can be done using
Baye's conditional probability rule which states that the probability of

two events X and Y occurring at the same time is given as:

PIXAY) = P(X/Y)*P(Y) = PCY/X)sP(X) ... 4.41

Rearranging the expression in equation 4.41:

P(XAY)
P(X/Y) =—L-——-— 4.42
P(Y)

As an illustration, consider again the fault tree of figure 4.3.
Looking at the fault tree structure, when A occurs, T is bound to
occur and when A does not occur, the occurrence of T is dependent on

B and C occurring together. Using Baye's Theorem:

P(T/A)* P(A) = P(TAA . 4.43

P(T/A)*P(A) = P(TAA) ... 4.44

- 103 -

The Boolean expression for T is given by equation 4.5. The expressions

for (TAA) and (TAA) are:

TAA =[AV(BAO)JAA=A LL 4.45

TAA = [AV(BAC) |JAA= AABAC ... 4.46
Thus:

PITAA)Y=P(A) L 4.47

P(TAA) = PCA)*P(B)xP(C) 4.48

Substituting equations 4.47 and 4.48 into equations 4.43 and 4.44

respectively and eventually substituting the results into equation 4.40:

P(T) = P(A) + P(A)*P(B)sP(C) ... 4 .49

But P(A) =1-P(A) L 4.50

lence, after sustituting equation 4.50 iInto equation 4.49:

P(T) = P(A) + P(B)*P(C) - P(A)*P(B)*P(C) ... 4.51

Equation 4.51 gives the correct probability value of the top event of

figure 4.3.

In principle, the conditional probability method can be applied

for any number of repeated events. For a fault tree with two repeated

- 104 -

events A and B:

P (T) = P(T/A,B)*P(A)*P(B) + P(T/K,B)'P(A)'P(Bl

+ P(T/A,B)*P(A)*P(B) + P(T/A,B)*P(A)*P(B) 4.52

The disadvantage with this method is that the number of
cvaluations increases exponentially with the number of repeated
events. From equation 4.40, with one repeated event, the number of
terms to be evaluated on the right hand side of the equation is two.
With two repeated events, the number of terms to be evaluated is
four, as shown in equation 4.52. Hence for n repeated events, the

number of terms to be evaluated will be 2.

One way to overcome the problems of using the Bayesian
conditional probability in dealing with repeated events is to express
the top event of a fault tree as a Boolean sum-of-products which may
produce independent minimal cut sets. The minimal cut sets approach

to fault tree probability evaluation is discussed in the next section.

4.4.4 : Probability Evaluation Using Minimal Cut Sets

The transformation of a fault tree by Boolean algebra produces
an expression termed the sum-of-products. lach term in the sum-of-
products is in actual fact a minimal cut set of the fault tree. Since
minimal cut sets contain only primary events, the probability of the

top event is easily evaluated, if probability data are available for the

primary events.

A minimal cut set of a fault tree rcpresents a unique failure
mode of the top event and every element of the set must happen
simultaneously for the top event to occur. Thus the probability of a
minimal cut set is calculated by using the probability intersection
rule. If M; represent a minimal cut set, its probability is obtained by

evaluating the equation :

Im
P(M) = [[peccp L 4.53
)=t
where C” is the jth primary event in the ith minimal cut set which has

m unique primary events, assumed to be independent.

If a fault tree has n minimal cut sets represented by M, i =1 to
n, and no primary event in M, appears in M for every other k # 1 and
for every i = 1 to n, then the minimal cut sets of the fault tree are
said to be s-independent of each other. For such a case, each minimal

cut set can be treated as a primary event. Thus the probability of the

top event is:

n n i-t
P(T) = D P(M) - D > P(M)*P(M)
i=1 i=2 j=1
n l-2 j-1
+ 2, P(M «P(M) « P(My)
i=3 j=2 k=1
n
+ 0™ [ramy L 4.54

i=1

- 106 -

Whether or not there are repeated events in a fault tree, there is
no guarantee that the minimal cut sets obtained will be s-independent
of each other. For example, the fault tree in figure 4.3 has a repeated
event A, and the minimal cut sets obtained as the sum-of-products in
cquation 4.5 are s-independent. Thus by applying equations 4.53 and
4.54 to determine the probability of the top event, the same result as

in equation 4.51 would be obtained.

For comparison, consider the fault tree in figure 4.5 originally
given by Fussell [86] which has a repeated event B. By applying
Boolean algebra, the sum-of-products expression for the fault tree in

figure 4.5 is :
T sfAANB MECAANACAD)Y s 4.55
Clearly the minimal cut sets obtained as shown In equation 4.55
are not s-independent and applying directly equation 4.54 to obtain

the probability of the top event will give an incorrect result.

An example of a fault tree with no repeated events but
generating non s-independent cut sets is shown in figure 4.6. The

sum-of-products expression for the fault tree in figure 4.6 is :

T=(AAB)V(AAC) . 4.56

The minimal cut sets in equation 4.56 are not s-independent. So

applying equation 4.54 to obtain the probability of T is not valid.

- 107 -

X1 X2
EN -
XI3 lll D
-
B &

Figure 4.5 : A Fault Tree by Fussell [86]

Figure 4.6 : A fault tree with no repeated events

- 108 -

However, using the bottom-up probability calculation approach, first
obtaining the probability of X1 by applying the union rule and then

applying the intersection rule, the correct probability would be

obtained.

4.4.5 : Conclusion

The main problem in evaluating the probability of a fault tree is
the effect of repeated events such that the probability rules cannot be
applied because of existence of non-independent terms in the
calculation. The conditional probability method to take care of the
effect of repeated events creates the independence required for
applying the probability rules. However, the use of the conditional
probability method can be very tedious and time consuming If the
number of repeated events in the fault tree is large. The alternative is
to use the minimal cut sets method. However, there is no guarantee

that independent minimal cut sets will be obtained, even if there is no

repeated events in the fault tree.

Development of methods to overcome the problems of non-
independence in fault tree probability evaluation that can be
implemented on a computer has been going on for the past decade.
Publications of computer programs and algorithms to evaluate
probability of fault trees using the minimal cut sets approach and

directly from the fault tree structure are discussed in the next two

scctions.

- 109 -

4.8 : Probability Evaluation Algorithms Using Minimal Cut Sets

4.5.1 : Introduction

In the minimal cut sets approach to fault tree probability
evaluation, the minimal cut sets of every non-primary event in the
fault tree has to be determined first. A fault tree of a complex
chemical plant can be very large involving many levels of secondary
events between the top event and the primary events. Generating the
minimal cut sets of such a fault trece manually can be time consuming
and tedious. Development of ways to use a computer to perform such
a task has been going on for the past decade. Publications of
algorithms and computer programs to speed up minimal cut sets
generation and also the calculation of fault tree probabilities are

numerous. Some of the work done by researchers in this field is

discussed below.

4.5.2 : Algorithms For Generating Minimal Cut Sets

4.5.2.1 : Introduction

The technique for generating minimal cut sets of a fault tree
can be categorised into two main approaches, either a top down or
bottom up procedure. A top down algorithm begins with the top event
and works downward to the primary cvents while a bottom up

algorithm begins with with primary events and works upward to the

top event.

o -

4.5.2.2 : Top Down Algorithms for Determining Minimal Cut Sets

In 1972, Fussell and Vesely [92] developed a top down approach
for determining the minimal cut sets of a fault tree using Boolean
substitution method. A key point of this methodology is that an AND
gate alone always increases the size of cut sets while an OR gate
alone always increases the number of cut sets. To obtain the minimal
cut sets, this method requires that the Boolean Indicated Cut Sets be
obtained first. A Boolean Indicated Cut Set is defined such that the
primary events in the set are different and appear only once. If it
happens that there are more than one of the same primary event in the
set, application of the Boolean absorption rule will make the set
conform to the definition stated above. When the Boolean Indicated
Cut Sets have been determined, a simple search procedure is used to
determine the minimal cut sets. This is done by removing supersets. A
superset is a cut set which has other cut sets as sub-sets. Supersets

arc also known as redundant sets.

In 1974, Fussell et al [86] published a computer package called
MOCUS based on the method by Fussell and Vesely. The MOCUS

algorithm can be stated as follows:

1. Locate the top event in the first row and column of a matrix.

2. Iterate either of the fundamental permutations (a) or (b) in a

top down fashion:
(a) if inputs to the event are via an OR gate, replace the event
by its inputs in a vertical arrangement so as to increase

the number of cut sets.

- m -

(b) if inputs to the event are via an AND gate, replace the
event by its inputs in a horizontal arrangement so as to

enlarge the size of the cut sets.

3. When the elements of the matrix are all primary events, the
rows of the matrix represent the cut sets of the top event.
Each cut set is checked for repetition of primary events. When
there is more than one occurrence of the same event in the
cut set, the repetition is removed so that the event appears
only once in the cut set. This produces the Boolean Indicated
Cut Sets. Then the minimal cut sets are obtained by removing

supersets.

The main virtue of MOCUS is its simplicity and its ability to
generate all the cut sets of the top event. However, a‘large amount of
the computer resources is needed since all the cut sets have to be
generated before being reduced to obtain the minimal cut sets. Also,
two stages of comparisons have to be done in MOCUS which increases
the execution time as the size of a cut set and the number of cut sets
generated become larger. The first stage is when events in a cut set
are compared with each other to remove repetitions of primary events.
The second stage is when all the cut sets generated are compared with
cach other to remove supersets. Modifications to MOCUS and

algorithms based on MOCUS have since been developed to overcome

some of the problems stated above.

In 1976, Bengiamin et al [91] developed a technique using similar

Boolean substitution method as developed by Fussell and Vesely [92].

= 2 =

The difference in the two methods is that the algorithm by Bengiamin
et al sifted out all repeated events which are inputs to OR gates from
the fault tree to produce a reduced fault tree. From the reduced fault
tree, cut sets are obtained using the method by Fussell and Vesely.

The cut sets obtained are referred to as Group 1 cut sets and are all

minimal.

The Group 1 cut sets are further processed by substituting the
partners of the repeated events with various combinations of their
corresponding repeated events. Partners of a repeated event are those
events that appear as inputs together with the repeated event to the
same OR gate. The cut sets resulting from this process are known as
Group 2 cut sets. The minimal cut sets are obtained by weeding out
supersets in Group 2 cut sets. Bengiamin et al claimed that the
computing time in determining the minimal cut sets when using their
algorithm is much shorter than the Fussell and Vesely method. This is
achieved due to the early elimination of non-minimal cut sets when

determining the Group 1 cut sets.

In 1977, Caldarola et al 1901 produced the Karlsruhe Computer
Program which is similar to the top down algorithm MOCUS [86].
Certain extra features are incorporated in the Karlsruhe program to
make it more efficient than MOCUS. Before determining the minimal
cut sets, the fault tree is ordered in the form of a list. Primary events
are first entered into the list followed by secondary events. A
secondary event is accepted into the list only if its inputs have
already been accepted into the list. The top event is at the bottom of

the list. The advantage of this ordered list is that it ensures that each

13 -

element of the fault tree is completely defined so that logical errors
can be detected. Determination of the cut sets proceeds from the

bottom of the list.

Another feature inherent in the Karlsruhe program that makes it
more efficient than MOCUS is the indentification of "super events" or
pseudo primary events. If all the primary events that are the inputs of
a secondary event are not found as primary events of other secondary
events, then the first secondary event is known as a "super event”.
Once a super event has been identified, it is treated as a primary event
and need not be expanded to its basic events during the determination

of cut sets.

Finally, the Karlsruhe program follows the criterion to expand a
row, i.e. a cut set, down to its primary events before proceeding to
the next row. Caldarola claimed that the extra features added reduce
the execution time and storage area of the computer as compared to

MOCUS.

In 1978, Rasmusson and Marshall [93] developed a top down
algorithm called FATRAM which is similar to MOCUS. FATRAM's main
aim is to take care of repeated events more efficiently than MOCUS so
that the computer time required for determining the minimal cut sets
is much less. This is done by reducing the amount of comparisons for
removing supersets. FATRAM also requires less comguter storage than

MOCUS.

- 14 -

The FATRAM algorithm follows the same substitution method of
MOCUS except that in stage 2, OR gates which have primary events as
inputs are not resolved yet. When all OR gates with gate inputs and
all AND gates are resolved, supersets which may exist are removed.
This is due to repeated secondary events or repeated primary events as
inputs to AND gates appearing in the fault tree. After this stage,
repeated primary events in the unresolved OR gates are processed. For
each repeated event, it replaces the unresolved gate of which it is an
input to form a new set. When all the repeated events have been
processed, any supersets that exist are removed. After this stage, the
remaining OR gates are resolved with the remaining non-repeated

primary events. The cut sets obtained after this stage are all minimal.

In 1986, Limnois and Ziani [96] developed a method to relduce the
number of comparisons for elir:}inatlng redundant cut sets. In their
algorithm, prior knowledge of the repeated events is required. The cut
sets of a top event are first obtained using MOCUS [86]1. Then cut
sets with the repeated events are grouped into one set and
comparisons made on this to eliminate non-minimal cut sets. Cut sets

which do not contain the repeated events are already minimal.

The algorithms described above are mostly modifications on
MOCUS designed to improve execution time and reduce the storage
area. However, a drawback common to all the algorithms described
above is that only the minimal cut sets of the top event under
consideration is determined for one traversal of the fault tree. To

obtain the minimal cut sets of secondary events in the fault tree, each

- }8 -

event has to be treated as a top event and apply the chosen algorithm
again. The execution time on the computer will be greatly reduced if
during one fault tree traversal, the minimal cut sets of every

non-primary event can be determined.

4.5.2.3 : Bottom Up Algorithms for Determining Minimal Cut Sets

In 1971, Semanderes [87] put forward a computer program coded
in FORTRAN called ERLAFT which formulates the simplest logic
expression for each secondary event in a fault tree in terms of the
basic events that combine to cause it. The algorithm uses a bottom up
approach and the Boolean reduction techniques discussed earlier, to
produce the sum-of-products of the top event being evaluated. The
problem with the Boolean reduction technique as reported by
Semanderes is that it requires a great deal of computer memory for
most fault trees found in practice. To reduce usage of computer
memory, Semanderes used prime numbers and the property of prime

numbers as expressed in the unique factorization theorem [88].

Each basic event is assigned a prime number. A particular
combination of basic events can be expressed uniquely as a single
number which is equal to the product of the prime numbers. From this
single number, the basic events that make up the combination, i.e., a
cut set can be determined by factoring the number into its prime
factors. If a unique number is a factor of another, it indicates that the
later has a combination of basic events which is a superset of the
former. In this way supersets can be easily removed, and the final

result obtained will be all the minimal cut sets of the top event.

- 116

In 1977, Wheeler et al [89] introduced a fault tree analysis
program called FAULTRAN which was written in FORTRAN. The
program is divided into two parts. The first part determines the
minimal cut sets using the bottom up approach. The second part

determines the probability of the top event.

The Wheeler method uses a bit vector representation where each
basic event is assigned a single 1 in a unique position in a sequence of
binary digits. The output of an AND gate is the bit by bit logical sum
of the inputs which can be obtained with the intrinsic OR function
supplied with FORTRAN. The output of an OR gate is the list of
non-duplicated inputs. The benefit of using bit manipulation is that

redundant events in a cut set are automatically eliminated.

Once all the cut sets have been obtained, still in their bit vector
representation, simple logical test are used to identify redundant cut
sets which can be eliminated. Suppose Vi1 and V2 are the vectors
representing two cut sets. The logic for redundancy test in the actual

FORTRAN implementation is as follows:

1) If "OR(V1,V2).EQ.V1" is true, V1 is redundant. If however the
test is not true, then do the next test.

2) If "OR(V1,V2).EQ.V2" is true, V2 is redundant. If neither test

is true, no redundancy is detected.

The advantage of using logic operations on bit vectors in the

FAULTRAN algorithm is that comparing individual basic events

between two cut sets for determining redundant cut sets is avoided,

- {7 -

producing faster and more efficient code. Another benefit in ERLAFT
as well as in FAULTRAN is that they are capable of generating the
minimal cut sets of all secondary events and the top event in a fault
tree, thereby making it possible to calculate the probability of events

with one traversal of the fault tree.

In 1975, Bennetts [94] developed a bottom up algorithm using
reverse Polish notation. The basic strategy of the algorithm is to
derive an algebraic description of the top event as a function of the
primary events and operators (AND and OR gates) as a reverse Polish
expression and then to "unpack"” this expression into its equivalent
sum-of-products form. Later Nakashima and Hattori [95] improved on
Bennetts's algorithm so as to reduce the computation time during
weeding out redundant cut sets. The computer program developed by
Nakashima and Hattori is called BUB-CUTS. The main reason that
BUP-CUTS is faster than Bennetts's algorithm is that prior knowledge
of the repeated events of the fault tree is required by BUB-CUTS
whereas there is no such requirement in Bennetts's algorithm.
llowever, for both BUP-CUTS and Bennett's algorithm, it is not
possible to obtain the minimal cut sets of every non-primary event in
the fault tree with one traversal of the fault tree. Thus, the
determination of the minimal cut sets and eventually the probability

of every non-primary event in a fault trce has to be done separately.

There are numerous other computer programs for determining
minimal cut sets of a fault tree that have been developed. Most of
them involve more complicated processing than the ones mentioned

above and concentrate on determining the minimal cut sets of the top

- 18 -

event of a fault tree. For example, the Kumamoto and Henley [98]
algorithm operates on the dual fault tree. A dual fault tree is defined
as a fault tree whose original AND and OR gates have been converted
to OR and AND gates respectively., A computer program called
DICOMICS, developed by Garibba et al [97]1, first segments the fault
tree to several fault subtrees. Minimal cut sets of the fault subtrees
are determined and then combined to construct the minimal cut sets
of the top event. Other minimal cut sets determination programs, just
to mention a few, are RESIN [99], AFTP [100] and the Jasmon and Kai

algorithm [1011.

4.5.3 : Algorithms For Probability Calculation Using Minimal Cut Sets

4.5.3.1 : Introduction

The probability of a minimal cut set is calculated using equation
4.53. Generally, if a non-primary event T has n minimal cut sets, i.e.

M;, i=1 to n, then the probability of occurrence of T is:

n i-t

P(T) = ZP(Mi)-Z >, P(M; A M)
i=1 2 j=1

n
+ 2,
=3

i

i-2

s

P(MiAMJAMk)
1

VI

j=2 k

n

n-t
+ GO [POM, AM AL AM)) L 4.57
=1

=19 =

If all the minimal cut sets are s-indcpendent, then equation 4.57 will

become equation 4.54.

It has been shown that the minimal cut sets of a non-primary
event in a fault tree may not be s-independent. Basically, there are
two methods to overcome the problem of non s-independence of
minimal cut sets in calculating the top event probability. The first
method is to manipulate the intersection of minimal cut sets when
applying the probability union rule so that primary events appear only
once in each product. The second method is by manipulating the
minimal cut sets to make them mutually exclusive or disjoint. These

methods are discussed below.

4.5.3.2 : Techniques For Manipulating Intersections Of Minimal Cut

Sets

Vesely (102, 1031 developed a computer package called KITT for
evaluating reliability parameters of large and complicated fault trees.
The package requires as input the minimal cut sets of the event whose
probability is to be evaluated. The basic assumption is that the basic
events that constitute the minimal cut sets are independent. The

probability of each minimal cut set is first determined using equation

1.53.

Consider a general minimal cut set intersection with m terms,
l.e. My /\Mj Ao .. AM, . where (7 T #m. Vesley stated that

this intersection can be considered as a cut sct or failure mode. Since

= 420 =

the primary failures are assumed independent, and a mode fallure

exists if and only if all its primary failures exist, then

+i,..,m
P(Mi/\Mj/\ AM,) = Ilq 4.58

where q is the probability of the basic event found in MIAMJA....AMm.

The product symbol is defined such that

+i,..,m

IT

the product of unique basic event quantities where the

basic event occurs in at least one of the mode failures

A particular basic event quantity, i.e., its probablll'ty. thus
occurs at most once in the product and occurs only if the basic event
is a member of at least one of the minimal cut sets denoted above the
product symbol. Computation of PlMiAM}A....AMm) using equation
4.57 therefore simply consists of collecting the unique basic events
which are members of one or more of the m minimal cut sets and then
multiplying the probabilities of these basic events. If Q, is the
probability of the non-primary event that is to be evaluated with N
minimal cut sets and Q; is the probablity of the ith minimal cut set,

then rewriting equation 4.57:

N N i-t +i,..,) N i-2 j-1 +i,.. .k
G, = 29—~ 2 a + 222 Ila
i=1 i=2 j=1 i=3 j=2 k=1

............................

= §2) =

The exact value Q,, can straightforwardly be determined using
cquation 4.59. KITT ensures that basic events in the product terms

occur only once before multiplication is carried out.

Wheeler et al [89] use the same equation 4.59 in their
FAULTRAN algorithm for evaluating probabilities. The bit
manipulation technique is used to ensure that primary events appear
only once in each product combination. Caldarola et al [90] in their
Karlsruhe Computer Program also use equation 4.59 but expressed in a

different form.

The computer time required to evaluate exact probabilities using
cquation 4.59 depends on the number of minimal cut sets found for
the top event. The number of product terms to be evaluated on the
right hand side of equation 4.59 increases exponefltially with the
number of minimal cut sets. If there are N minimal cut sets, the

number of product terms will be 2N 1.

4.5.3.3 : The Disjoint Cut Set Technique

The products of minimal cut sets when using the probability
union rule can be eliminated if the minimal cut sets are made in such
a way that they are disjoint or mutually exclusive. If there are N
disjoint cut sets, then the number of terms to be evaluated is also N.
The probability of the top event is evaluated by applying the
probability rule for mutually exclusive events where the probabilities

of each disjoint cut set are just added up.

- 122 =

Bennetts [94, 104) summarised the theory of the disjoint

technique as follows:

(a) Pairs of terms in the sum of product expression are
compared to determine their disjointness. The pair are
disjoint if and only if one term contains at least one Boolean
variable and the other term contains the same variable but in
its complemented form. If the pair of terms are not disjoint,
then a modification must be made to render it disjoint

relative to the other.

(b) If a pair of terms M; aud M] arc found to be non-disjoint,
define their relative complement RC=Mi\Mi as the non empty
set {y,, Y, «oeennn v Yp }. where all y's are written in the
uncomplemented form. The eclements of RC are those
variables found in M; but not found in Mf' The procedure by
which M; and Mj are converted into a disjoint collections of

terms is described by the following expression:

My VM = MV (5, AMD Y Ly (A7, AMp Ve

V Cy Ay, A, Ayr—lAyrAMj)
L S
V Cy, Ayps N /\jin/\Mj)

..... 4.60

Effectively, equation 4.60 is based on a controlled
reintroduction of missing variables to individual products on a

variable by variable basis.

- 123 -

To illustrate the procedure, consider the sum-of-product
expression given in equation 4.55. Let My = AAB and M, = AACAD.
Thus RC = M;\ M, = { B }. With reference to M,, the disjoint sum-of-

product is

T =(AAB)V(BAAACAD)Y . 4.61

Applying the probability law of union of mutually exclusive events,

P(T)= P(A)*P(B) + P(B)*P(A)*P(C)*P(D) ... 4.62

But P(B) = 1 - P(B). Therefore

P(T) = P(A)*P(B) + P(A)*P(C)*P(D) - P(A)*«P(B)*P(C)+P(D)

The result obtained in equation 4.63 gives the correct probability of
the top event of the fault tree in figure 4.5. Making M, = AACAD and
M, = AAB will produce a different disjoint sum-of-product expression

but the same probability expression as equation 4.63.

Generating minimal cut sets and then applying the disjoint
algorithm to evaluate fault trees can take up quite a considerable
computer time to process. Recent works by Jionsheng [105] and
Ramadaan [106] has shown that the usage of computer time can be
reduced by using the disjointness principle to produce disjoint
sum-of-products directly from the fault tree without determining the

minimal cut sets.

- 124 -

4.5.4 : Discussion and Conclusion

The minimal cut sets approach to fault tree probability
evaluation involves two stages of processing. The first stage is the
minimal cut set generation from the fault tree structure. Problems
arise if the fault tree contains several repeated secondary and primary
events which can produce repeated terms in a cut set and also
rcdundant cut sets. As large fault trees produce large cut sets as well
as large numbers of cut sets, much time and effort is spent on
comparing pairs of elements in every cut set produced to ensure that
there is no repetition of terms within the cut set and also on
comparing pairs of cut sets to remove redundant cut sets. Thus most
of the developments in the generation of minimal cut sets of fault
trees as described previously, have been done either to devise methods
to handle repeated events more efficiently so that tﬁere will be few
comparisons to be made, or to improve on methods for removing

repetitions within cut sets and also for removing redundant cut sets.

The second stage is the actual probability calculation. Here,
problems arise when the minimal cut sets obtained are not all
s-independent of each other. If the evaluation of fault tree probability
based on equation 4.57 is to be used, further processing has to be
done so that every intersection of minimal cut sets contains no
duplication of the primary events. If instead the disjoint cut set
technique is to be used, complicated processing is involved to make

all the minimal cut sets disjoint or mutually exclusive.

- 125 -

Considering all the drawbacks and virtues of the algorithms
described in this section as well as the discussion above, it is not
viable to implement the minimal cut set approach to fault tree
probability evaluation on a microcomputer. The main reason is the
limited amount of memory available on the microcomputer to contain
the codes for the various phases of minimal cut set generation and
probability evaluation. The only alternative is to apply a direct
probability calculation from the fault tree structure, discussed in the

next section.

4.6 : Probability Calculations Directly From Fault Trees

4.6.1 : Introduction

The fault tree contains sccondary events through which the
basic events propagate to the top event. In the minimal cut set
approach to fault tree probability calculations, the minimal cut sets
of every non-primary event have to be determined first before the
probability can be evaluated. Thus the computer time required to
calculate the probability of every event in the fault tree can be large.
An alternative approach to fault tree probability calculations is by
direct computation from the tree structure. With this approach, the
probabilities of all the events in the fault tree may be evaluated with
onc traversal of the tree. Several algorithms for evaluating

probabilities directly from the fault tree are reviewed below.

- 120 -

4.6.2 : Algorithms For Direct Evaluation Of Fault Tree Probabilities

An algorithm for direct computation of fault tree probabilities
was put forward by Lee [76] where the Boolean expression of the fault
tree is converted to reverse Polish notation. Indirectly the method
restructures the fault tree to form a binary tree where there are only
two inputs to every gate. The probability of the top event is evaluated
using the bottom up approach. Two nodes are taken at a time and
the probability law of union or intersection is applied till the top
event is reached. Lee claimed that his algorithm calculates the exact
probability accurately and very quickly. The only problem in Lee's
algorithm is that it can only be applied for fault trees with no

repeated events.

Feo 11071 produced a computer package called PAFT 77 in which
the basic laws of probability as expressed by equations 4.29 and 4.33
ar¢ used. To handle repecated events, lFeo used the conditional
probability as expressed in equation 4.40 or 4.82. Apart from
calculating probabilities of top events as well as secondary events
PAFT 77 also calculates the marginal importance of basic events. The
marginal importance of a basic event is a measure of the influence of

that event on the probability of occurrence of the top event.

Koen and Carnino [108) used a list processing technique in
compiling the events of a fault tree. The algorithm for calculating
probabilities is based on recognition of patterns, i.e., standard fault
tree configuration. The fault tree is scanned for known patterns

stored in a library. Whenever a recognisable pattern is found in the

127 -

tree, it is replaced as a pseudo primary event and its probability is
calculated. This process is repeated until the original tree is reduced
to a single node when the probability of the top event is determined.
lHHowever Koen and Carnino’s algorithm suffers from lack of generality
because it cannot handle repeated events where there may be

interdependency between one pattern and others.

Page and Perry [109, 110] proposed a top down recursive method
in calculating probabilities of fault trees. The algorithm is known as
TDPP (Top-Down Page-Perry). The probability calculation algorithm is
coded as a subroutine in a main program. Within that subroutine, it
can call itself to obtain data which have not been calculated yet. This
recursion makes it possible for the computer code to be small enough
to be implemented on microcomputers where memory size is limited.
The language used by Page and Perry is PASCAL, which supports
recursion. PASCAL also supports sets and set operations. The
structure ensures that elements in a set appear only once. Indirectly

the Boolean idempotent and absorption laws are applied for

the collection of inputs to an event.

One advantage of TDPP is its ability to handle repeated events
cfficiently. A brief description of the theory behind TDPP is given
below.

4.6.3 : The Top Down Recursive Algorithm - TDPP

The development of a top down recursive algorithm for direct

computation of fault tree probabilitics was first presented by Page

- 128

and Perry in reference [109]. However, the published algorithm can

only be used on fault trees restructured into a binary form.

In reference [110], Page and Perry presented an improved version
of their original algorithm. Instead of working on binary trees, TDPP
can work on any fault tree having AND and OR gates. The function
PROB in TDPP acts on two sets St and S$2 which are passed as
parameters. PROB(S1,52) computes thc probability that every event in
S2 occurs and that at least one event in S1 occurs. This implies that if
a non-basic event corresponds to an OR gate, all its inputs are placed
in S1. However if the non-basic event corresponds to an AND gate, all
its Inputs are placed in S2. An array LLEAVES is used to check for
s-independence in S1 and S2. The array LEAVES is set up such that
LIEAVESLIn], for any node n, will be the set of all nodes representing

basic events below node n in the tree.

The probability of a top event T, using TDPP is computed via the
call PROB({{ }, {(T}). Inside PROB, there are two distinct cases which
will be acted upon depending on whether or not S1 is empty. The logic

of the algorithm is described below.

Case 1 : Evaluation of PROB(}, S2), i.e. S| empty. A preliminary
simplification is made where all AND gates in S2Z are replaced
by their inputs. This process is repeated until no AND gates
remain in S2. After this operation, there are three cases
numbered 1 - 3. The case that applies determines the recursion

that is to be used.

129 -

1. If S2 contains only basic events, then PROB returns the
product of their probabilities. If S2 is empty, PROB returns

the value 1.

2. If S2 consists of a single node representing an OR gate,
then PROB calls PROB(S1, { }) where S! is the set of inputs

to the single node in S2.

3. If S2 contains at least one OR gate as well as other
elements, determine if there is a node n in S2 representing
an event that is s-independent from the other elements in
S2. This checking uses the array LEAVES to obtain the
property such that LIEAVIISIn) is disjoint from LEAVES{m]

for all other elements m in S2.

3da. If such a node n is found, then PROB is evaluated by

the recursion:

PROB({ }, {n}) # PROB({ }, S2-{n})).

3b. Otherwise, pick an OR gate node m in S2 and evaluate
PROB via the call PROB(S1, S2-{m}) where S1 is the set

of inputs of node m.

Case II : Evaluation of PROB(S!, S2) when S1 is not empty. A
preliminary simplification is made where all OR gates in S! are
replaced by their inputs until no OR gates remain. Following

this operation there are tour cases, numbered 1 - 4:

130 -

1. If it is found that S1()S2 is non-empty, PROB calls
PROB({ },S2). This implies that there is at least one event
in S1 also an element of S2. The call to PROB({ }, S2)

represent a simple Boolean reduction.

2. If S1 contains a single node, PROB calls PROB({ }, S1+S2).

3. If S1 contains more than one element, determine if there is
a node n in S! which is s-independent from the other
nodes in S1 and from all nodes in S2. This determination
uses the array LEAVES such that LEAVESIn] is disjoint
from LEAVESIm] for all other elements m in S1 and that

LEAVESIn] is disjoint from LEAVESLk]) for all elements k

in S2. If such a node n exist, then PROB returns the value

PROB({},{n}) * L PROB({), S2) -pl+p

where p = PROB(S1-{n}, S2).

4. If no node n is found in the above case, pick any node m in

S1. PROB returns a value by using the following recursion

PROB({ }, S2+{m}) + PROB(S1-{m}, S2)-PROB(S1-{m}, SZ+{m})

The recursion in case 11.4 above is a special use of

P{(AVBIACY}) = P(AAC) + P(BAC) - P(AABACY ... 4.64

131 -

It A and C are s-independent and A and BAC are also s-independent,

cquation 4.64 can be expressed as
P{(AVB)AC} = P(A) » I:P{C) = P(B/\C)] + P(BAC) ... 4.65

Equation 4.65 forms the reasoning behind the use of the recursion in

case [1.3.

As an illustration, using the fault tree of figure 4.5, the
recursion process for determining the probability of T is shown in

figure 4.7. From the trace of the recursion, the probability of T is:
P(T) = P(A)*I[P(C)*LP(B)x[1-P(D)1+P(D)-P(B)1+P(B)] 4.66

Expanding equation 4.66, the same result as equation as 4.63 will
be obtained. TDPP is more efficient than Page and Perry's original
algorithm. This is due to less calls to PROB in TDPP than in their
original algorithm and also because the fault trees do not have to be

converted into a binary form.

To further reduce the number of calls to PROB, Page and Perry
use a modularization technique to make the size of the fault tree
smaller [1101. This is done by merging two primary inputs into a
single one if the two always appear together as siblings and always
with the same type parent, i.e. either AND gate or OR gate. When two
such primary inputs are merged, the correct probability for the newly
created pseudo primary input is determined by the parent type so as to

represent the logical union or intersection. This merging process is

= 132 =

PROB({ }, {(T}))

Prelilminary simplification
of Case I.

PROB({), {A,X3,X2})

Case 1.3

] |
PROB({ },{A)) « PROB({)}, {X3,X2)}))

Case .1 Case 1.4

P(A) : |
PROB({B, C}, {X2)})

Case 1.3

IPROBI{],{CH*[PROB(H,{XZ})- I’R(_)B({BI.{)(2‘.‘H+PR'L)B({BJ‘I.{XZHI

| |
Case 1.1 Case 1.2 lal [al
P(C) g PROB({{B,D},t})
< Cane 11.3

{ I
PROB({}),{B))*[PROB({},{}) - PROB({D},{}})] + PROB({D}, {})

Case 1.1 Case 1.1
P(B) I [b) (bl
Lal bl
Case I1.2 Case 11.2
PROB({},{X2,B}) PROB({), {D)})
Case 1.4 Case 1.1
PROB({B,D}, {B}) P(D)
Case Il.1

PROB({ }, {B})

Case 1.1

P(B)

Figure 4.7 : Recursion trace of algorithm TDPP on fault tree of

figure 4.5

recpcated, operating on the newly created pseudo primary inputs until
no turther mergers are possible. Then any AND gate or OR gate that is
left with one input as a result of the modularization is reclassified as

4 primary input and assigned the correct probability.

If the fault tree has no repeated events, the bottom up
modularization as suggested by Page and Perry [110] would evaluate the
probabilities of all the events in the fault tree without using the top
down recursive algorithm. Thus modularization is advantageous |If

there are many repeated events in the fault tree.

4.6.4 : Discussion and Conclusion

Among the algorithms to evaluate probabilities directly from the
fault tree stucture described in this section, TDPP is the most
attractive. This is due to its simplicity and compactness of the
computer code which is easily implemented on a microcomputer. Also,
TDPP is capable in handling repeated events present in a fault tree,
without the user knowing that this has occurred. It is for these
reasons that the author of this present work has chosen the basic
principles of TDPP for evaluating the a priori fault tree probability as

part of the research.

One drawback in TDPP is in the way it was set up such that the
probabilities of non-basic events are calculated one at a time. This iIs
due to the preliminary simplifications in cases I and Il until the sets

S1 and S2 contain no OR gates and AND gates respectively. Thus

- 134 -

during the recursion process, the probabilities of secondary events
having the same gate typec as the top event are not evaluated. To
determine the probability of a secondary cvent, the whole recursion

process is repeated with that secondary event treated as a top event.

TDPP can easily be modified so that during the recursion
process, the probabilities of independent sccondary events or
sub-trees can be determined and stored without using the bottom-up
modularization process. If the calculated probability of the secondary
event is required again by other recursions, the data can be used
instead of going through the recursion process. This lessens the
execution time on the computer. The implecmentation of the modified

TDPP iIs described In detall in chapter 5.

4.7 : Fault Tree Posteriori Probability Evaluation

4.7.1 : Introduction

When an alarm has occurred, the probability of the alarm event
has changed to the value 1, indicating the existence of the alarm
event. Since there is the condition that an event has occurred, the
probability values of its causal events and its consequences are no
more those calculated a priori. Posteriori or conditional probabilities
of the causes and consequences of the occurred event have to be
calculated to provide a truer picture of the situation. The object of
calculating posteriori probabilities is to rank the causal cvents that

contribute to the occurrence of the alarm. These values can be used as

a guide in searching for the most likely cause of the alarm. The
method of cvaluating the posteriori probability is based on Bayes'

Theorem which is discussed briefly below.

4.7.2 : Bayes' Theorem

The definition of Bayes' Theorem has alrcady been defined in
section 4.4.3. The calculation of the conditional probability of an
event given another event has occurred is given by equation 4.43 which

is reprinted below:

P(XAY)
PEXIY) 2 e :
P(Y) 4:66

where
P(X/Y) is the probability of X given that Y has occurred.

P(X AN Y) is the a priori probability that both X and Y has

occurred together.

P(Y) is the a priori probability of occurrence of Y.
4.7.3 : Conditional Probability of Causal Events

Suppose all C;, i=1 to n, are connected to T by an OR gate. The
expression for T is given by equation 4.32. Let's suppose that T has

occurred and Cj is suspected as the cause of T.

T/\Cj=(CIV C2V......VC’V.....V(_'n)/\(.'] 4.67

- 130 -

Using the laws of Boolean algebra on equation 4.67 :

Applying equation 4.42, the conditional probability of occurrence of Cj

given that T has occurred is:

P(Cj)

PiC/ ye—_— 4.69
J P(T)

Suppose all C;, i=1 to n, are connected to T by an AND gate
instead. The expression for T is given by equation 4.27. Let's suppose
that T has occurred and C’ is suspected as the cause of T.

TA C] = (C! N C2 Moo N CJ A N C

Using the laws of Boolean algebra on equation 4.70 :

TAC; =T ' el 471

Applying equation 4.42, the conditional probability of occurrence of C;

given that T has occurred is:

P(C,/T) = AW 0 R 4.72

Equation 4.72 can be explained by the fact that all C; must have
occurred to cause T. Therefore the probability of any of the causal

event that is connected to T by an AND gate must be unity.

- 137 -

There are cases when the alarm event has its causes connected
by combinations of OR and AND gates. As an illustration, consider the
fault tree in figure 4.3. The logical Boolean representation is given by

equation 4.5, i.e.:

T=AVI(BAC)

Suppose that T has occurred. The conditional probability of B

having occurred is given by:

P(B/T) & i t®) 4.73

P(T)

Using the laws of Boolean algebra:

TAB = {AV(BAC)}AB

(AAB)V(BAC) . 4.74

Substituting equation 4.74 into equation 4.73:

P{(AANB)VIBAC)])
B/ - e S E 4.75
Pl L P(T)

Thus for the above case, the probability of the intersection of T
and B has to be determined first before the conditional probability of
B given T has occurred can be evaluated. This can be done by applying
the TDPP algorithim discussed earlier, operating on an empty 81, and

S2 contalning T and B.

138

4.7.4 : Conditional Probability of Consequent Events

Generally, there are two classes of consequent events that have
to be considered. The first class of consequent events is the
consequences of the event that has occurred i.e. the alarm event. The
second class of consequent events is events which are neither causes
nor consequences of the occurred event but are consequences of a

cause of the alarm event.

4.7.4.1 : Conditional Probability of the Consequences of an Event

Which Has Occurred.

Suppose that an event Tj is a secondary event in a fault tree and
is in some combination with other Ti' i#Zj, through an OR gate to cause
Q, l.e., a consequence of T]. The conditional probability of Q occurring

given Tj has occurred is

P(Q /\Tj) P Tj)

P(Q/TJ)= =% Ghe 4.76

P(T]) P(T})

This implies that any consequences connected to the occurring fault
by an OR gate will happen. Only a time delay for the consequence to
respond to the occurring fault may give enough time for operators to

take remedial actions.

However if Q is connected to the event Tj and other T, i), by

an AND gate, the conditional probability of Q given T} has occurred is

- 139 -

PIQAT))
PAQ/T) = ————2— 4.77
J P(T})

For such a case, (Q A Tj) is equal to Q. Therefore,

P(Q)
P(Q/TJ) = -i;{—;f,—) 4.78
J

The conditional probability of Q given Tj has occurred will not be
unity but will significantly increase in value from its a priori value.
For this case, there may be no restriction of time to find the cause of

the alarm and to take remedial actions.

4.7.4.2 : Conditional Probability of the Consequences of a Causal

Event

Suppose that T can be caused by A and B occurring together.

The Boolean expression for T is:
T=AAB ...4.79

The conditional probability of occurrence of A given T has occurred is

Suppose that there is another event S that can be caused by A or

C. The Boolean expression for S is:

S=AVC4.80

- 140 -

The intersection of T and S is:

TAS=(AANB)AN(AVC)=AAB .. 4.81

The conditional probability of occurrence of S given T has occurred is:

PCTAS)
PLSSE) & ——=——e——Vgf, = s ;
) P(T) 1 4.82

Equation 4.82 shows that S must have occurred, although it is
not a cause or a consequence of T. This is due to the occurrence of A,

common to both S and T.

Suppose that there is an event R that has inputs A and D via an

AND gate. The Boolean expression for R is:

R=AAD 4.83

The intersection of T and R is given as:

TAR = (AAB)A(AAD) = AANBAD ... 4.84

The conditional probability of R given T has occurred is:

P(AABAD)
y \by 4.85
P(R/T) TP

For this case, the occurrence of R depends on A and D occurring
together. Since A has occurred to cause T to occur, it will influence

the outcome of R. This is reflected in equation 4.85 which shows that

- 141 -

the posteriori probability of R given that T has occurred significantly
increases in value from its a priori probability. In fact, if (AAB) is
independent from D, then the posteriori probability of R given that T

has occurred is equal to the a priori probability of D.

Consider another case where the occurred event is caused by the
occurrence of one of its causes. Suppose an event Q can be caused by

the occurrence of A or E. The Boolean expression for Q is:

Q=AVE 4.86

The intersections of Q and S, and Q and R are:

QAS=(AVE)A(AVC)= AVI(CVE) ... 4.87

(AVE)JA(AAD) = AAD4.88

[®)
>
x

]

The conditional probability of S given Q has occurred is:

_ P{AV(CAE)}
P(S/7Q) = PIAVE) e 4.89

The conditional probability of R given Q has occurred is:

P(AAD) P(R)
5 . T 4.90
PIR7Q) = T AvE) P(Q)

Equations 4.89 and 4.9Y0 show that for both cases where S and R
which are consequences of a cause of the occurred event Q, their

posteriori probabilities significantly increase from their a priori

values.

- 142 -

4.7.5 : Discussion and Conclusion

In some cases, the posteriori probability of an event in a fault
tree can be determined very rapidly without involving any Boolean

manipulation. Such cases are:

1) when a causal event is connected to the alarm event via an OR

gate or through a chain of other events via a series of OR and
DIR gates, its posteriori probability is determined by dividing its
a priori probability with the a priori probability of the alarm

event.

2) when a causal event is connected to the alarm event via an
AND or a DIR gate, or through a chain of other events via a

series of AND and DIR gates, its posteriori probability is 1.

3) when a consequent event has the alarm event as an input via a
DIR gate or an OR gate, or through a chain of other events via a

series of DIR and OR gates, its posteriori probability is 1.

4) when a consequent event has the alarm event as an input with
several other cvents via an AND gate; or through a chain of
other events via a series of AND and DIR gates, the posteriori
probability for that event is obtained by dividing its a priori

probability by the a priori probability of the alarm event.

5) when an cvent which is neither a consequence nor a cause of

the alarm event; but is one of several symptoms of a causal

- 143 -

event whose posteriori probability value is 1; and is connected to
the causal event either by a DIR or an OR gate, or through a
chain of several events via a combination of OR and DIR gates,

then the posteriori probability for that event is 1.

In other cases, the probability of the intersection between the
alarm event and the event whose posteriori probability that is to be
evaluated, has to be determined first. The result obtained when
divided by the a priori probability of the alarm event gives the
posteriori probability for that event. The above method has to be

applied when determining the posteriori probability of:

1) a causal event which is connected to the alarm event through

a chain of other events via a combination of AND and OR gates.

2) a conscquent event which is not a direct symptom of the
alarm event, but having the alarm event in combination with

other events as inputs via mixturcs of AND, OR and DIR gates.

3) an event which is neither a consequence nor a cause of the
alarm event; but is one of several symptoms of a causal event of
the alarm event; and is connected to the causal event by an AND

gate, or through a chain of several events via a combination of

AND, OR and DIR gates.

The determination of the probability of the intersection of the
alarm event and the event whose posteriori probability is to be

ecvaluated can be done using the TDPP algorithm described earlier. For

144 -

this case, TDPP will operate with an empty S1 and S2 containing the
alarm event, and the causal or consequent event. However, TDPP has
its drawbacks discussed earlier. Also, since the a priori probability of
every event in the fault tree data file has been calculated, there is no
need for the preliminary requirecment of TDPP that only primary events
must be in the sets 81 and 82 before actually calculating the
probability. TDPP can be modified for the purpose of evaluating
posteriori probabilities such that when an s-independent event is
cncountered in the recursion, its a priori probability is directly

obtained from the fault tree data file.

The computer program for cvaluating the posteriori probabilities
of events In a fault tree given that an event has occurred for cases
discussed above is described in chapter 5. The algorithm for evaluating
the probability of intersection of cvents based on TDPP is also

described in chapter §.

- 145 -

CHAPTER FIVE

5. THE DIAGNOSIS PACKAGE

5.1 : Introduction

The analysis discussed in chapters 3 and 4 has been built into a
diagnosis package. The package consists of a coloured fault tree
display on the screen showing the alarm event, its likely causes and
consequences. The a priori and posteriori probabllities also can be
displayed. This helps the operator in tracing the most probable line of
cevents that cause the alarm. The package has been written in
Microsoft Quickbasic and runs on widely available IBM compatible
computers using PC-DOS or MS-DOS operating system. A reqﬁlrement
of the algorithms is recursion and Quickbasic supports this. Some of

the features of Microsoft Quickbasic are described in Appendix D.

Data for the display are obtained from hazard and operability
study records in the form of the cause and symptom equations
discussed in chapter 3. The cause and symptom equations contain
information which must be stored in a form which can be easily and
quickly accessed by the package. This is done by translating the cause
and symptom equations into a data structure and storing this in a
random access file. The file contains all the relevant information
about each event, such as the type of event; its causes; its
consequences; its a priori probability and its posteriori probability
due to the alarm event. Each event can either be a primary event or an

event with one or more inputs via an OR or an AND gate. The cause

- 146 -

and consequence information contains pointers to the data about other
cevents involved. The diagnosis package has only to search through the
file once for the name of the alarm event and then by using the
pointers, all the information required can easily be obtained without

doing any more searches.

The PC-DOS/MS-DOS filing system uses filenames of up to 8
characters with a 3 character extension separated by a full stop. The
cxtension is normally used to indicate the type of information in a
file. This convention has been extended in this work to provide a

consistent filename system. For example, text files are often given the
cxtension .TXT, e.g. EXAMPLEB.TXT. This is used for cause and

symptom equations files which are prepared by hand.

5.2 : The Data Preparation Program - TRANSLAT

The data preparation program is a separate part of the diagnosis
package. The program is called TRANSLAT. It consists of three stages

which are:

1. Translation of a text file containing the cause and symptom
equations into a fault tree data structure to be stored in a
random access file. This is the fault tree data file and is given a

name with the extension .COD, e.g. EXAMPLE.COD.

2. Creation of a primary events file which stores for each event,

the set of all primary events that could cause that event. The

- 147 -

primary events file is also a random access file. This is done for

the purpose of checking whether events are s-independent when
calculating probabilities. The file will have a name with the

extension PRI, e.g. EXAMPLE.PRI.

3. Input of a priori probability data for all primary events which

are stored in the .COD file.

4. Calculation of the a priori probability of every event in the

data file. These are stored in the .COD file.

5.2.1 : Pault Tree Data File Structure

The structure of the fault tree data file developed by the author
is a fixed record length database management system. The_ file
consists of several records. Each event is assigned a unique record
number or address. In each record, there are several fields containing
all the relevant information about the event. Table 5.1 indicates how

cach record is divided into its various fields.

As an illustration, consider an arbitrary cause equation and its
fault tree in figure 4.1. Part of the data file containing the

information about the cause equation will be as shown in figure 5.1.
Although the number of fields reserved for storing the

addresses of the branches of an event is 4, it does not mean that the

number of branches connected by the same gate on the right hand

- 148 -

Table 5.1 Fault Tree Data Structure

Field Field No. of

Name Type Bytes function
c$ Character| 20 To store name of event.
e$ Character 3 To store type of gate or event according

to the following criterion:

1. If e$ is a primary event, g$ will
contain PRI.

2. If e$ has only one branch, g$ will
contain DIR.

3. If e$ has several branches connected
by an AND gate, g$ will contain AND.

4. If e$ has several branches connected
by an OR gate obtained from a cause
equation, g$ will contain ORC.

5. 1f e$ has several branches connected
by an OR gate obtained from several
symptom equations, g$ will contain

ORS.
bc$ [Numeric, 2 To store the number of branches
integer connected to e$.
cau$(1) 2 To store the address, i.e. record numbers
cau$(2) | Numeric 9 :)nf tel;e branches connected to the event
cau$(3) | integer 2 These fields are called the brdnch
cau$(4) 9 address fields.
bq$ Numeric, 2 To store the number of consequences
integer of event in e$.
con$(1) 2 To store the address of the
(2) 9 consequences of the event in e$.
con® Numeric, These fields are called the consequence
con$(3) | integer 2 address fields.
con$(4) 2
pr$ Numeric 4 To store the a priori probability of
real event in e$.
cpr$ Numeric, 4 To store the conditional probability of
real event in e$.

- 149 -

Rec.| e$ | g$ | bc$ cau$ bq$ con$

no. 1) [(2) [(3) | (4) (1) [(2) | (3) | (4)

10 T | ORC| 3 11 {12 (13| O 0 o| 0|00

1" A | PRI 0 oy 0 0] O 1 10 0] 0] 0

12 B | PRI 0 0l 0| 0] O 1 10 0| 0] O

13 C | PRI 0 oOf 0| OO 1 10 ojofo

Figure 5.1 : Part of data file for fault tree of figure 4.1.

Rec [e$ | g$ |[bc$ cau$ | e e e e e

no. (1) ((2) |(3) [(4)

30| A ORC| 8 3l |32 [3F JBF] s cwmar ma wmrue vy g o

31 B PRI 0 0 0 0 0

32 C PRI 0 0 0 0 0

33 D PRI 0 0 0 0 0

34 | E | PRI 0 o J e T o O I ¢ A I T R R L R R

35 | &1l CON| 4 [34 |36 |37 |39 | s+ @d@s a&afe s ab 234

36 PRI 0 0 0 0 0

3? PRI 0 0 0 0 O

38 PRI 0 gL | O 9 =cssisEs sRisime s £mA

39 | &2 | CON| 2 3B 140 110] O] =0 s@eais dinsais nmnmn

40 j PRI 0 0 0 O 0
Figure §.2 : Part of data file containing information about equation 5.1

- 150 -

side of the cause equation is limited to 4. The data file is structured
in such a way that any number of branches for each event can be
handled. As an illustration, counsider the following arbitrary cause

equation:
A=zB+fCH+D+EF+E+xG+H+] e 5.1

Figure 5.2 shows how the cause equation is translated into the data

file.

When a record has the number of branches field, bc$, containing
a value greater than 4, the first three branch address fields contain
the addresses of three of the branches of that record, and cau$(4) will
contain the address of a unique dummy event known as the
continuation event. In the record of this continuation event, the
branch address fields will contain the addresses of the rest of the
branches of the above record. The name of a continuation event
usually start with the character & followed by a number. The gate
type field, g$, will contain the character string CON. If in the record
of the continuation event, bc$ contains the value 4, cau$(4) will either
contain an address of another continuation event or a named event.
This method of assigning dummy continuation events is also applied if

an event has more than 4 consequences.

5.2.2 : Translation of Cause and Symptom Equations

A cause equation may have mixtures of OR and AND gates and

events within parenthesis in order to state the logical combination of

- 151 -

causes of the top event. For example, consider the system of tanks to

supply fluid at a constant rate to another unit operation as shown in

figure 5.3. The valve V3 is open during normal operation to relieve

pressure on the control control CVI.

Vi
L1

T2

B

{
L2 DQ FCL1
Fi
avi
Pi1

D

V3

Figure 5.3 : Feed Tank System

¥

No flow in the feed line L2 can be shown to have the following cause

equation:

L2(11)=T2(41)*(T1(41)+V1(0)+L1(0))+P1(0)*V2(0)+FCL1(0)

..... 5.2

Equation 5.2 shows that the top event L2(11) has 3 branches as

inputs through an OR gate which are:

1. T2(41)+(T1(41)+V1(0)+L1(0)

2. P1(0)*V2(0)

3. FCL1(0)

- 182 -

The first two branches are considered as unnamed branches
because each has further inputs through an AND gate. The third
branch which has a named event is considered as a named branch. For
branch number 1, it has two inputs through an AND gate which are a
named branch, T2(41), and an unnamed branch consisting of 3 inputs

through an OR gate.

Equation 5.2 may be written in any order but having the same

logical combination. For example:

L2(11)=(T1(41)+V1(0)+L1(0))*T2(41)+FCL1(0)+P1(0)*V2(0) 5.3
or

L2(11)=P1(0)*VZ(0)+(T1(41)+V1(0)+L1(0))*T2(41)+FCL1(0) 5.4

In order to be consistent in translating cause equations with
unnamed branches, each unnamed branch is assigned a unique dummy
event. The dummy event is given a name starting with the character =

followed by a number.

Unnamed branches can appear in a cause equation in two ways.
The first way is when a group of events or branches are connected by
OR gates within parenthesis. The second way is when a group of
events or branches are connected by AND gates but not within
parenthesis and the inputs to the top event is via an OR gate. The
program for translating cause equations into the data file can
recognise unnamed branches in whatever order they are written such

as shown by equations 5.2, 5.3 and 5.4.

- 183 -

The logic of the program for translating the cause and symptom

equations to be stored into the fault tree data file is as follows:

1. Read in an equation from the text file.

2. Distinguish whether equation is a cause or a symptom

equation. This is done by searching for the character "=" or

in the equation.

3a. If the the character "=" is found, subroutine CAUSE is called

to translate the cause equation into the data file.

3b. If the character "-" is found instead, subroutine SYMPTOM

is called to translate the symptom equation into the data file.

4. Repeat steps | to 3 until end of text file is reached.

5.2.2.1 : Description of Subroutine CAUSE

Subroutine CAUSE handles the translation process for cause
equations. A flowchart is given in figure 5.4. When CAUSE is called, a

search pointer, 1, is at the position where the character is located.
The string of characters to the left of this pointer constitute the
cvent name forming the top ecvent of the cause equation. An address,

i.e. record number in the data file is assigned to this event. This is

done by the subroutine ASSIGN.

- 154 -

FSubroutlne CAIISB)
v

Event pointer i is at
Event name Is string of
characters to the left of "="
CALL ASSIGN

v

(isrt =12 Y50 caL ErRRMsGs —RETURN)

l.ND

I =1+ 1

'Set character string counter
'k and beginning of event
‘'mame pointer |

k =1:1=1
> |= i —
. evilg = 1
< Is character at \ Yes =1 + 1
'=“(”? L Kk = k + 1
D
Is characler at ‘evilg = 1
(" AND >£5__,. -
evflg = k = k + 1
LND
|3 character’ at Ves "Event name found
AND ——>| " beginning at | and
evflg =07 'having k-1 characters.
CALL ASSIGN
Mo CALL STORE
CALL PREVIOUS
F=101¢#1 : 1 =1 : k = k+1
L
Is character at Yes gatef = "ORC"
i= "+ 7 CALL ASSIGN
CALL STORE
No CALL GATETYP
CALL DUMMY1
=141 :1=1:k =1
< Is character at >'r05 gate® = "AND"
L= 9" 2 CALL ASSIGN
N CALL GATETYP
2 CALL STORE
CALL DUMMY1
I =1+41 : 1 =1 : k = k+1
L
Is i » length of Yes gate$ = "DIR"
cause equation? : CALL ASSIGN
No CALL GATETYP
4 CALL STORE

=1 +1:k =Kk + 1
RETURN

Figure 5.4 : Flowchart of Subroutine CAUSE

- 185 -

Subroutine ASSIGN includes an error checking procedure to
determine if the top event of the cause equation has already been
processed. This is done by determining whether or not the event has
already been assigned an address. If the determination proves positive,
then the field storing the gate type is checked. If g$ contains other
than PRI, it implies that an equation having the same top event had
already been processed and that there are errors in the list of cause
and symptom equations. An error flag, rt, is set and passed back to
CAUSE so that the cause equation under process is not translated.
Subroutine ERRMSGS is then called to tell the user about the error
and where in the text file the error has occurred. Control of the
program is returned to TRANSLAT so that the next equation in the list

is processed.

If there is no error, ASSIGN rcturns the address of the top event
to CAUSE stored in the variable ca. The value in ca is then stored in
an integer variable tp. CAUSE then proceeds to search for event names
that appear on the right hand side of the cause equation by scanning

every character from left to right using increments of the search

pointer 1.

To check whether or not the cause equation has unnamed

branches due to events within parenthesis, subroutine DUMMY1 is
called. DUMMY1 first checks whether the character at the search
pointer 1 is an open parenthesis, "(". If the character at 1 is not the

open parenthesis, DUMMY1 will return to CAUSE with no change in

any of the variables.

= ‘180 =

If however "(" is found at 1, this will indicate that an unnamed
branch has been detected. A dummy event is created to represent the
unnamed branch. An address in the data file is then assigned to the
dummy event. The address of the top event stored in tp is saved
temporarily in an array pg(g, 1) which acts like a last in, first out,
stack. The index g in the array acts as an indicator to show the depth
of nested parenthesis found in the cause equation. Every time a
dummy event is created, the value of g is incremented by 1 before the
contents of tp is stored in pg(g, 1). Then the address of the newly
created dummy event is stored in tp. This procedure is repeated for
every subsequent open parenthesis found. When DUMMY1 returns to
CAUSE, the search pointer, i, will be at the last "(" found and the top
event which CAUSE will refer to will be the last dummy event created

whose address is stored in tp.

Event names used in coding cause and symptom equations may
have parentheses which contain the codes for the guide words and
property words. CAUSE is able to distinguish these parentheses which
are part of the event name and those that require dummy events to be
created. This is done by setting a flag, evflg, to | when the character
"(" is found after DUMMY1 has been called. When the character ")" is
found and evflg is 1, evflg Is set to 0. In this way, parentheses which

are part of the event name are sifted out.

However if the character at |1 is a close parenthesis, ")", and
evflg equal to O, this will indicate that reference to a dummy event as
the top event is about to end. After processing the event name

assoclated with the above discovery, further processing will have to be

referred to the previous top event whose address is stored in pg(g, 1).

The procedure for getting the previous top event address is done by

calling subroutine PREVIOUS.

In subroutine PREVIOUS, the address in pg(g, 1) is stored in tp
and g is decremented by 1. The search pointer, 1, is then incremented
by 1. If the character at 1 is also a ")", the above process is repeated.
If the character at 1 is "#" or "+" instead, then the variable gate$ is
assigned the string AND or ORC respectively. PREVIOUS then checks
the gate type stored in g$ at the new top event address tp. If the
content of g$ is the same as gate$, PREVIOUS will return back to
CAUSE. If however the content of g$ is ORC and gate$ is AND,
subroutine ANDGATE! is called, otherwise if g$ contains AND and

gate$ contains ORC, subroutine GATETYP is called instead.

The function of subroutine ANDGATE] is to create a dummy
event since the gate found at 1 is an AND gate whereas the gate type
field of the present top event at address tp contains ORC. The content
of the last branch address field that had been filled at record number
tp is replaced by the address of the dummy event created. The value
that has been replaced is then placed in the first branch address field
at the record number of the dummy event. The content of tp is then
saved in the stack array at pg(g, 2). A flag, pf(g), is set to 1 to
indicate that a dummy event has been created to represent a branch
due to combination of events not within parentheses. When control of
the program is returned to CAUSES, tp will contain the address of the

dummy event which will be referred to when subsequent event names

are found.

- 158 -

Subroutine GATETYP is called to replace the contents of the
ficld g$ at record number tp by the contents of gate$ only if g$
contains the string PRI. If g$ contains the same character string as
gate$, control of the program returns to its caller without anything
being done. However, if g$ is not the same as gate$, GATETYP will
cither call subroutine ORGATE if g$ contains the string AND or
subrourtine ANDGATE2 if g$ contains ORC.

The action in subroutine ORGATE depends on the contents of
the flag pf(g). If pf(g) is 1, ORGATE will return to its caller with tp
containing the address stored in pg(g, 2) and pf(g) reset to 0. However
if pf(g) is 0, a dummy event is created which will replace the top
event name in e$ at record number tp. The top event is then assigned
a new address which will be stored in tp. All the inf;)rmatlon
regarding the consequences of the top event is also transfered to the
new record number. When control of the program is returned to

CAUSE, the same top event name will still be referred but at the new

address stored in tp.

The purpose of calling subroutine ANDGATEZ2 is to create a
dummy event whose inputs is via an AND gate. First the contents of tp
is saved in the stack array at pg(g, 2) and the flag pf(g) is set to 1. A
dummy event is then created whose address will be stored in the next
unfilled branch address field at record number tp. When control of

the program is returned to CAUSE, contents of tp will be the address

of the dummy event created.

- 189 -

When a causal event has been found and assigned an address in
the data file by the subroutine ASSIGN, subroutine STORE is called to
store the contents of ca in a branch address field at the record
number tp. If all the branch address fields had been filled, STORE will
call subroutine EXPCAUS to expand the number branch of address
fields by creating a continuation event. STORE also stores the
consequence of the event found by storing the content of tp in a
consequence address field at the record number ca. If all the
consequence address fields had been filled, subroutine EXPCONS will
be called to create a continuation event for expanding the number of

consequence address fields.

As an illustration, consider equation 5.4. When the search
pointer is at the character "=", the top event name L2(11) |is
recognised. Figure 5.5 shows the state of the data' file at various

stages of the search pointer.

5.2.2.2 : Description of Subroutine SYMPTOM

Subroutine SYMPTOM handles the translation process for
symptom equations. When SYMPTOM is called, the search pointer 1 is
located at the character "-". The event name found at this stage is the
causal event of the symptom equation. Subsequent searches for events
on the right hand side of the equation that are the symptoms of the
causal event is done by looking for the character "#*". Subroutines
ASSIGN and STORE described previously are used by SYMPTOM to get

or assign an address of each event found and to store the address of

= 360 -

i
v
L2(11)=P1O)*V2(0)+(T1H{41)+VI(O)+L1(0))*T2(41)+FCL1(0)

Rec. e$ ' g$ | bc$ cau$ bq$’ con$ l .
no. m @@] m | @3] @
l 1 L2111 PRI (o] (o] (0] (0] O O 0 (o] 0] 0 | ize s
- (i)
R RS
L2111 =P1HO)*V2(O)+(T1(41)+V1(O)+L1(0O))*T2(41)+FCL1(0)
Rec e$ ‘ g$ | bc$ cau$ bq$l con$] 3
no. m | @@ |w m @] @] W
1 L2¢11) AND 1 2 o] (o] (e} (o] 0 (o} (o} Q | * ween s
2 P1(0O) PRI o] (0] (@] (o] o 1 1 (o] (0] o]

v
L2111 =P1(O)*V2(O)+(T1(41)+V1(0)+L1(0))*T2(41)+FCL1(0)

1. Before calling subroutine GATETYP

Rec. e$ g$ | bct cau$ bg$ con$
no.) | (2)|3) | 4) (1) |2)]3) | 4)
1 L2¢(11) | AND]| 2 2 |3 o |o o) o|lo o |o | .-
2 P1(0) PRI O (o] 0 0 0 1 1 (0] (0] (0]
3 v2(0 PRI o o |o |o |o 1 1 o |6 |0
2. After calling subroutine GATETYP
Rec. e$ g$ | bec$ cau$ bq$ con$
no. m | @]3] @ M 2] 3] @
1 u 1 AND| 2 2 |3]o |o 1 4 lo|lo|lo|--:--
2 P1(0) |PRI | © o |o |o |o 1 1 lo]lo |o
3 v2(0) |PRI | © o |o o |o 1 1 16106 o
4 L2(11) [ORc| 1 1 o |o |o o) o|o |o |o
__________________ an.
¥
L2(11)=P1(0) #V2(0)+(T1(41)+V1(0)+L1(0))*T2(41) +FCL1(O)
Rec c$ g$ | bc$ can$ bq$ con$
no. (1) | (2) [(3) | (4) (1) | (2) | (3) | (4)
1 “ 1 AND| 2 2 [3]o |o 1 4 o |lo o |-----
o P1(0) |PRI o o |o |o |o 1 1 o o | o
3 v2(0) |PRI o o |o o |o 1 1 lo|lo |o
4 L2 |orc| 2 1 5 |o |o o) o|lo |o |o
5 4 2 PRI o) o |o|o |o 1 4 |lo o |o
(iv)
Figure 5.5 : Various stages of translating equation 5.4 into data file.

- 161 -

[
v

L2(11)=P1(0)sV2(0)+(T1(4 1) +V1I(O)+L1(0))+T2(4 1)+FCL1(0)

162

Rec. e$ g$ | bec$ cau$ bq$ con$.
no. (1) | (2) |(3) | (4) (1 | (2)[(3)] (4
1 u 1 AND| 2 2 3 |o o) 1 4 o |lo o |-----
2 P1(0) PRI o) o|lo |o |o 1 1 6 | o |0
3 v2(0) |PRI 0 o |lo |o |o 1 1 o|o o)
4 L2(11) |OR 2 1 5 o | o o) o|lo|o |o
5 u 2 OR 3 6 7 | 8 o) 1 a o]|lo | o
6 T1(41) | PRI o o |o |o o) 1 5 lo o | o
7 V1(0) PRI o o |lo |o |o 1 5 lo|lo | o
8 L1(0) PRI o o |lo |o |o 1 5 lo|lo | o
(v)
:
L2(11)=P1(0)#V2(0)+(T1(41)+V1(0)+L1(0))#T2(41) +FCL1(O)
Rec et g$ | bc$ cau$ bq$ con$ |
no. (1) | (2) [(3) | (4) (1 [(2)]|(3) | (4
1 # 1 AND| 2 2 3 |lo |o 1 4 (o |o | O |-
2 P1(0) PRI o) o |lo (o |o 1 1 o|lo | o
3 v2(0) |PRI o o |lo o |o 1 1 o|lo |o
4 L2111 |oRrc| 2 1 g o | o o) olo |o |o
5 n 2 ORC| 3 6 7 | 8 o 1 g9 |o|o | o
6 T1(41) | PRI o) o lo |o |o 1 5 lo |o [o0
7 V1(0) PRI o o |lo |o o) 1 5 o |o | o
8 L1(0) PRI o) o |lo |o 0 1 5 o |o o)
9 # 3 AND| 1 5 o) 0 0 1 4 0 0 0
(vi)
y
L2(11)=P1(0)#V2(0)+(T1(41)+V1(0)+L1(0)) s T2(41)+FCL1(0)
Rec e$ g$ | bc$ cau$ bq$ con$;
no (1 | (2) [(3) | (4) (1) | (2)](3) | (4)
1 " 1 AND| 2 2 3 |lo [0 1 4 oo |o | ..
2 P1(0) PRI o o |o o |0 1 1 o|o | o
3 v2(0) |PRI o) o |lo |o |o 1 1 oo |o
4 L2(11) |ORcC| 2 1 g |o | o 0 o |lo|o | o
5 # 2 ORC| 3 6 7 |8 | o 1 9 |lo|o o
6 T1(41) | PRI o} o |lo |o |o 1 5 o | o o
7 V1(0) PRI o o |lo |o |o 1 5 lo|lo | o
8 L1(0) PRI (o} o |lo o |0 1 s lo|o | o
9 8 3 AND| 2 5 10| O 0 1 4 o] 0 o
10 | 12041 | PRI o o |o |o 6) 1 9 o |o | o
(vii)
Figure 5.5a (continuation of fig. 5.5)

I
v

L2011 =P1(0)*V2(0)+(T1(41)+V1(O)+L1(0))*T2(41) +FCL1(0)

Rec c$ g$ | bc$ cau$ bq$ con$

no. (1) | (2) |(3) | (4) (1) | (2) [(3)]| (4)
1 # 1 AND| 2 2 3 {o 0 1 4 o | o o |-
2 P1(0) PRI o} 0 o |o 0 1 1 o | o 0
3 v2(0) |PRI o o} o |o 0 1 1 o | o o
4 L2(11) |ORC| 3 1 9 1 | O 0 o |o | o 0
5 a4 2 ORC| 3 6 7 | 8 0 1 g |o | o o
6 T1(41) | PRI o 0 o | o (o} 1 5 o | O o
7 V1(0) PRI 0 o o |o 0 1 5 o | o 0
8 L1(0) PRI o} 0 o (o 0 1 5 o | o o]
9 # 3 AND| 2 5 10 | 0 (o} 1 4 o o 0
10 | T2(41) | PRI 0 e} o | o 0 1 9 |o | o o
11 FCL1(0) | PRI 0 0 o |o 0 1 4 |0 | O 0

(viii)

Figure 5.5 b(continuation of fig. 5.5)

163

the causal event at the appropriate branch address field at the record
number of the symptom events found. Subroutine GATETYP2 is called
to store in the gate type field either the character string DIR if the
symptom event has only one cause or ORS if the symptom has more
than one cause. The string ORS is used to indicate that the causes of
the event at the particular address comes from symptom equations.

Figure 5.6 shows the flowchart of the subroutine SYMPTOM.

As as an illustration, consider the following arbitrary symptom

cquations.

A-NI*N2*N3*N4 5.5
B-NI*N2*N5 5.6
C-N4%N5 L 5.7

Figure 5.7 shows part of the data file that contains the information

of the translated symptom equations.

5.2.3 : Primary Events File

Some of the secondary events in a fault tree may not be
s—independent with each other because they have one or more primary
events in common among the basic causes. A way to check the
s independence of events is by using sets of primary events. If the
elements of the set of primary events of event A do not appear In the

set of primary events of event B, then A an B is sald to be

- 164 -

(‘Subroutine SYMPTOM)
¥

Event polnter i is at “-"
Event name is string of

characters to the left of "-"

CALL ASSIGN
ASSIGN returns address of
event as ca.

sSsCa = Cca
F=1+1:1 =1:k =1
N |
ls character at | = "s" \ Yes CALL ASSIGN
OR I » length of 5 =
symptom equatlion ? / P e
ca = sca
No CALL GATETYP2
1) CALL STORE
F it o I=1+1 : 1=1 : k=1

No /' g |5 length

of
\symptom equation?

Yes

4
' RETURN]

Figure 5.6 : Flowchart of Subroutine SYMPTOM

Rec c$ g$ | bc$ cau$ bq$ con$

no. (1) [(2)[(3) | 4) (1) [(2)[(3) | (4
10 A PRI (0] (o] (0] O 0] 4 3 12 13 14
11 N1 ors| 2 |10 |1s8|0o [0]| o ololo |o

12 N2 |ors| 2 |10]15|l0 |0 | o ol|lo|o|o

i3 N3 DIR 1 10 0] o} 0] O O (0] (0] (o}

14 Na |ors| 2 |10 |17]0o |0 | O olo|o|o

15 B PRI | © o lo |o |o 3 11216 0

16 N5 |ors| 2 [15|17 |0 |o | o o|lo|o |o

17 c PRI | o |o |o |o |o 2 14160 | O

l'igure 5.7 : Part of data file for symptom equations 5.

5| 5,6 and 5.7

- 165 -

s-independent. The determination of s-independence of events is one
of the requirements for implementing the fault tree probability

evaluation algorithm which will be described later.

In this part of TRANSLAT, each set of primary events is
obtained from the fault tree data file. Every record of the primary
event file has 71 fields, each of 2 bytes long. The first field, nu$
stores the number of primary events in the set and the next 70 fields
from pri$(1) to pri$(70) store the addresses of the primary events in
the set. The record number of the event in the primary events file
correspond to the same record number in the fault tree data file. At
the record number of a primary event, nu$ will contain the value 1 and

pri$(1) will contain its own address.

The subroutine to obtain the set of primary events is called
PRIMARY. It is called after the translation process of the cause and
symptom equations is over. The subroutine PRIMARY is recursive and
can call itself. Suppose k is the address of an event which has n
branches whose addresses are X, X,, , X,. Let SET[k], SETIx,],
SETIx,]1, , SETIx] be the respective sets of primary events. The

set of primary events of event at address k can be obtained recursively

using the identity :

SETLk] = SETIx,] USETIx,0U USETixp) ... 5.8

The recursion terminates when k refers to an address of a primary
ovent. The execution of this recursion is very fast and depends

linearly on the number of events in the fault tree. For a single fault

166

tree, the primary event file can be set up completely with one

traversal.

The flowchart of subroutine PRIMARY is shown in figure 5.8.
When PRIMARY is called, the address of the event being processed is
passed from the caller as zp(indx). The index indx is used to track the
depth of recursion being used. The array done(k) is used to flag that
the event whose address is k has been processed. Whenever any other
fault tree which has k as one of its branches, the recursion need not
have to be done on that particular event. The set of primary events
can be obtained at record number k alrcady stored in the primary

event file.

If the event has its input branches via an OR or AND gate, then
PRIMARY will call subroutine BRANCH to get the address of the
branches and store in a temporary two dimensional array si{indx, mn).
The first column of sil{indx, n) contain the number of branches of the
event being processed. Columns 2 to n will hold the addresses of the
branches. Then PRIMARY will recursively obtain the primary events of

the event from each branch stored in silindx, n).

5.2.4 : Probability Calculation

5.2.4.1 : Introduction

Once the fault tree data file and the primary events file have

been created, the a priori probabilities of every non primary event then

167 -

CSubroutlne PR.IMARY)

y

Access the fault tree data
file at record no. zpl(indx).

(ls g$="PRI"?} res

No

\ Yes

Slore the value 1 in the field
nu$ and the value In zp(indx)
in the fleld pri%(1) at record
no. zplindx) of the primary

events file,

donel(zplindx)) = 1

RETURN

<Is g$="DIR"?

~

Is g%="AND"
or "ORC" or
"ORS" ?
Yes

L

Store the address of the
branch of zplindx) In
zplindx + 1).

zplindx + 1) = CVS(cau$(1))

(Is donel(zp(indx+1))=17?
No
Yes

Indx = Indx + 1
CALL PRIMARY (Indx)

No
A RETURN
Indx =

= Indx -

1

& I

Y

Store O In the fleld nu$% at
record no. zplindx) of the
events file.

Obtain the addresses of the
branches of zplindx) from
the fault tree data flle store
them In row Indx of the
array sl.

CALL BRANCHI(Indx)

s1(indx, 1) contains the value
for the no. of branches
stored In row Iindx of s1.

A)

(see figure 5.8a)

Access the primary events
file at record no. zplindx+1).
ka = CVI(nu$)

Store ka In the fileld nu$ at
record no. zplindx) of the
primary events flle.

Obtaln the values stored In
the fields pri%(1) to prid(ka)
al record no zplindx+1) and
store thiem In the same flelds
at record no. zplindx) of the
primary events flle.

donel(zplindx)) = 1

Yy
RETURN

Figure 5.8 : Flowchart of Subroutine PRIMARY

168 -

7P

I kposl(indx) = 2 I

y
'ip(Ir'ldx"‘1)=51(|ﬂdx,kp05(|rldx)]I'<

y

\ No indx = Indx + 1
(Is done(zplindx+1))=1?) >| CALL PRIMARY (Indx)
Indx = Indx - 1
Yes I

T

Access the primary events
fille at record no. zp(indx+1)
ka = CVItnu$)

| kb =1 |
Yes
(Is kb > ka ? } > kpos(indx) =kpos(indx) + 1
jhe r

Access the primary events Is kpos(indx) > No
file at record number s1lindx, 1) +1?
zplindx+1).
Store the value stored In Yes
the fleld pri$(kb) In a]
temporary variable called done(zp(indx))=1
temp, l.e.:

temp = CVI(pri$(kb))
(RETURN)

Access the primary events
flle at record no. zp(indx).
kc= CVI(nu$)

y
Has the value In temp
already stored In any \Yes

one of the pri$ fields at
record no. zplindx) ?

No

y

ke = ke + 1

Store kc In the fleld nu$
and the content of ztemp
In the fleld pri$(kc) at
record no. zp(indx) of the
primary events file.

L kb =kb+ 1 |e——

Figure 5.8 a(continuation of fig. 5.8)

~ 5 =

can be calculated from a priori data for primary events. The a priori
probabilities are needed when calculating the conditional probabilities
of the possible causes of an alarm event in the fault tree display part

of the diagnosis package.

The probability calculation algorithm used is based on the top
down recursive approach as was proposed by Page and Perry [110] in
their development of TDPP . It is easily implemented with the use of
Microsoft Quickbasic because the programming language supports
recursion of subroutines, as required by the algorithm. However, TDPP
depends only on the probability values of primary events as input data
when evaluating the probability of the top event. This implies that if
there are s-independent secondary events as branches of the top
event, their probabilities are not evaluated during the recursion. Even
if their probabilities had already been calculated, they are not being
used. Thus every non primary event in the fault tree data file is
treated as the top event when determining its probability. If the
probability of a top event has been calculated, almost similar
recursions would be repeated when evaluating the probabilities of its
sccondary events. TDPP can be modified so as to minimise the number
of recursions or calls to the probability calculation subroutine whilst

evaluating the probability of the top event of a fault tree and all its

secondary events.

5.2.4.2 : The Improved Top Down Recursive Algorithm - TDRA

The improved top down recursive algorithm, TDRA, developed by

the author of this present work is a modification to Page and Perry's

= 47 =

algorithm [110]1 designed to eliminate redundant recursions when
s-independent secondary events are encountered. The algorithm uses
the same sets of events, S1 and S2 as used in TDPP, which contain the

addresses of events, as defined in chapter 4.

The main subroutine for calculating the probability of an event
is called PROB. A one dimensioned array called done is used as a flag
to indicate whether or not the probability of an event has been
calculated and saved in the fault tree data file. If PROB requires the
probability value of a non primary event, say event A, as part of its
calculation, the flag domne(A) is first checked whether it had been set.
If done(A) is set, PROB will obtain the probability value of A from the
data file. Otherwise, a recursion of PROB is used to obtain the
probability of A. The logical structure of TDRA is slightly different
from TDPP to reduce the number of recursions. The preliminary
simplification of getting the branches of the nodes in S1 or S2 until
there are no more OR or AND gate nodes in the respective set is not

done as the case for TDPP. TDRA is described below.

0.0 : Preliminary Inspection

The first stage in PROB is a preliminary inspection used only in
the case when S1 is not empty. It is to check whether S1 () S2 is
empty. If it is found that S1 () S2 is not empty, a Boolean
reduction is made by making S1 empty and leaving S2 intact.
Otherwise if S1 contains a single element, its content is added to
§2 and S1 itself is made empty. After this preliminary inspection,

there will be 2 cases, either S1 empty or not empty. The case that

-1 -

applies determines the choice of recursion within PROB to be

used.

1. : Evaluation for the case S1 is empty.

1.1 : Case when S2 is empty.
PROB returns to Its caller with a probability value of 1.
1.2 : Case when 82 contains one node.

Check if the node in S2, say m, is a primary event or the flag

done(m) has been set equal to 2.
Within case 1.2:
1.2.1 : Case when the probability data is available.

If either of the checks in 1.2 is positive, PROB returns to its

caller with the probability of m obtained from the fault tree

data file.

1.2.2 : Case when the probability data is not available.

Check the node m for the type of gate through which it has
its input nodes. If m is an AND or DIR node, place its
branches in S2 and make S1 empty. Otherwise, place the

branches of m in S1 and make S2 empty. The probability

> 172 -

1.3

evaluation of m is made by calling PROB which operates on
the new sets S1 and S2. After returning from this call, the
flag dome(m) is set equal to 2 to indicate that the probability
of the event represented by node m has been calculated and
saved in the data file. PROB theun returns to its caller with

the probability of node m.

: Case when S2 contains more than one node.

A variable ztemp is first set equal to |. Then determine if there is

an s-independent node in S2.

Within case 1.3 :

1.3.1 : Case when an s-independent node is found in 82 .

Let the s-independent node be m. Test to see if the

probability of node m has already been evaluated.

Within case 1.3.1 :

1.3.1.1 : Case when probability of node m has already

been evaluated.

Obtain the probability of node m from the fault tree

data file.

- 173 -

1.3.1.2 : Case when the probability of node m has not

been evaluated.

First, save the existing content of S2. Then examine the
type of gate through which node m has its input. If the
gate is an AND or a DIR, place the branches of node m
in S2 and make S1 empty. Otherwise, the branches of
node m are placed in S1 and make S2 empty. Evaluate the
probability of node m by calling PROB to operate on the
new S1 and S2. When PROB returns from this call, save
the probability of node m in the fault tree data file and

set done(m) to 2. Then restore the saved values of S2.

After evaluation of case 1.3.1.1 or 1.3.1.2, execute the

following identity:

ztemp = ztemp # P(m) .. 5.9 .

where P(m) is the probability of node m.

Then remove the node m from S2. If S2 is empty after
this operation, PROB then returns to its caller with the
probability value equal to ztemp. Otherwise, test to find
another s-independent node in S2. If there is another
s-independent node in the reduced 8§82, repeat the
procedure from step 1.3.1. However, if at some stage
that no s-independent node can be found, proceed to

step 1.3.2.

- 174 -

1.3.2 : Case when there is no s-independent event in S2.

Test to sce if there are any AND and DIR nodes in S2. If

there are such nodes, replace them by their branches.

Within case 1.3.2 :

1.3.2.1 : Case when replacements are made in 82 .

Remove any repetition of nodes in 82 and determine if

there is an s-indcpendent node in the new S2.

Within case 1.3.2.1 :

1.3.2.1.1 : Casec when an s-independent node is found

in the new S2.

Repeat the procedure from step 1.3.1.

1.3.2.1.2 : Case when there is no s-independent node

in 8§2.

Repeat the procedure from step 1.3.2.

1.3.2.2 : Case when no replacements are made in 82 .

Pick an OR gate node, say m, in S2. Place the branches of

nin S1. Create a new S2 containing all the nodes of the

= Ve

old 82 except for the node n. Evaluate the probability by
calling PROB to operate on the new S1 and S2. Let the
probability evaluated be P(m). Evaluate the identity in
equation 5.9 before returning to the caller of the

present PROB.

2. : Evaluation for the case S1 is not empty.

First initialise a set EVSET so that it is empty. Then determine if
there is a node m in 81 that is s-independent from the rest of the

nodes in S1 as well as from all the nodes in S2.

2.1 : Case when such a node is found in S1.

Add the node, say m, to the set EVSET. Then remove node m from

the set S1. If S1 contains | node after this operation, proceed to

step 2.3. Otherwise, evaluate step 2.1.1.

Within case 2.1 :

2.1.1 : Determine if there is an s-independent node in SI
which is also s-independent with all the nodes in S2. If such

a node is found, repeat step 2.1. Otherwise, proceed to step

2.2.

2.2 : Case when no s-independent node is found in S1.

Test to see if there are any OR and DIR nodes in S1. If there are

such nodes, replace them by their branches.

- 176 -

Within case 2.2 :

2.2.1 : Case when replacements are made in S1.

Remove any repetition of nodes in S1. Then determine if there
is an s-independent node in S1 which is also s-independent
with all the nodes in S2. If such a node is found, repeat the

procedures from step 2.1. Otherwise, repeat the procedures

from step 2.2.

2.2.2 : Case when no replacements are made in S1.

Save the existing contents of S1 and S2. Then proceed to step

2.3.

2.3 : Case when the procedures in step 2.1 and 2.2 are executed.

Within case 2.3:

2.3.1 : Case when EVSET is not empty.

(a) Call PROB operating on a new S1 containing all the nodes

from the saved S1 and a new S2 containing all the nodes from

the saved S2. The probability value returned from this call is

saved in the variable ztempl.

(b) Call PROB operating on a new S1 which is empty and a

new S2 containing all the nodes from the saved S2. The

177 -

probability value returned from this call is saved in the

variable ztemp2.

(c) Get a node, m from EVSET. The probability of the node m
is obtained using the procedure as outlined in step 1.3.1.1 or

1.3.1.2. Let the probability of m be P(m).
(d) The following identity is then evaluated :
ztempl = P(m) » [ztempz - ztempl] + ztempl 5.10

The node m is removed from the set EVSET. If EVSET is not
cmpty after this operation, the procedure from step (c) is
repeated. When EVSET is empty, PROB returns to its caller

with the probability value equal to ztempl.
2.3.2 : Case when EVSET is empty

(a) Pick a node m from the saved S1. Call PROB operating on
a new S1 which is empty and a new S2 containing all the
nodes from the saved 82 with additionally the node m. The

probability value obtained from this call is saved in a

variable ztempl.

(b) Call PROB operating on a new S1 containing all the
clements of the saved S1 except the node m and a new S2
which contains all the nodes of the saved S2. The probability

value obtained from this call is saved in the variable ztemp2.

- 178 -

(c) Call PROB operating on a new S1 containing all the
elements of the saved S1 except the node m and a new S2
which contains all the nodes of the saved S2 with
additionally the node m. The probability value obtained from

this call is saved in the variable ztemp3.

When all the above three probability values are obtained, the
probability value returned from the present call to PROB is

given as:

zpv = ztempl + ztemp2 - ztempd = = ... 5.11

5.2.4.3 : Implementation of TDRA

Microsoft Quickbasic does not support set operations as
required by TDPP which uses PASCAL as its programming language.
Instead, TDRA simulates the sets S1 and S2 which are passed as
parameters in TDPP by using 2 two-dimensional arrays sl and s2, each
of size 40 columns by 70 rows, as global variables. Each of 81 and s2
is used to store one set of data. In the first column of row Iindx of
either s1 or s2, i.e. sl(indx, 1) or s2(indx, 1), contains the number of
clements in the respective sets. The rest of the columns contain the
addresses of events obtained from the fault tree data file. The index
indx, is used to keep track on the depth of recursion and also to
maintain that data in s1 and s2 are not lost during the recursive calls
to PROB. The parameters that are passed whenever PROB is called are

indx and zp(indx). The probability value obtained by PROB after

- 179 -

completing its function is returned as zplindx).

Several subroutines are used by PROB to help in deciding which
case for recursion is to be applied. Subroutine INTERSEC is called to
check the status of 81 () 82. INTERSEC will rcturn a flag true equal to
1 if it found that 81 () 82 is not cmpty. Subroutine INDEPT is used to
search for an event in 82 which is s-independent from the other events
in 82. If the search is successful, INDEPT will return a flag disjt equal
to 1 and the address of the event in the variable indevt. Subroutine
INDEPTOR is used to search if there is an event in 81 which Iis
s-independent from the other events in 81 as well s-independent from
all the events in 82. If INDEPTOR finds such an event, it will return
the flag disjt equal to 1 and the address of the event in the variable
indevt. Both subroutines INDEPT and INDEPTOR use the primary
events file in their search for an s-independent event in 82 and sl

respectively.

The other subroutines called by PROB are REMREP and SIBLING.
Subroutine REMREP is used to remove repetitions in either set 8l or 82
after any replacement of the nodes by their branches. Thus REMREP
ensures that every element in sl or 82 appears only once in their
respective sets. Subroutine SIBLING is used to get the addresses of

the branches of a node from the fault tree data file which are to

replace the node in either sl or s2.

The way TDRA is implemented is shown as a flow chart of the

subroutine PROB in figure §.9.

= 180 -

(i;ubroutlne PROB (indx, zpv))

<I= s1(|ndx.1)=0?>N—°)

Yes

CALL INTERSEC
INTERSEC returns
true=11If s1(1s2 Is

not empty.

No

v
Yes
(Is true = 1 ? > s1llindx, 1) = O
Mo
Yes
Is s1lindx,1)=17 Transfer node
in s1to s2.
No s2(Indx.1) =
s2(indx, 1)+ 1
si{indx, 1) = O
- ¥
A
—{Ils silindx,1)=07?
,l,Yes
<ls B2(Indx.1)=0?>ﬁ) zpv = 1 RETURN

J,No

<ls s2(lndx.1)=1?>m)

No

v
©)

(see fig.
5.9c¢)

®

5.9a)

Access the fault
tree data file
at record no.
s2(indx, 2).

(see fig.

Get branches of
s2(indx-1,2) and
store In s1 at row
Indx by calling sub-
routine SIBLING.

Is giT;——”PRI“or Yes
done(s2(indx,2))
= 2 7
No
Indx = Indx + |
silindx,1) = O
s2(indx, 1) = O
No / Is g% = "DIR" Yes

or "AND" ?

CALL PROB(Indx,zp(indx)

Obtain the a priori
probabllity of node
s2(indx, 2).

zpv = CVS(pr$)

RETURN

Get branches of
s2(indx~1,2) and
store In s2 at row
Indx by calllng sub-
routine SIBLING.

*

iIndx = Indx - |

zpvy = zplindx+1)

Store zpv in the field pr$
at record no. s2(indx,2)
of the fault tree data flle.
done(s2(indx, 2) = 2

(RETURN)

Figure 5.9 : Flowchart of Subroutine PROB

181 -

®

Set ztemplindx) = 1 I

¢ {.I;) (from fig. 59b)

Determine If there Is an s-independent node In s2. |
CALL INDEPT (indx, disjt, Indevt)

INDEPT will return with disjt=1 If such a node Is
Is found. Address of the s-Independent nodc Is

stored in Indevt.

< Is disjt = 1 7?
No

(c

(see fig. 5.9b)

Yes

Access the faull lree
data flle at record no.
indevt.

Indx = Indx +1
s1lindx, 1) = O
s2(indx, 2) = O

donel(indeovt)=2 probablility.
zpr=CVS(pr$)
ztemplindx) =

EN°<"~‘- a®="PRI" Dr’>YES Ohtaln the a priori

|

- “DIR" \ N
Is 9? PIR 2 Obtain the branches of
or "AND" ? Indevl and store in sl

lYes

7templindx) ¢ zpr

at row Indx by calling

Obtaln the branches of
Indevt and store In s2
at row Indx by calling
subroutine SIBLING.

subroutine SIBLING.

A

CALL PROB(Indx,zp(indx))

Indx = Indx - 1

[

b4

Store zplindx+1) In the
fleld pr$ at record no.
kpos(indx,2) of the fault
tree data file.
done(kpos(indx,2)) = 2
ztempl(indx) =
ztemplindx) # zp(indx+1)

Is2(lndx.l]=52(lndx, -1 I(-—-——-—-

v

Yes
zpv = ztemp(indx) '(———<|5 s2lindx,1)=0?>

No

_‘j Remove the node stored In kpos(indx,2)
RETURN from s2 In row Indx.

Figure 5.9a (continuuation of fig. 5.9)

- 182

C

Find all DIR and AND gate
nodes Iin s2 and replace
by their branches.

Is there any Yes Remove repetition of
replacements ? nodes in s2.
CALL REMREPI(Indx)

No

Find an OR gate node In s2
at row Indx and place Its 2
branches in s1 at row Indx+1. @
Except for the OR gate node
found, transfer all the other (see fig. 5.9a)
nodes In row Indx of s2 to
row Indx+1 of s2. Row Indx+1
of s2 now has 1 less node
than the number of nodes In
row Indx of s2.

Indx = Indx + 1

CALL PROB(indx, zp(indx))
Indx = Indx - 1

zpv = zplindx +1)

‘ RETURN)

Figure 5.9 b (continuation of fig. 5.9a)

- 183 -

®)

Ievsnt(lndx, N=0 I

8

CALL INDEPTOR (Indx, disjt, Indevt)

INDEPTOR returns with disjt=1 If there Is an s-independent node
iIn s1 which Is s-Independent with all nodes In s2. The address of
such a node Is returned In Indevt.

v
Yes No
Is disjt =12 >-'—l
evset(indx,1)=evsetlindx, 1) +1 Find all DIR and OR gate

evset(indx,evset(indx,1)+1)=Indevt

Remove the node Indevt from si1.
s1lindx,1) = s1(indx, 1) - 1 by: thelr branches.

N ¥ L
o{is s1(indx,1)=1 ’?> No < Is there any >
r

Yes eplacements ?

nodes In s1 and replace

lYes

Remove repetition of
nodes In s,

CALL REMREP

Yes =
<I5 evsetlindx,1) — O ?>-—-—+Qz) (see fig. 5.9d)
,LND I
Transfer all the nodes In s1 and s2 from row Indx to row Indx+1.
indx = Indx + 1 : CALL PROB(Indx, zplindx)): Indx = indx - 1
ztemplilindx) = zp(indx+1)
v

si(indx+1,1) = O
Transfer all the values In 82 from row Indx to row Iindx+1.
Indx = Indx +1 : CALL PROB(indx, zp(indx)) : Indx = Indx - 1

ztemp2(indx) = zpl(indx+1)
¥
[andfigtindx)=2 |
=1
i 4
I Access the fault tree data file at record no. evsctlindx,andfig(indx)).
¥
Is donelevsetlindx,andflg(indx)))=2 Yes_ Obtain the a priori probability
or g = "PRI" ? of evset(indx,andfig(indx))
zpr = CVS(pr$)
l,No
Indx = Indx +1 : si1lindx,1) = O : s2(indx, 1) = O
¥
Is g$ = "DIR" \ No Store the address of the
or "AND" ? branches In row Indx of s1.
¥
y Yes CALL PROB(Indx,zp(indx))
Store the address of the indx = Indx - 1
branches In row Indx of s2. Store zplindx+1) In the fleld
T | pr$ at the record number
evsetlindx,andflg(indx)).
donelevsetlindx,andflglindx)))=2
zpr = zplindx+1)
Iztempﬂlndx) = zpr ® [ztemp2(indx) - ztempllindx)] + zlempﬂlndx)]
Fndflg(lndxJ=andf|g[lndx)+1]
- Y
No /

Yes
\ Is andflglindx) > evset{indx, 1)+17? Hzpv= z!ernp!(lndx)]

Figure 5.9c (continuation of figure 5.9b) RETURN

- 184 -

(B

orgatelindx) = silindx, 2)

Transfer all the nodes In 82 from row Indx to row
iIndx+1. Add the node orgatelindx) to the set of nodes
In s2 at row Indx+1, Set silindx+1, 1) = 0.

Indx = Indx + 1
CALL PROB(Indx, zp(indx))

Iindx = Indx - 1

ztemplindx) = zp(indx+1)

Except for the node in s1 at row Indx that Is equal to
orgatelindx), transfer all the other nodes from row
Indx to row Indx+1 of s1. Transfer all the nodes In s2
from row Indx to row Indx+1,

indx = Indx + 1

CALL PROBlIndx, zp(indx))
Indx = Indx - 1
ztemplindx) = ztempl(indx) 4+ zplindx+1)

Except for the node in sl at row Indx that Is equal to
orgatel(indx), transfer all the other nodes in sl from
row Indx to row Indx+!l. Transfer all the nodes In s2

from row Indx to row Indx+ 1. Add the noude orgatelindx)
to the set of nodes In s2 at row Indx+1.

indx = Indx + 1
CALL PROB(indx, zp(indx))
Indx = Indx - 1

zpv = ztemplindx) - zplindx+1)

‘ RETURN)

Figure 5.9d (continuation from fig. 5.9 c¢)

5.3 : The Fault Tree Display

5.3.1 : Introduction

The fault tree display forms the main part of the diagnosis
package. The usual form of a fault trce diagram is that the top event
is placed at the top with its causal events below it. This form of
display was implemented in work by Jones and Lihou l16] in their
computer package called CAFOS, by Ramadaan [106] who used the
PERQ workstation for graphical output of fault trees and by
Martin-Solis et al [41] in their development of an alarm analysis

system.

However, the top down tashion of displaying a fault tree on the
screen of a VDU has some limitations. Output of the fault tree
diagram on the screen is often in the text mode which can display 80
column by 25 rows of characters. Reserving 20 columns for each event
and at least 1 column for spaces between cach event, the maximum
number of events that can be displayed in a row is 3. If the branches
of the top event displayed are secondary events, the display of their

causes in the next row below may overlap each other, thus making the

output information unintelligible.

In view of the above limitations, a new method of displaying the
fault tree was developed so that as much information as possible can
be placed on the screen without the user becoming confused. This is
done by displaying the fault trce sideways, i.e. the alarm event in the

centre of the screen, the causes in a column to the left of the alarm

186 -

event and the consequences in a column to the right of the alarm

event.

A guide to select and examine the most likely cause of the alarm
is by using the posteriori probability of events calculated after the
alarm has been initiated. The theory of conditional probability for
determining the posteriori probability has already been described in
chapter 4. An algorithm to quickly calculate the posteriori probability
of every event below the alarm event was developed using the a priori
probability data already obtained in the data preparation part of the
package. The posteriori probabilities are calculated before displaying

the fault tree.

5.3.2 : Structure of the Fault Tree Display

The display of a fault trec omn the screen of the VDU is
structured to show the alarm cvent, its causes and consequences in
different columns. The screen of the VDU is divided into three
columns of equal width. The first column, known as the cause column,
is for displaying the causal events of the alarm. The middle column
known as the fault column is for the display of the alarm event. The
third column, known as the consequence column, is where the
consequences of the alarm are displayed. To avoid possible
overlapping of the displayed events, causes and consequences are
displayed one level at a time. Lines and a rectangle or a triangle to
represent an OR or AND gate respectively are drawn to show the

logical connections between events.

187 -

The area for drawing the fault tree is from row 2 to row 20 of
the screen. Rows 21 to 25 are reserved for the output of messages. For
each event to be displayed, three rows are assigned to show the event
name and the a priori and posteriori probabilities above and below the
event name respectively. Including empty rows to separate each event,
the maximum number of events that can be displayed in each of the
three columns is five arranged vertically. Thus, if the number of
causes that are input to one gate is greater than five, only five events
are displayed in the cause column at a time with the others off the
screen. By pressing certain programmed function keys on the
keyboard, the user can scroll the cause column up or down to show
the other events that cannot fit onto the screen. The fault and
consequence columns can also be individually scrolled up or down to
show other events if there are more than five events to be displayed in
cach column. Table 5.2 show what function keys are programmed to do

such tasks.

On the display, there is a cursor represented by the first
blinking character of the event name. Jf a cause of the alarm is a
secondary event, the user can display its branches by directing the
cursor to that event and pressing one of the programmed functions
keys on the keyboard, i.e. the F9 key. The causes of the secondary
event are displayed in the cause column and the secondary event itself
is placed below the bottom most event displayed in the fault column.
In this way, the user can trace out any primary cause of the alarm by

tracing the line of events from the alarm event to the primary causes.

Any further symptoms of a consequence in the consequence

column can also be displayed. This is done by directing the cursor to

188

the consequent event under consideration and pressing the F9 key.
This time the consequent event is placed above the top most event
displayed in the fault column and its symptoms are displayed in the
consequence column. By this method, the user can look into the chain

of events that would happen if the alarm is not remedied.

The display of probability values of every event in the fault tree
can be switched on or off using certain function keys which are
programmed as toggle switches. The a priori and posteriori
probabilities are displayed below and above the event names
respectively. Table 5.2 shows which function keys are programmed for
such tasks. A help key combination is available which displays table

5.2 on the screen.

The name of each event is in a coded form which the user may
not comprehend. By pressing the LAlternate] and [E] keys together,
programed as a toggle switch, the explanation of the coded event at
the cursor can be switched on. The meaning of the code is displayed
on row 22 of the screen. By directing the cursor to other events using
the cursor directional keys on the numeric key pad of the keyboard,
the meaning of the coded event at the cursor is automatically
displayed. Pressing the [Alternatel and LE] keys together again will

switch off the explanation mode.

If the user wants to look into the causes and consequences of
any other event apart from the alarm event, pressing the [Alternatel
and LA] keys together will ask the user to input the name of the event

via the keyboard. The event name is then searched in the fault tree

= ‘189 -

Table 5.2 : Keys that are programed to do certain functions

Key FFunction

F1 A toggle to switch on or off the display of a priori
probabilities.

F2 A toggle to switch on or off the display of posteriori
probabilities.

F3 To scroll cause column upwards by one ecvent.

I'4 To scroll cause column downwards by one event.

F5 To scroll alarm column upwards by one event.

I'6 To scroll alarm column downwards by one event.

F7 To scroll consequence column upwards by one event.

I8 To scroll consequence column downwards by one event.

I'9 To display the causes or consequences of the event at
the cursor.

1. If the cursor is at an event in the cause column, its
name is placed below the bottom most event in the
alarm column and its causes are displayed in the cause
column.

2. If the cursor is at an event in the consequence column,
its name is placed above the top most event in the
alarm column and its symptoms are displayed in the
consequence column.

3. If the cursor is at an event below the alarm event in
the alarm column, all the events below that event
disappears and its causes are displayed in the
cause column.

4. If the cursor is at an event above the alarm event in
the alarm column, all the events above that event
disappears and its symptoms are displayed in the
consequence column.

F10 To display the original fault tree initiated by the alarm.

Alt-A | Ask for the input via the keyboard an event name which
is to be browsed for its causes and consequences.

Alt-E A toggle to switch on or off display of the meaning of

the coded event under the cursor.

190 -

data file. Then the causes and consequences for that event are
displayed in their appropriate column and the input event is placed in
the fault column. Pressing the [I'I0 function key will display the

original fault and consequence tree initiated by the alarm event.

The fault tree diplay makes full use of the colours available on
the VDU to describe the causal and consequent events. The name of
events are written in coloured boxes. The colour of a box is known as
the background colour and the colour of the letterings of the event
name is known as the foreground colour. For the alarm event, the
background colour is red and the foreground is yellow. This gives a
striking contrast for the user to take notice of the prevailing
condition. The colour attributes given to other events in the fault tree

is described in table 5.3.

5.3.3 : The Fault Tree Display Program

5.3.3.1 : The Main Program - DISFAULT

The main program for the fault tree display is called DISFAULT.
Input to the program is the name of the alarm event. DISFAULT then
scarches for the event name in the fault tree data file using the
subroutine FIND.EV. When the name of the alarm event has been
found, FIND.BV returns to DISFAULT with the address of the event,
the number of causal branches, the number of consequences, the a
priori probability and the posteriori probability stored in the variables

top, tcbr, tgbr, zd and ze respectively. At this point, the posteriori

= 191 =

Table 5.3 : Colour Attributes of Events in the Fault Tree Display

Description of event Background | Foreground

Primary event in cause column with

Green White
only one symptom.
Primary event in cause column with

Green Black
more than one symptom.
Secondary event in cause column with

Cyan White
only one symptom.
Secondary event in cause column with

Cyan Black
more than one symptom
ivent in consequence column with no
other symptoms and caused by the only | Green White
event in the alarm column
Event in consequence column with no
other symptoms that may be caused by

Green Black
other events apart from the one in the
alarm column.
Event in consequence column with
other symptoms and caused by the only | Cyan White
event in the alarm column
Event in consequence column with
other symptoms that may be caused by

Cyan Black
other events apart from the one in the
alarm column

= I =

probability has not been calculated yet. Thus, ze contains the value 0.

DISFAULT then calls the subroutine FORMI to clear the screen
of the VDU and then divide the screen into three columns, each of
cqual width of 26 characters. Between each column, a space Iis
reserved for printing a vertical line to separate the columns. This
takes up the remaining two spaces left after dividing the screen. The

headings for each column is printed on the first row of the screen.

DISFAULT then calls the subroutine DISPLAY which performs
the actual task of diplaying the alarm event, the causes and
consequences. After calling DISPLAY, the position of the first
character of the alarm event is calculated in terms of the screen
memory location. Each position on the screen where a character can be
printed is assigned two screen memory locations. The first location is
to store the ASCIl code of the character printed and the second
location is to store the code for the attribute of the character. The
code for the attribute of a character is a unique number that describes
in what foreground and background colour the character is to be
printed on the screen. Thus, for a single row on the screen where
cighty characters can be printed, there are 160 memory locations to
store the ASCII codes and attribute codes. The total amount of screen
memory locations for a page of the screen that can fill 80x25
characters is 4000. The screen memory starts at relative address 0 to
represent the top left hand corner of the screen. Lets suppose that
the first character of the alarm event name is at column voum and row
hnum of the screen. The relative address where the attribute of the

character is stored is given by:

- 193 -

apos = 160 * (hnum - 1) + 2 ¥ voum -1 ..., 5.5

The relative address where the ASCII code of the character is stored

is given by:

cpos =apos -t 5.6

Subroutines PIXATR and CURSOR are then called consecutively.
The function of PIXATR is to save the code for the attribute at
relative memory location apos in a variable called atr. The function of
CURSOR is to set the character at relative memory location cpos
blinking by changing the attribute stored at memory location apos.
This is done by adding 128 to the code at apos and storing the result
at apos. The blinking character represents the cursor in the display.
Whenever the cursor is directed to other events, the attribute of the
character where the cursor is originally located is first reset to its
original code stored in atr. The code of attribute of the first character
of the event to which the cursor has been directed is then saved in atr

and then that character is set blinking by changing its attribute.

After setting the cursor at the alarm event, the function keys
and two other key stroke combinations which have been programed to
do certain tasks are set as interrupt keys. Pressing any of the
interrupt keys will direct the program to execute a routine particular
to the function required by the key stroke. These routines will be

described later in the chapter.

194 -

After this stage, the program is set to go around in a loop,
awaiting the [End] on the numeric key pad to be pressed to end the

execution of DISFAULT.

5.3.3.2 : Description of Subroutine DISPLAY
Subroutine DISPLAY calls several subroutines at different

stages, each with its own function. There are 10 stages of subroutine

calls and cach are described below.

|. Subroutine FORM2

Subroutine FORM2 clcars the fault tree drawing area from rows
2 to 20 of the screen and then draw two vertical lines to separate
between the cause column and the fault column; and between the fault

column and the consequence column.

2. Subroutine IN.FAULT

The function of subroutine IN.FAULT is to determine the row
position for printing the top most event to be displayed in the fault
column. If only the alarm event is to be displayed, then its printing
position is at row 11 of the screen. If there is more than one event to
be shown, then the printing position of the top most event to be
displayed is calculated so that the display of the events fits nicely in
the fault column. The calculated row position is stored in alimn and
falin which are used by other subroutines when the actual output to

the screen is being done.

3. Subroutine CONPROB

The function of CONPROB is to calculate the posteriori
probabilities of all events iIn the fault tree. Before subroutine
CONPROB is called, DISPLAY checks if a flag called doneflg has been
set to 1. The flag doneflg was first set to O when the main program
DISFAULT was executed. This tells DISPLAY that calculation of the
posteriori probabilities has not been done yet. When DISPLAY
acknowledges that doneflg is not set to 1 , subroutine CONPROB is
called. After CONPROB returns to DISPLAY, doneflg is set to |1 so
that in future calls to DISPLAY, subroutine CONPROB will not be
called. A detailed description of the algorithm in CONPROB is given in

section 5.4,

4. Subroutine GET.CAUSE

The function of subroutine GET.CAUSE is to obtain from the
fault tree data file all the relevant information that will be displayed
in the cause column. First, GET.CAUSE determines the type of gate of
the event in the fault column whose causes are to be displayed in the
cause column. An ASCII code for the symbol that represents the gate
is stored in the variable sym$. The symbols to represent an OR, an
AND gate and a DIR gate are "N “P" and "—" respectively. Then the
names of the causal events are obtained and stored in a one
dimensional string array called ca$. Each of the n events stored in
ca$, where n is the number of causal events, are inputs to the gate
stored in sym$. The type of each event is determined as either a

primary or secondary event, and whether it has one or several

=i 10 -~

consequences. This is done to set the display attribute for each event.
lor the ith event, the code for background colour is stored in bc(i)
and the code for the foreground colour is stored in fc(l). The
background and foreground colours that describe the causal event are
shown in table 5.3. The a priori and posteriori probabilities for that
causal event are also obtained and stored in zc(l) and zcp(i)

respectively.

5. Subroutine GET.CONSEQ

The function of subroutine GET.CONSEQ is to obtain from the
fault tree data file all the relevant information that will be displayed
in the consequence column. The event names of the consequences of
the event in the fault column are obtained and stored in a one
dimensional string array called qa$. The description of each of m
consequent events stored in qa$, where m is the number of
consequences of the event in the fault column, is noted, i.e. whether it
has other symptoms or not, and whether it is only caused by the event
in the fault column or by other events apart from the event in the
fault column. This is done to set the display attribute that describes
cach. For the jth event, the code of the background colour is stored in
bq(j)) and the code for the foreground colour is stored in fq(j). The a

priori and posteriori probabilities for that event are also obtained and

stored in zq(}) and zgp(jJ) respectively.

6. Subroutine IN.CAUSE

The function of subroutine IN.CAUSE Iis to calculate the

top-most row position for printing the causal event stored in ca$(1)

197 -

in the cause column. If there is only one causal event to be shown,
then the position it will be displayed is at row 11 of the screen. If
there are more than five events stored in array ca$, then the position
at which the event stored in ca$(1) will be displayed at row 3 of the
screen. If the number of causal events to be shown is less than 5 but
more than 1, then IN.CAUSE calculates the row position to display the
event stored in ca$(1) so that the display of all the causal events fits
centrally in the cause column. The calculated row position is stored in
clin and fclin which are used by other subroutines when the actual

output to the screen is being done.

7. Subroutine IN.CONSEQ

The function of subroutine IN.CONSEQ is to calculate the
top- most row position for printing the consequent event stored in
qa$(1) in the consequence column. If there is only one consequent
event to be shown, then the position it will be displayed is at row 11
of the screen. If there are more than five events stored in array qa$,
then the position at which the event stored inqa$(1) will be displayed
at row 3 of the screen. If the number of consequences to be shown is
less than 5 but more than 1, then IN.CONSEQ calculates the row
position to display the event stored in qa$(1) so that the display of
all the consequent events fits centrally in the consequence column.
The calculated row position is stored in qlin and fqlin which are used

by other subroutines when the actual output to the screen is being

done.

- 198 -~

8. Subroutine ALARM

The function of subroutine ALARM is to display in the fault
column the alarm event and also other events that have been pushed
trom the cause and the consequence columns. The position at which
the top most event in the fault column is printed is at row alin of the
screen. If there are any other events below the top most event to be
displayed in the fault column, then for each event to be printed, alin

is incremented by 3 and that event is printed at row alin of the screen.

9. Subroutine CAUSES

Subroutine CAUSES displays the causal events that have been
stored in array ca$. The event stored in ca$(1) is printed at row clin.
For each other event stored in ca$(1), i=2 to n, clin is: incremented by
3 before that event is printed at row clin in the cause column. Then
the content of sym$ is printed at row 11 and column 26 of the screen

to show the type of gate the causes are input to the event in the

fault column.

10. Subroutine QUENCE

Subroutine QUENCE displays the consequence events that have
been stored in the array qa$. The event stored in qa$(1) is printed at
row qlin. For cach other event stored in qa$(j), j=2 to m, qlin is
incremated by 3 before that event is printed at row qlin in the

consequence column.

< 199 =

5.3.3.3 : Interrupt Service Rountines

The function keys, cursor direction keys and certain key
combinations are programmed as interrupts to do certain tasks on the
fault tree display. When any of the keys are pressed, a small
subprogram called an interrupt service routine, particular to the task

required, is executed. Whilst the interrupt is being serviced, no other
interrupts can be received. After execution of an interrupt service
routine, control is returned to the program prior to the interrupt. The

names of each interrupt service routine is described below.

I. TOGGLE1

TOGGLE1 is exccuted when the F1 key is pressed. First it sets
the flag aprl to O if previously it is | or sets it to 1 if previously it is
0. Then it calls subroutine APRIORI. If APRIORI is called with apri=1,
then the subroutine prints out on the screen the a priori probabilities
above each event displayed. If APRIORI is called with apri=0, then the

subroutine erases all the a priori probabilities that have been printed

on the screen.

2. TOGGLE2

TOGGLE2 is executed when the F2 key Is pressed. First it sets
the flag post to 0 if previously it is | or sets it to 1 if previously it is
0. Then it calls subroutine POSTER. If POSTER is called with post=1,
then the subroutine prints out on the screen the posteriori

probabilities below each event displayed. If POSTER is called with

post=0, then the subroutine erases all the posteriori probabilities that

have been printed on the screen.

3. CAUSEUP

CAUSEUP is executed when the P3 key is pressed. CAUSEUP
calls the subroutine CAUCOLUP. The function of CAUCOLUP is to
scroll up the cause column by one event so that any event that is off
the screen below the bottom-most event of the display in the cause
column can be shown on the screen. When this is done, every event
displayed in the cause column also would have moved up, resulting in
the previous top-most event displayed move off the screen. If there is
no event that is off the screen below the bottom-most event displayed
or originally there is only five or less causal events displayed in the
cause column, CAUCOLUP will output an audible signal telling the

user that no scrolling is done.

4. CAUSEDN

CAUSEDN is executed when the I'4 key is pressed. CAUSEDN
calls the subroutine CAUCOLDN. The function of CAUCOLDN is to
scroll down the cause column by one event so that any event that is
off the screen above the top-most event of the display in the cause
column can be shown on the screen. When this is done, every event
displayed in the cause column also would have moved down, resulting
in the previous bottom-most event displayed move off the screen. If
there is no event that is off the screen above the top-most event or

originally there is only five or less causal events displayed in the

- 201 -

cause column, CAUCOLDN will output an audible signal telling the

user that no scrolling is done.

5. FAULTUP

FAULTUP is ecxecuted when the F5 key is pressed. FAULTUP
calls the subroutine FAUCOLUP which is similar in function with
subroutine CAUCOLUP except that it acts on events in the fault

column.

6. FAULTDN

FAULTDN is executed when the F6 key is pressed. FAULTDN
calls the subroutine FAUCOLUP which is similar in function with
subroutine CAUCOLDN except that it acts on events in the fault

column.

7. CONSEQUP

CONSEQUP is executed when the F7 key is pressed. CONSEQUP
calls the subroutine QONCOLUP which is similar in function with
subroutine CAUCOLUP except that it acts on events in the

consequence column.

8. CONSEQDN

CONSEQDN is exccuted when the I'6 key is pressed. CONSEQDN

calls the subroutine QONCOLDN which is similar in function with

202 -

subroutine CAUCOLDN except that it acts on events in the

consequence column.

9. OTHERS

OTHERS is executed when the F9 key is pressed. The purpose of
pressing the F9 key is to display the causes or consequences of the
event at the cursor. If the cursor is at the alarm event and there is no
other event displayed below it in the fault column, then an audible
signal is output telling the user that nothing is being done. For other
cursor positions, first, the event name at the cursor is read from the
screen and stored in the string variable evt$. This is done by calling
the subroutine EVINAM. Then subroutine FIND.EV is called to obtain
from the fault tree data file the address of the event stored in evt$.
Then the relevant information for display of the causes or
consequences in their respective column is obtained. The information
obtained are the event names, display attributes, a priori probabilities

and posteriori probabilities.

If the cursor is at an event in the cause column or at an event
below the alarm event in the fault column, then the information about
the causes of that event is obtained by calling subroutine GET.CAUSE.
Then subroutine DISPLAY1 is called which clecars the cause column of
any display and output the causal information obtained. If the cursor
is at an event in the the cause column, that event is displayed below
the bottom-most event in the fault column and its causes are
displayed in the cause column. If however, the cursor is at an event
below the alarm event in the fault column, all the events displayed

below it are removed and its causes are displayed in the cause column.

= ‘203 -

If the cursor is at an event in the consequence column or at an
event above the alarm event in the fault column, then the information
about the consequences of that event is obtained by calling subroutine
GET.CONSEQ. Then subroutine DISPLAY2 is called which clears the
consequence column of any display and output the consequence
information obtained. If the cursor is at an event in the consequence
column, that event is displayed above the top-most event in the fault
column and its consequences are displayed in the consequence column.
If however, the cursor is at an ecvent above the alarm event in the
fault column, all the events displaved above it are removed and its

consequences are displayed in the consequence column.

10. ORIGINAL

ORIGINAL is executed when the F10 key is pressed. ORIGINAL
will erase the present display and output the initial fault and
consequence tree where the only event displayed in the alarm column
is the alarm event, and the cause and consequence columns show the

immediate causes and consequences of the alarm event respectively.

11. CURLEFT

CURLEPRT is executed when the left cursor direction key on the
numeric key pad is pressed. The effect when CURLEFT is executed is
that the cursor represented by the blinking character of an event name
is moved to an event to the left of the first event. If the cursor is
already on an event in the cause column, pressing of the left cursor
direction key will result in an output of an audible signal telling the

user that the cursor cannot move any further left.

- 204 -

12. CURRIGHT

CURRIGHT is executed when the right cursor direction key on
the numeric key pad is pressed. The effect when CURRIGHT is
executed is that the cursor represented by the blinking character of an
event name is moved to an event to the right of the first event. If the
cursor is already on an event in the conscquence column, pressing of
the right cursor direction key will result in an output of an audible

signal telling the user that the cursor cannot move any further right.

13. CURDOWN

CURDOWN is executed when the down cursor direction key on
the numeric key pad is pressed. The effect when CURDOWN is
executed is that the cursor represented by the blinking character of an
event name is moved to an event below the first event. If the cursor is
already on the bottom-most event in any column, pressing of the down
cursor direction key will result in an output of an audible signal

telling the user that the cursor cannot move any further down.

14. CURUP

CURUP is executed when the up cursor direction key on the
numeric key pad is pressed. The effect when CURUP is executed is that
the cursor represented by the blinking character of an event name is
moved to an event above the first event. If the cursor is already on
the top-most event in any column, pressing of the up cursor direction
key will result in an output of an audible signal telling the user that

the cursor cannot move any further up.

- 205 -

15. ANOTHER

ANOTHER is executed when the kcys Alternate and A are
pressed together. When thesc keys arc pressed, a message ouput on
rows 22 to 24 will ask the user to input the name of an event where
its causes and consequences are to be browsed. The name of the event
ls searched from the fault trce data file. When the event has been
found, subroutine DISPLAY is called to output the fault and
consequence tree for that event. When control is returned to the
program prior to this interrupt, the present display is maintained and
the user can use any of the programmed key combinations to look into
other parts of the fault and consequence trce. Pressing of the F10 key
will display again the initial fault and consequence tree initiated by

the alarm event.

An error message will be printed if the event input by the user

is not found in the fault tree data file. ANOTHER will ask the user to

input again the correct event name that is to be browsed. By inputting

the number 0, nothing is being done and control is returned back to

the program prior to this interrupt.

16. EXPCODE

EXPCODE is executed when the keys Alternate and E are pressed
together. The effect of this interrupt is to switch on or off the
explanation of the event names under the cursor. The meaning of the
coded event is displayed in rows 22 to 24 of the screen. First,

EXPCODE sets the flag meant to 1 if previously it is 0 or sets it to 0

- 200

if previously it is 1. Then subroutine EXPLAIN is called. If EXPLAIN is
called with meant equal to 1, then the meaning of the event under the
cursor is displayed and control is returned to the program prior to the
interrupt. If the cursor is moved to other event, the meaning of that
event is displayed. The explanation mode is switched off by pressing
Alternate and E keys together, where this time the flag meant is set
to 0. When EXPLAIN is called with mecant equal to 0, the explanation
that has been displayed is erased and when control is returned to the
program prior to the second interrupt, nothing is displayed in rows 22

to 24.

17. HELP

HELP is executed when the keys Alternate and H are pressed
together. The effect of this interrupt is to display a help screen that
tells the user which key to press for the required task to be done on
the fault tree display. Pressing the Esc key will display again the fault

trec on the screen prior to the interupt.

5.4 : Posteriori Probability Calculation

5.4.1 : Introduction

The method used in evaluating the posteriori probabilitiy of each
causal and consequent event of an alarm event is based on Bayes'
Theorem on conditional probability, which has been discussed in

chapter 4. The program for calculating the conditional probabilities is

207 -

written as a subroutine called CONPROB. It is called from DISFAULT,
the fault tree display program, after input of the alarm event. A brief

description of the algorithm in CONPROB is given in this section.

During the evaluation of the posteriori probabilities by
CONPROB, there may be cases where it Is required to evaluate the

probability of the intersection of two events. This is acheived by using

subroutine PPROB which is a simplified version of subroutine PROB,
used in evaluating the a priori probabilities of events in a fault tree.
Subroutine PROB has been described earlier in this chapter. A brief

description of PPROB is also given in this section.

5.4.2 : Description of Subroutine CONPROB

Subroutine CONPROB evaluates the posteriori probabilities of an
cvent and all its consequences before moving on to the next event
unevaluated event. A one dimensional array called domne is used as a
flag to indicate whether or not an event and all its consequences have
been evaluated. For example, suppose that m is the address of an
event in the fault tree data file and the posteriori probabilities of the
cvent and all its consequences have been evaluated. For such a case,
done(m) is set equal to |. This takes care of repeated events in the
fault tree, which may be encountered more than once during the

posteriori probability evaluation process.

A two dimensional array called evset is used to contain the

addresses of either the causes or the consequences of an event,

- 208 -

depending on the stage of the posteriori probability evaluation
process. The address of the alarm event is already stored in the global

variable top when CONPROB is called.

In subroutine CONPROB, first, the content of top is stored in
gtop and a variable cq is set equal to 0. The variable cq will either
contain O or 1, depending on whether the posteriori probabilities of
the consequences of the alarm event or the consequences of a causal
cvent that are to be evaluated. Then the posteriori probability of every
cvent that has connections with the alarm event in the fault tree is

cvaluated according to the following steps:

). Store the value 1 is in the conditional probability field, cpr$,

at record number gtop in the fault tree data file.

2. Test if the number of consequences at record number gtop is
greater than cq. If the result of the test is false, then proceed
directly to step 3. Otherwise call subroutine REPROB3 to
evaluate the-posteriori probabilities of the consequences of

gtop. On returning from REPROB3, the flag dome(gtop) is set

equal to 1.

3. Test if gtop has an input via a DIR gate. If the result of the
test is false, then proceed directly to step 4. Otherwise store
the address of the causal event in gtop and set cq equal to 1.

Then repeat the procedures from step 1.

- 209 -

4. Obtain the addresses of the causal cvents of gtop from the
fault tree data file and store in row | of the array evset. The
number of causal events storcd is contained in evset(l, 1). From
the fault tree data file at record number gtop, obtain the
contents of the gate type field, g$, and store in the string
variable gt$. gt$ now contains the type of gate through which
gtop has its inputs. 1f the content of evset(l, 1) is 0, it implies
that gtop itself is a primary event. For this case, proceed
directly to step 6 below. Otherwise, call subroutine REPROBI1 to
evaluate the posteriori probabilities of the causal events
connected to gtop via the gate stored in gt$. The chain of
events that propagate to gtop via o scrics of DIR gates and
gates similar to that stored in gt$ are also evaluated by
REPROBI1. Within subroutine REPROBI, the posteriori probability
of the consequences of every causal event are also evaluated by
using subroutine REPROB3. On rcturning from REPROBI, all the

nodes in row 1 of evset will have gate types that are different

from that contained in gt$.

5. For each node in row | of evset that has input events, replace
it by the address of one of the input events and store the rest
of the addresses of the input events in other places of evest at
the same row. This is done by calling the subroutine SIBLINGS.
If there are no replacements made, it indicates that all the
nodes in row | of evset represent primary events. For this case,
proceed directly to step 6. Otherwise, call subroutine REMREP
to remove any repetition of nodes in evset. Then call subroutine

REPROB2 to evaluate the posteriori probabilities of those nodes

- 210 -

in row | of evset which has not becen evaluated. The posteriori
probabilities of the consequences of these nodes are also

evaluated by calling subroutine REPROB3 within REPROB2.

6. Evaluate the posteriori probabilitiecs of every event in the
fault tree data file which do not have any connection with the
occured event. This is done by storing the a priori probability in
the conditional probability field, cpr$, at the address of the

event in the fault tree data file.

The flowchart of subroutine CONPROB is shown in figure 5.10.

3.4.3 : Description of Subroutines called by CONPROB

In subroutine REPROBI, the evaluation of the posteriori
probability of every node in row | of evset depends on the content of
gt$ passed from its caller. If gt$ contains the string "AND", then the
posteriori probability of every node in row | of evset is 1. Otherwise,
the posteriori proabability of each node in row 1 of evset is equal to

its a priori probability divided by the a priori probability of the alarm

event,

After evaluating all the nodes in row | of evset, any node that
has inputs via the same gate as gt$ is replaced by the addresses of
the branches in evset. The process of evaluating the posteriori
probabilities of nodes in evset which have not yet been evaluated is

rcpeated until every node in evset does not has inputs via the same

21 -

(Subrouline COHPROB)

v

glop = top ! cq = O

topls the address of the alarm event.
T

'.-[Access the fault tree data flle at record no. gtop

v

Store the a priori probabllity of gtop in zalrm. Store the value
1in the fleld cpr$ at record no. gtop.

]
No
< Is number of consequances » cq ? /
.LYes
ctop = gtop : zcal = 1 : evset(2, 1) = O

Evaluate the posterior/ probabllities of consequences of gtop.
CALL REPROB3(ctop, zcal)
donelgtop) = 1

v
I Access the fault tree data file at record no. gtop }i
t CVI((1 Yes 2
gtop= caub e 2% 1s g% = "DIR" ? 3
cqg = 1
lNo

Obtaln the addresses of the branches of gltop and store in
row 1 of evset. evset(l,]) contalns the value for the number
of branches stored In evset. Store content of g% In gt$.

v
\ Yes
<|s evselt(1, 1) = O? /) -
,‘,Nu

Evaluate the posteriori probability of cach node in row 1 of
evset which Is an Input to the gate stored In gt$%.
CALL REPROB1(gt$)

¥
l Replace all nodes In row | of evsct by their branches.—l
v
No /
\IS there nny replacements ?
_ lYes

Rermove repetition of nodes In row 1 of evset.

CALL REMREP(1)

¥
Evaluate the posteriori probabllity of each node In row 1 of
evset which Is an Input to a gate different from the gate

stored In gt$.
CALL REPROB2

Y“‘f\ls done(ka)=17

.}No
Obtaln the a priori probability of the event at address ka and
store It In the field cpr$ at the same address. Set done(ka)=1

v
‘! ka = ka + 1 J
¥
<I5 ka > total no. of records In the fault tree data file ?>——

Yoo
RETURN

Figure 5.10: Flowchart of Subroutine CONPROB

= S =

pate as gt$. The flowchart for subroutine REPROBI is shown in figure

3.11.

Subroutine REPROB2 ecvaluates the posteriori probabilities of
nodes in row 1 of evset which are either inputs via a gate different
from that contained in gt$ or inputs to the alarm event via
combinations of AND and OR gates. For each unevaluated node in row
1 of evset, first, the probability of the intersection between the alarm
event and the node is evaluated by calling subroutine PPROB.
Subroutine PPROB operates on 2 two dimensional arrays sl which is
empty and 82 containing the address of the node and the address of
the alarm event. The posteriori probability of the node is determined
Ly dividing the result obtained from the call to PPROB by the a priori

probability of the alarm event.

When all the nodes in evset hive becn evaluated, any node that
has inputs via whatever gate type is replaced by the addresses of its
branches. The process of evaluating the posteriori probabilities for
the new nodes in evset is repeated until all the nodes in row 1 of

evset represent primary events. The flowchart for subroutine REPROB2

is shown in figure 5.12.

Subroutine REPROB3 is called by CONPROB, REPROB! and
REPROB2 for the purpose of evaluating the posteriori probabilities of
the consequences of an event. REPROB3 is called after the posteriori
of an event has been evaluated. The parameters passed to REPROB3
arc ctop and zcal which contain the address and the posteriori

probability of the event respectively. The function of REPROB3 is to

- 213 -

(Subroutine REPROB 1(gt$))

"

Ika

iy

4

S

Ye

< Is donelevset(1, La))-17? >

4

Ho

Access the fault tre«

at record number evs

data flle at
et(1, ka).

4

Yer: N
_.__f."_< Is gt$="AND" ,_,>°—

y

4

Store the number
fleld cpr$ at
evset(l, ka).

1 in the
record number

ropr rpv/zalrm

zpv Is the a priori probabl-
Ity of the node evset(1,ka)
Store zcpr in the field cpr$
at record no. evset(!l, ka).

T

!

No
Is number of consequences » 1 7?

Y

1

S

ctop = evset(1l,
evset(2, 1) 0

ka) : =z

consequences of evooet

Evaluate the posteriori probabllities of

CALL REPROB3(ctop, zcal)

cal = CVS(cpr$)

(1, ka),

)

‘{_donelevset(1, ka))

1

= » ka = ka + |
i
< Is ka < evset(1,1)+17? >Y"’5
No
y
Replace all nodes in row 1 of evsel Lhal have

Inputs via the gate gt$ by

thelr branches.

r

Is there any
replacements?

Remove repetition
1 of nodes In evset.

CALL REMREP(1)

Yes

No

(RETURN |

Figure §5.11: Flowchart of

Subroutine REPROBI

214

(Subroulino REPROB2U

[kaLE]

Yes =

{ Is donelevset(l, ka)) =17 >
No

Indx =1 : silindx, 1) = O : s2(indx, 1) =2
s2(Indx, 2) = top : s2(indx, 3) = evsell(l, ka)
CALL PPROB(Indx, zpv)

zcpr = zpv/zalrm
Store zcpr in the cpr$ field at record number
evset(l, ka) of the fault tree data flle,

Access the fault tree data flle at
at record number eveet(1, ka).

No
Is number of concequences > | ?

Woeaes

ctop = evset(1l, ka) : zeal = CVS(epr$)
evset(2, 1) = 0

Evaluate the postericr | probabllities of
consequences of evsel(l, ka).

CALL REPROB3(ctop, zcal, cq)

l

;{ done(ovset(l, ka)) = 1 |

\ Yes

< Is ka < evset(1, 1) + 17
No

/

Replace all nodes In evsel by thelr branches.

Is there any Remove repetition

replacements? of nodes In evselt.
CALL REMREPI(1)

4

RETURN

Figure §.12: Flowchart of Subroutine REPROB2

- 215 -

obtain the addresses of the consequences of ctop and store them in
row 2 of the array evset. Then subroutine REPROB4 is called to
calculate the posteriori probability of every node in row 2 of evset.
The parameters passed to REPROB4 arc the row number of evset where
the nodes to be evaluated are stored, and zcal. At this stage, the row
number passed to REPROB4 is 2. On returning from REPROB4, the flag

done(ctop) is set equal to |.

Subroutine REPROB3 then evaluates the posteriori probabilities
of the consequences of the nodes in row 2 of evset. In fact, when
REPROB3 returns to its caller, every consequent event which has ctop
as an input, either directly via an AND, OR or a DIR gate; or through a
chain of events via combinations of the three gate types, would have
been evaluated. The way REPROB3 achieve this is shown in a flowchart

in figure 5.13.

Subroutine REPROB4 does the actual determination of the
posteriori probability of consequent cvents. The method of
determining the posteriori probability of a consequent event depends
on its gate type obtained from the fault trce data file. If the gate type
is a DIR, or an OR with zcal equal to 1, then its posteriori probability
is set equal to zcal. Otherwise, subroutine PPROB is called to
calculate the probability of the intersection between the alarm event
and the consequent event. The result obtained is then divided by the a
priori probability of the alarm event to give the posteriori probability

of the consequent event. The flowchart for subroutine REPROB4 is

shown in figure 5.14.

- 216

(Subroutine REPROB3 (ctop, zcal))
v

CALL PARENT(2, ctop)

PARENT obtains the addresses of the consequences
of ctop and store them In row 2 of evset. For each
Ith event, Its address Is stored In ovaet(2, 1+1).
evset(2, 1) contains the value for the number of
nodes In evset.

¥

Evaluate the posteriori probability of each node in
row 2 of evset.
CALL REPROB4(2, zcal)

Yes /
\ Is done(evset(2, kb)) = 17)
J,No
Access the fault tree data flle at record no. evset(?,kb).]
¥
No /
14 Is number of consequences » 07?
1‘(05
ctop=evset(2, kb) : zcal=CVSlcprt) : evset(3,1)=0 I
v

CALL PARENT(3, ctop)
PARENT obtains the addresses of the consequences
of ctop and stores them in row 3 of evset.

¥

Evaluate the posterior! probablilltly of each node In

row 3 of evsel.
CALL REPROB4(3, zcal)
donelctop) = 1

¥
Replace evset(2,kb) by evset(3,) Fxcept for
evset(3, 2), transfer all the other ¢lements In row 3

to row 2 of evset. Remove repelition of nodes in
row 2 of evset.
CALL REMREP (2, evset())

[

ahe

donelevset(2, kb)) = 1

¥
-3 kb = kb + 1]

Is kb > \No

evset(2, 1)+1°? /

Yes

i
{ RETURN '

Figure 5.13: Flowchart of Subroutine REPROB3

- 217 -

Yes

(Subroutine REPROBA4 (Ip, zcal))

kcf2|

=

Y

/

—_Is done(evset(ilp, kc)) = 17 >

No

b

Access the fault
evset(ip, kc).

tree data flle at record no.

4

Is (gB="DIR")

No OR Yes
(LEFT$(g$.2)="0OR"” AND =zcal=1)"?
Indx = 1 zcpr = zcal
sl(indx, 1) = O0: s2(indx, 1) = 2
s2(Indx, 2) = alarm event address
s2(indx, 3) = evsetlip, kc)

CALL PPROB(Indx, zpv)

zcpr = zpv/zalrm

y

1

Store zcpr In the fleld cpr$ at record number
evset(2, kc) of the fault tree data f(ile.

Is ke) \No

evset(lp, 11172 /

Yes

Y
‘ RETURN }

Figure 5.14: Flowchart of Subroutine REPROB4

= 218 -

5.4.4 : Description of Subroutine PPROB

The algorithm used in subroutine PPROB is similar to PROB
described earlier. The only difference is when an Iindependent
secondary event is encountered during the recursion, there is no neced
to check if its a priori probability has been evaluated, which is a
requirement in PROB. If the a priori probability of the secondary event
is required, it is obtained from the fault tree data file. Apart from
this difference, the rest of the PPROB program is similar to PROB.

The flowchart for subroutine PPROB is shown in figure 5.15.

« 219 =

(Subroutine PPROB (indx, zpv))

¥
No
(Is s1(|ndx,1)=0?>————)v

CALL INTERSEC (Indx)
INTERSEC rcturns true=1 if s1()s2 is not

Yes empty.
¥
No / \ _ No
& ‘\ls s1ind~,1)=17? /\ Is true =17
lYes ‘LYes
Transfer the node in s1(indx, 1) = O
s1to s2.
s2(Indx,1)=s2(indx,1)+1
sl(indx, 1) = O
2 ¥
3
No 5
Is s1(indx,1)=07? 2 (_})lsoe fig. 515 &)
LYas
<ls saundx.1)=0?>-“’—5> zpv = >(RETURN)
J;NO
(!B s2(indx,1)=1 ?}E)- Access the fault tree
lNO data tlle at record no.
s2indx,).

ztemp(indx) = 1

zpv = CVS(pr$)

' RETURN

~

=

Rermove repetition of <

which Is stored In Indevt.

CALL INDEPT (Indx, disjt, Indevt)
INDEPT returns with dis)Jt=1 if there

is an s-independent node In s2

nodes In s2.

CALL REMREP (indx)

Access the fault tree data

flle at record no. Iindevt.

ztemp(indx) = ztemp(indx) #
CVS(pr$)

¥

Remove the node Indevt from
s2 In row Indx.
s2(Indx, 1) = s2(indx 1) - 1

¥

———No—<ls seundx.1)=0?>

Yes
A

zpv = ztemp(indx)

%Iv
RETURN

v
< Is disjt = 1 ? >L
{Yes

Find all DIR and AND gate
nodes In s2 and replace
by thelir branches.

Is there any
\rep!acernenls ?

Yes

No

y

Find an OR gate node In s2 and
place its branches In s1 al row

indx+1. Except for the OR node
found, transfer the other nodes

in s2 from row Indx to row Indx+1.
Indx = Indx + 1

CALL PPROB(Indx, zpl(indx))

Indx = Indx - 1

zpv = zlemplindx) ¢ zplindx +1)

‘ RETURN)

Figure 5.15: Flowshecet of Subroutine PPROB

- 220

;
[:vsel (Indx, 1)=0 J

L 3

1

CALL INDEPTOR ((Indx, disjt, Indevt)
INDEPTOR returns with disjt=11If there
Is an s-Independent node in 51 which Is

also s-Independent with all nodes In

s2.

The address of such a node is returned

In Indevt.

v
< Is disjt =1 ? _}No
LYES

evseltlindx,1) = evset(indx,1)+1
evset(indx,evset (Indx,1)+1)=Indevl
Remove the node Indevt from si.

Find all OR and DIR gate
nodes in sl and replace
by thelr branches.

s1(indx, 1) = sillindx, 1) - 1 ¥
v Is there vYes |Remove re-
No Yeas any replace- petition of |-
b Is s1(indx,1)=1"7 No ments ? nodes In s1.
y
No \ Yes
Is evset{lndx,ﬂ—‘O?J’
i
Transfer all the values In s1 and s2 orgatelindx) = silindx, 2)

from row Indx to row Indx+1.
Indx = Indx + 1

CALL PPROBI(Indx, zp(indx))
Indx = Indx - 1

ztempllindx) = zp(indx+1)

¥

s1{indx+1,1) O
Transfer all the values In s2 from

row Indx to row Indx+1.

Indx = Iindx +1
CALL PPROBI(Indx, zp(Iindx))
indx = Indx - 1
ztemp2(indx) = zplindx+1)
ka = 2
it

Access the fault tree data file

at record no. evsetl(indx, ka)

Obtain the a priori probabllity.

zpr CVS(pr$)

ztemplindx) = zpr # [ztemp2(indx) -
ztempl1(indx] ¢

ztemp1(indx)

v
ka + 1 '
¥

[

——N3< ls ka >evset(indx,1)+17? >

yYes

l zpv = ztemp(indx)]

RETURN

Transfer all nodes In s2 from
row Indx to row Indx+1. Add the
node orgate(indx) to the set of

nodes In s2 at row Indx+1
s1(indx+1, 1) = O
Indx = Indx + 1

CALL PPROB(Indx, zp(indx))
indx Indx - 1
ztemplindx) =

zplindx+1)

Except for the node equal to
orgatelindx), transfer the other
nodes In s1 from row Indx to
row Indx+1. Transfer all the
nodes In 82 from row Indx to
row Indx+1.

Indx = Indx ¢+ 1
CALL PPROB(Indx, zp(indx))
Indx = Indx - 1

ztemplindx) +
zplindx+1)

ztemp(indx)

Except for the node equal to
orgatel(indx), transfer the other
nodes In s1 from row Indx to
row Iindx+1. Transfer all the
nodes In s2 from row Indx to
row Indx+1. Add the node
orgatellndx) to the set of nodes
In s2 at row Indx+1.

Indx Indx + 1

CALL PPROB(Indx, zplindx))
Indx = Indx - 1

zpv = ztemplindx) -

zplindx+1)

Fipure 5.15 a (continuation of ftig. 5.15)

= 22

RETURN

CHAPTER SIX

6. MODEL FOR TESTING THE DIAGNOSIS PACKAGE

6.1 : Introduction

The fault diagnosis package was tested on a model of a pilot
distillation plant. During the period of this research work, the pilot
plant was used by T.O. Folami, a research colleague, who was
investigating the application of advance control methods on a
distillation column. With his help and others [116], a HAZOP study
was made on the pilot plant to provide data tor the diagnosis package.
A description of the pilot plant and a discussion on the HAZOP study

is given in this chapter.

6.2 : The Pilot Distillation Plant

The pilot distillation plant was donated to the Department of
Chemical Engineering at the University of Aston by IBM UK Limited.
It has been used in a number of research projects including Daie 1112]
Shafie [113] and Folami [114]. Folami has made some modifications to
the plant to overcome problems faced by Daie and Shafie, so as to suit
the requirements for his research work. A schematic diagram of the
pilot plant is shown in figure 6.1. The material that Folami used for
the distillation is a binary mixture of Trichloroethylene and

Tetrachloroethylene.

=it LY =

94

INVId NOUVTILSIA 10Td 3HL 40 WW¥OVId DJILWW3HDS 1-9 1014
€d 2d Id
UA J 6A) 9A i
L]
@] L? IS
51 .
) INIOd A
@@ __mm _ e
" L
67 " ZE SA
| QQ |
6 La £ =
I LA ~
7,5 T (43 01 0 IS e 2 IN i NEA
& : @ Wl , o {11 — " EA _/
" L _|.®.t1|®l ah_ A 8
_ ZA) i \w/
“ r_| @ IN i L 11
|
|
_.IIIllll.ﬂ.d._Il|II!II|LII|||@}@. 1] o
"
11| 10D _.ulMoz 3
UAX -~ OIA WX A 1 .
N NSO DodMd MN u«w : m% b 917)
- #) RIS AR 5343
dA1VM DNIN00D HS 34

223

The distillation column is made of a 0.0762 m. (3 inch) outside
diameter glass tube with 10 sieve trays. The length of the column is
1.2 m. of which the enriching and stripping sections are 0.65 m. and
0.55 m. long respectively. The feed is introduced into the column at
the seventh tray. Each tray has 145 holes of 0.00011 m. diameter and
the spacing between each tray is 0.08 m. The height of the weir in

cach tray is 0.0003 m. and the diameter of the downcomer is 0.0105 m.

There are two cylindrical glass tanks each of 30 litres capacity
situated above the feed entry point to hold the feed. The feed comes
from cither one of the feed tanks when the column is being operated.
Two product tanks are available to hold the top and bottom products
from the column. To enable continuous operation, four 60W Stuart
Turner centrifugal pumps are used to deliver

1) the feed into the column,

2) the distillate back to the top of the column as reflux and to

the top product tank,

3) the raffinate to the bottom product tank, and

4) mixture from the top and bottom product tanks to the feed

tank.

The feed, reflux, bottoms and distillate flowrates required for the
operation of the column range from | to 15 litres per hour. However,
cach of the pumps could deliver in excess of 140 litres per hour across
nominal heads of 2 to 3 metres. Since the required flowrates are much
smaller, each pump is fitted with a re-circulation line with a valve to
prevent build up of pressure in the valve downstream of the pump and

to reduce mechanical strain on the pump.

~ 224 ~

A 0.0762 m. outside diameter standard glass condenser |is
arranged to condense the vapour from the top of the column into a
0.0762 m. outside diameter glass reflux drum connected directly below
it. The condenser is connected to the top of the column by a | metre

long by 0.0762 m. outside diameter glass tube called the vapour line.

The reboiler is of the thermosyphon type arrangement where an
electrical firerod cartridge is used to vapourize the bottom liquid. The
reboiler drum is made of a 3.25 inch outside diameter, 10 SWG
stainless steel pipe. The length of the reboiler drum is 0.38 m. The
nominal holdup of the reboiler drumn during operation of the column is
1.5 litres. The vapouriser or the heating arm of the reboiler is made of
a 2 inch outside diameter, 16 SWG stainless steel pipe and is 0.44 m
long. Liquid flows from the bottom of the reboiler drum to the
heating arm via a 3/8 inch outside diameter 16 SWG stainless steel
pipe. Vapour produced from the heating arm flows back into the
column via a 0.5 inch outside diamcter 16 SWG stainless steel pipe.
The firerod cartridge heater which is 8 inches long and 0.5 inch
diameter is located centrally in the heating arm in a 0.46 m long by
5/8 inch outside diameter 16 SWG long stainless steel pipe. The

bottom liquid is heated in the annular space between the pipe holding

the heater and the heating arm pipe.

During operation of the pilot plant, it is essential that the level
of liquid in the heating arm as well as in the reboiler drum must cover
the whole length of the firerod cartridge heater so as to prevent the
heater being burnt out. It is also essential that the level of liquid in

the reboiler drum must not be above the vapour entry point which may

- 225 -

prevent the vapour from the heating arm entering the distillation
column. The blockage of the line carrying the vapour to the column

will increase the pressure in the heating arm.

The piping around the column such as the fced line, the reflux
line, the top product line and the product line is made of 1/2 inch

outside diameter 16 SWG stainless steel pipes.

6.3 : Instrumentation on the Pilot Plant

The pilot distillation plant was used by Folami to study the
applicability of advanced digital control techniques for real-time
process control. For this purpose, a computer has been used to
develop the control algorithms and also to control the plant. The
computer used is a System96 Level [I Microcomputer from
Measurement Systems Limited. The central processing unit of the
System96 is the Motorola 6809, an 8 bit microprocessor with an
operating speed of 2 Mhz. The operating system used Is OS89 which is
modelled after the UNIX operating system of Bell Laboratories. The
interface by which the System96 acquires data from the pilot plant and
controls its operation is called the Monolog. The Monolog iIs a
separate unit which houses the analogue to digital converters, the
digital to analogue converters, signal conditioners and digital
input/output devices. The connection between the Monolog and
System96 is via an RS323 serial line. The Monolog is driven by the

host computer, using its fixed internal program.

220

There are four control loops on the pilot plant. From figure 6.1,

the control loops are labelled LCL1, LCL2, TCL2 and TCL1. Their

respective functions are:

1) to control the liquid level in the reflux drum located below
the condenser,

2) to control the liquid level in the reboiler drum,

3) to control the reflux flowrate into the distillation column,
and

4) to control the rate of hecat output to the reboiler.

The level in the reflux and the reboiler drums are monitored by
two differential pressure tranducers. Each transducer measures the
pressure difference between two vertical points which is proportional
to the liquid level in the drum. The output of the t‘ransducer is an
analoque voltage between 0 to 5 volts which corresponds to a level
between 0 to 20 inches of water. Assuming that the relative density of
the mixture in either the reflux or the reboiler drum is 1.5, the

cquivalent range of liquid level measured by the transducer is between

0 to 13.3 inches.

The flowrates of the feed, reflux, distillate and bottom products
are measured by turbine flowmeters. The body and rotor of each
turbine flowmeter is made of acetal rubber. On the rotor is fitted
with 3 stainless ceramic magnets. The metering principle is velocity
counting where the output is electrical pulses. The frequency of the
clectrical pulses determines the flowrate which is linear in their

relationship. The output frequency is converted to an analogue voltage

- 227 -

signal between the range 0 to 5 volts by a frequency to voltage

converter before being converted to a digital signal by the Monolog.

The control valves used to automatically control the reflux
flowrate and the levels in the reflux and reboiler drums are miniature,
pneumatic, air to open types which can be fitted on 174 or 1/2 inch
outside diameter pipes. An air pressure of 15 psig. will fully open the
control valve. However, for the valves to operate satisfactorily, an air
supply of 20 psig. is required. The signal from the Monolog to
manipulate the valve stem position is in digital form. In between the
Monolog and each valve, there are two converters before the actual
adjustment of the control valve is done. First, the digital signal is
converted to a current signal in the range 4 to 20 mA. The current

signal is then converted to a pressure signal in the range of 3 to 15

psig.

The firerod cartridge heater in the heating arm of the reboiler is
operated by a solid state switch and a digital control timer. When the
switch is on, the output power of the heater is 2 KW. The digital
control timer sets the amount of time the heater is to be switched on.
The heater operates in cycles with periods of 4 seconds. If it is
required for the heater to output a constant 2 KW of heat, the control
timer will switch on the voltage supply to the heater for a full 4
seconds after which the voltage supply will be switched off and on
again instantaneously to begin the next cycle. Thus to output a mean
value of X KW of heat, where X is less than 2, the amount of time the

heater will be switched on and off in one cycle is 2X and 4-2X

seconds respectively.

228 -

On each tray and the reboiler are thermometer wells for
insertion of thermometers to measure the temperatures of the liquid
during operation. The thermometers are Nickel-Chromium Aluminium
thermocouples which have an accuracy of 0.01°C. The temperatures

that are mcasured during operation of the column are:

1) the reflux into the column,

2) the liquid on the top tray,

3) the liquid on the second tray,

4) the feed,

5) the liquid on the botom tray, and

6) the liquid in the reboiler drum.

It is assumed that the liquid temperatures measured are their
saturated points particular to the composition of the liquid. Since the
liquid is a binary mixture, the measured temperatures are used as

concentration monitors of the components in the distillation column.

6.4 : The Physical and Hazardous Properties of the Distillation

Components

The liquid used by Folami in his study of advanced control
strategies on a distillation column 1is a binary mixture of
Trichloroethylene and Tetrachloroethylene which are colourless liquids
that emit a characteristic odour of chloroform. Their boiling points
are 87°C and 121°C respectively at 1 atmosphere pressure. The liquid

specific gravities are 1.46 and 1.63 at 20°C respectively. The flash

= .28 =

point of Trichloroethylene is 32°C but is considered as practically
non-flammabhle. Tetrachloroethylene on the other hand is

non-flammable, non-explosive and will not support combustion.

Both Trichlorocthylene and Tetrachlorothylene are toxic when
inhaled, ingested by mouth or after prolonged contact with the skin
and mucous membranes [111]1. Exposures of the vapour at
concentrations of more than 200 ppm cause irritation and burning of
the eyes and irritation of the nose and throat. There may be vomiting,
nausea, drowsiness, an attitude of irresponsibility, and even an
appearance resembling alcoholic intoxication. They can also act as an
ancsthetic through the inhalation of excessive amounts within a short
time. They can cause dermatitis when repeated or prolonged contact
with the skin. The dermatitis is preceded by a reddening and burning
of the skin. The skin becomes dry and rough, due. largely to the

removal of skin oils by the material. The skin then cracks easily and is

recadily susceptible to infection.

The recommended threshold limit value of vapour in air for both
material is 50 ppm [111]1. The short term inhalation limits for
Trichloroethylene and Tetrachloroethylene should be 200 ppm for 30

minutes and 100 ppm for 60 minutes respectively.

230

6.5 : The HAZOP Study on the Pilot Plant
6.5.1 : Introduction

A HAZOP study on the pilot distillation plant was made with the
main objective of obtaining data for testing the diagnosis package
developed by the author of this research work. The study also
provides an insight on the operability of the pilot plant that Folami
has modified for his research work. The following sections discuss
what are the serious malfunctions that must be avoided during the
operation of the plant and also the outcome of some of the HAZOP

study on the plant.

6.5.2 : Malfunctions and Hazards To Be Avoided During Operation of

Pilot Plant

One serious malfunction which must be avoided while operating
the pilot plant is for the reboiler drum to go dry or the liquid level to
drop below a certain limit. When this happens, the firerod cartridge
hecater will burn out since there is no load to take off the heat output.
The burn out may damage the casing holding the firerod cartridge. The
safe limit for operation is for the liquid level in the reboiler drum to

be 6 cm. above the top of the firerod cartridge heater.
The liquid in the reboiler drum must not be at a such a level as

to cover the entry point of the vapour to the column. This will

restrict the flow of vapour from the heating arm, resulting in some of

- 2 -

it condensing in the reboiler drum, leaving less vapour to flow
upwards to the trays to effect mass transfer. The ecffective limit of
operation is for the level in the reboiler to be 6 ¢cm. below the vapour

entry point to the column.

Another malfunction which must be avoided is to allow the
reflux drum to go dry. The reflux drum may go dry if there is no
condensation in the condenser, i.e. all the vapour is escaping to the
atmosphere. If this happens, there will be no liquid flowing back into
the column as reflux to effect the distillation process in the enriching
section. There will, however, be contact between liquid and vapour in
the stripping section below the feed tray. The temperature of the
vapour from the feed tray going to the malfunctioning condenser will
be high since there is no liquid flowing downwards from the top tray
to cool it down. Such escaping vapour is a health hazard to the people
around the pilot plant. The symptoms of exposure to the vapour have

been discussed previously.

When the pumps are running, they must not go dry, i.e. there
must be always liquid flowing in the pipes served by the pumps. If
there is air in the pipes, the pumps may cavitate and produce

inconsistent flow and eventually become damaged.

One hazard that must be avoided is the lcakage of boiling liquid
from the pilot plant. As discusscd earlier, the liquid mixture is

harmful to the skin.

~ 232 -

6.5.3 : Outcome From the HAZOP Stady

The HAZOP study was done to record the cause and symptom
cquations of the pilot plant as discussed in chapter 3. The labels for
lines, vessels, instruments, valves and nodes are those shown in figure
6.1. The index numbers to represent the guide words, property words
and equipment failure mode are similar to those shown in tables 3.4
and 3.5. Table 6.1 shows the index to represent the components
present in the operation of the pilot plant. Table 6.2 shows single and
two letter symbols to represent certain plant equipment failure
modes. Presented in this section, are the outcomes of the HAZOP

study on the pilot distillation plant.

Table 6.1 : Indices To Represent Components in the Pilot Plant Model

Index Component
1 Trichloroethylene
2 Tetrachloroethylene
3 Alr
4 Bottoms liquid
5 Top vapour

Table 6.2 : Single and two letter symbols to represent certain plant

equipment failure mode.

Symbol Iiailure Mode

BO "Burn Out”™ - applied to the
reboiler heater.

ov "Overflow™” applied to the
condenser vent.

VR "Vapour Release” - applied to
the condenser vent.

F "Touling” applied to the heat
exchanper,

I "Leaking” applied to pipes,
vessels, valves and pumps.

R

Distillation column DI

Purpose: To distil a mixture of Tichloroethylene and Tetrachloro-

cthylene into two separate products.

Lines into vessel DI

Line L3

Purpose : To feed a mixture of 40% Trichloroethylene and 60%
Tetrachloroethylene into vessecl DI at a rate of approximately 12 litres
per hour. Feed is at ambient temperature. During normal operation,
vessel T1 supplies L3.

Cause equations for flow deviations in L3

1) L3(11) = L1(11) + V16(0) + P1(0) * V6(O) + L3(0) + FII(1)
2y 1.3012) = L1(12) + P1(O) 4+ PIC 1) ¢+ PICL) v L3(L) 4+ L3(-1) + Vi6e(-1) +
V5(1) + FI1(1) + VO(L) + VI6(L) + V5(L)

3) L3(13) = Vioe(1) + Fli(-1)

n

4) L3(16) = D1(33) * P1(0)

5) L3(144) = P1(-1) + VA(1)*T2(41)

Symptom equations for flow deviations in L3

6) L3(11) — N1(11) = N2(12) = N3(11)
7) L3(12) — N1(12) = N2(12) * N3(12)
8) L3(13) — N1(13) = N2(13) * N3(13)

9) L3(144) — NI(12) &« N2(12) « N3(12)

234 -

Cause equation for temperature deviation in L3

The only fced temperature deviation that can seriously affect the
performance of the distillation column is when the temperature of the
feed is so low such that the vapour rising to the feed tray Is

condensed resulting in no vapour rising to the top tray.

10) L3(22) = T1(22)

Symptom equation for temperature deviation in L3

11) L3(22) — NI1(22) * N2(11) * N3(13) * N3(531)

Cause equations for concentration deviations in L3

12) L3€521) = L1(521) + L2(521) » V4(1)

13) L3(531) = L1(3531) + L2(531) » VA(})

Symptom equations for concentration deviations in L3

14) L3(521) — N2(12) *= N3(13)

15) L3(531) — N2(13) * N3(12)

Line L8
Purpose: To feed vapour at approximately 110°C from the heating arm

of reboiler RB! into the vessel DI,

Cause equations for flow deviations in L8

16y L8(11) = N9(11) + L8(0)

17) L8(12)

NO9(12) + LB8(-1) + L8(L)
18) L8(13) = N9(13)

10) L8(145) = N9(145)

Symptoms equations for flow deviations in L8

20) L8(11) — N5(11) » N2(11) = N3(13) = N3(531)
21) L8(12) — NS5(12) » N2(12) * N3(13) = N3(531)
22) L8(13) — N5(13) = N2(13)

23) L8(145) — N3(531)

Cause equation for pressure deviation in L8

24) L8(33) = D1(33)

Symptom equation for pressure deviation in L8

25) L8(33) — N9(33)

Line LIO
Purpose: To feed the distillate as reflux to the vessel DI1. Flowrate of
reflux is controlled by a temperature control loop, TCL2, so that

temperature of the liquid on the top tray, i.e. TRAY1, is about 95°C.

236

Cause equations for flow deviations in L10

26) L10(11)

CV2(0) 4+ L9(11) + LIO(O) + F12(1)

27) L10(12) = CV2(-1) + L10(-1) + L10(L) + LY(12) + FIZ(1)

28) L10(13)

CV2(1) + FI2(-1)

29) L10(16) = D1(33)

Symptom equations for flow deviations in L10

30) L1I0(11) — N4(11) = N2(521)
31) L10(12) — N4(12) * N2(521)

32) L10(13) — N4(13) * N2(12)

Cause equation for pressure deviation in LIO

33) L10(33) = DI1(33)

Pipe junction between L9, L10 and LI1

Purpose : To split flow of distillate in LY as reflux flowing in L10 and

the top product flowing in LII.

Cause equations for flow deviations in line L9

C1(41) + P2(0)=V9(0) 1+ LYLO)

34) L9(11)

L9(-1) + L9(L) + P2(0) + P2(-1)

35) L9(12)

L11€13) + V9(0)

36) L9(13)

37) L9(16) = L10(16) » P2(0) = (LI11(0) + CV3(0))

237 -

Symptom equation for flow deviation in L9

38) L9(16) — N7(16)

Cause equation for pressure deviation in line L9

392) L9(33) = (L10(0) + CV2(0)) = (LI(0) + CV3(0)) + L10(33) + V9(O)

Cause equation for concentration deviation in line L9

40) L9(521) = N7(521)

Vessel under consideration - distillation column DI

Cause equations for deviations in column DI

41) DI(41) = DI(L) + RBI(L) + NI(11) « NA(11)

42) D1(42) = DI(L) + RBI(L) + LCL2(-1)

43) D1(43) = NI(13) = N4(13) + LCL2(1)

44) D1(33) = L4(0) + CI1(33)

Cause equations for temperature deviations on TRAY! and TRAYIO in

column DI1.

45) TRAY1(22) = NI(22) + N4(13) + NS(I1) + TCL2(-1)

46) TRAY1(23) = N4(11) + N4(12) = NI(11)) + TCL2(1)

47) TRAYI10(22) = NI(22Z) + NS(11) + NI(13) + N4(13) + N5(12) + TCLI(-1)

NS5S(13) + NI(11) + N4(12)) + TCLI(1)

48) TRAYI10(23)

- 208 -

Temperature control loop TCLI

Purpose : To control the temperature of fluid on the bottom tray in D]
such that it is around 115°C by regulating the heat output from the

reboiler heater, RBIHI.

49) TCLI(-1) = TII(1) + TCI(-1)

50) TCL1(1) = TII(-1) + TCH(1)

Temperature control loop TCLZ

Purpose : To control the tempcerature of liguid on the top tray in
column D1 by varying the reflux flowrate into the column through line
L10. When temperature rises above the set point, it indicates that the
composition of Trichloroethylene on the tray has decreased. The
controller will increase the reflux flowrate to compensate for the

increase in temperature.

Cause equations for deviations in TCLZ.

51) TCLZ(-1) = TI2(}) + TC2(-1)

52) TCL2(1) = TIZ2(-1) + TC2(1)

l.evel control loop LCL2Z

Purpose : To control the level in the reboiler drum as well as the level
in the heating arm of the rcboiler so as not to cover the vapour inlet
from the heating arm and also not to exposc the firerod cartridge
heater. The level is controlled by opening or shutting the control

valve CV4. The reboiler drum level is measured by LI2.

239 -

Cause equations for deviations of the level control loop LCLZ

53) LCL2(-1) = LI2(1) + LC2(-1) + CVA(1)

534) LCL2(1) = LI2(-1) + LC2(1) 1 CV1(-1)

The reboller RBI

Purpose : To vapourize part of the bottom product to be fed back into
column D1. Heat input is via a firerod cartridge heater, RBH, which has

a maximum output of 2 KW.

Lines to RBI

Line L6

Purpose : To feed part of the bottom product to RB1. During normal
opceration, it does not matter what flow rate is in line L6, as long as
there is flow to keep the level of ligquid in the reboiler about the same

as the liquid level in column DI.

Cause equations for flow deviations in 1.6

55) Lo(11) = L5(11) + L6(0)

50) L6(16) = RBI(33)

Symptom equations for flow deviations in L6

57) L6(11) — N8(11)

240

Cause equation for pressure deviation in L6

58) L6(33) = RB1(33)

Pipe junction between L5, L6 and L7

Purpose : To splitthe bottom liquid flowing in L5 into reboiler liquid

flowing in L6 and the bottom products flowing in L7.

Causc equation for flow deviation in line LS

59) L5(11) = L5(0)

Vessel under consideration - the reboiler RBI

Cause equations for deviations in RDI

60) RB1(41) = N8(11) + D1(41)
61) RB1(42) = D1(42)

62) RB1(43) = D1(43)

63) RB1(33) = N9(33)

64) RBI(71) = RBH(0)

65) RB1(72) = RBH(-1)

66) RB1(73) = RBH(1)

Symptom equations for deviations in RBI

67) RB1(41) — RBH(BO)

68) RB1(42) — RBI(BO)

- 240 -

69) RB1(43) — N9(1435)
70) RB1(71) — N9(11)
71) RB1(72) — N9(12)

72) RB1(73) — N9(13)

The condenser and reflux drum Ci

Purpose : To condense vapour coming from the top of column D1. The
distillate falls into a reflux drum below the condenser where the

liquid level is controlled by the level control loop LCLI1.

lLines to ClI

Line LA

Purpose : To convey vapour from top of D1 into Cli

Cause equations for flow deviations in L4

73) L4(11) = N2(11) + L4(0)

I

74) L4(12) = N2(12) + L4(-1) + L4(L)

75) L4(13) = N2(13)

Symptom equations for flow deviations in L4

76) L4(11) — N6(11)
77) L4(12) — N6(12)

78) LA(13) — N6(13)

Causc cquation for concentration deviation in L4

79) LA(S21) = N2(521)

- 249 -

Symptom equation for concentration deviation in L4

80) L4(521) — N7(521)

Cause equation for pressure dcviation in L4

81) L4(33) = C1(33)

Vessel under consideration - the condenser and reflux drum, C1

Cause equations for deviations in CI

82) C1(41) = L4(0) + C1(71) + CI(L)

83) C1(42) = N6(12) + C1(72) + Ci(L) + LCLI(-1)
84) C1(43) = CICOIL(L) + N7(16) + LCLI1(1)

85) C1(33) = C1VENT(0)

B86) C1(71) = L15(11)

87) C1(72) = L15(12) + CICOIL(F)

Symptom equations for deviations in CI

88) C1(43) — CIVENT(OF)
89) C1(71) — CI1VENT(VR)

90) C1(72) — CIVENT(VR)

Level control loop LCLI

Purpose : To control level in the reflux drum of C1 by varying the top

product flow in L11.

- 243 -

Cause equations for deviations of LCLI

91) LCL1(-1) = LI1(1) + LCI(-1)

92) LCL1(1) = LII(-1) + LCI1(1)

Other lines and vessels

Line L15

Purpose: To convey cooling water into the cooling coil CICOIL in the

condenser Cl.

Cause equations for flow deviations in line L15

93) L15(11) = V7(0) + V8(0) + LI5(0) + CICOIL(0)

94) L15(12) = V7(-1) + V8(-1) + LI5(-1) 4+ LIS(L) + CICOIL(-1)

l.ines L1 and L2

Purpose: To convey feed mixture from tank Tl or T2 to feed line L3.

Cause equations for deviations in Ll and L2

95) LI(11) = V3(0) + L1(0) + T1(41)

96) L1(12) = V3(-1) + LI(L) + L1(-1)

97) L1(521) = TI(521)

98) L1(531) = T1(531)

99) L2(521) = T2(521)

100) L2(S831) = T2(531)

- 244 -

Vessels T1 and T2

Purpose : To hold the feed mixture.

Cause equations for deviations in Tl and T2

101) T1(521) = L14(521)

102) T1(531) = L14(531)

103) T2(521) = L14(521)

104) T2(531) = L14(531)

Line Li4

Purpose : To convey mixture of top and bottom products of the

distillation column DI to the feed tank T1. The products are held in

tanks T4 and T3 respectively.

Cause equations for deviations in line Li4

105) L14(521) = VI3(1) + Vi4(-1)

106) L14(531) = V13(-1) + Vi4(1)
Line L7
Purpose : To convey the bottom product form column D1 to holding

tank T3.

Cause equations for deviations in line L7

107) L7(11) = N3(11) + P3(0) » V9(0) + CVA(O) 4+ L7(0) + HE1(0) + FI3(1)
108) L7(12) = N3(12) + CV4(-1) + L7(-1) + L7(L) + HEI(-1) + HEI(L)
+ F13(1)

109) [,7¢13) = N3(13) + V12(0) + CV4(1) + L6(16) + DI1(33) + FI3(-1)

110) L7(531) = N3(531)
line L1
Purpose : To convey the top product from the column D1 to holding

tank T3.

Cause equation for deviations in line L1l

1) Liteir) = N6(11) + L9(11) + L11(0) + CV3(0)

i

112) L11€12) = N6(12) + L11(-1) + L11(L) + CV3(-1)

]

113) LI(13) = N6(13) + CV3(1) + L10(16)

14) LI1(521) = L9(521)

6.5.4: Assigning Probability Values to Primary Events

Primary events can be either be due to mechanical failures or
human crror. For events due to mechanical failure, the failure
probabilities are obtained by using equation 4.15 which is reprinted

below.
F(t) =1 —exp(-Xt) . 4.15

The diagnosis package was tested using an arbitrary value of t equals
to | year. The failure rate, A, for a particular plant item is obtained
from table C.1 in Appendix C. If XA is 0.1 per year or less, then from

cquation 4.18 in chapter 4, the failurc probability is approximately the

- 246 -

same as the failure rate, i.e.

Fay=x e 61

The probability data for primary events due to human error are

obtained from table C.2 in Appendix C.

From the result of the HAZOP study of the pilot distillation

plant, the primary events are those involving:

1) manual valves not at their actual settings;

2) control valves stuck open or close;

3) pumps not working or cavitating;

4) lines fully or partially blocked;

5) lines and vessels lecaking; |

6) flowmeters, level meters and thermometers not indicating and
transmitting to the controller the correct values; and

7) wrong sctting of set-points.

Table 6.3 shows the probability values assigned to the various primary

cvents.

- 247 -

Table 6.3 : 1-Year Probabilitics For Primary Events of The Pilot

Distillation Plant

Events

Remarks

! year/event
probability.

V3(0), V3(-1),
V6(0), V7(0),
V7(-1), V8(0),
va(-1), V9(0),
Vi2(0)

During normal operation, these
valves should be fully open.
Failure to open these valves fully
is an error on the part of the
operator. Thus, the probability
value assigned to these events is
that of failure to follow
instructions.

0.065

V4(1), V3(1)

These valves should be fully closed.
The probability value assigned to
these events is that of failure to
close valve completely.

0.0018

Vi3(-1), V13(1),
Vid(-1), Vi4(1),
vie(1l), vie(0),
Vie(-1)

These valves are adjusted manually
so that the required output
flowrates are achieved. Thus, the
probability value assigned to thesc
events is that of the general error
rate under high stress.

VS(L), V6(L),
VO9(L), ViI2(L)
Vie(L)

These events constitute the
mechanical failure of the valves.
The failure rate for manually
operated valve is A = 0.1 /year.

0.1

1.1C0), L1(-1),
L3(0), L3(-1),
L4(0), L4(-1),
L5(0), L5(-1),
L6(0), L7(0),
L7(-1), L8(O),
L8(-1), L9(0),
L9(-1), L10(0),
L10(-1), L11(0),
L11(-1), L15(-1)

These events are due to dirt or
deposits in the small diameter
steel pipelines which restrict the
proper fluid of fluid. From table
C.1, there is no failure rate data
for such events. lowever, one can
assume that these events are smilar
to air supply line being blocked or
crushed for which the failure rate

is A = 0.01/yr.

0.01

LICL). 1.3¢1.),
L4(L), LS(L),
Lo6(L), L7(L),
L8(L), L9(L),
L9(L), L10(L),
L11(L), L1S(L)

Leakage of fluid to the environment
via the pipelines is due to the
operator incorrectly tightening of
nuts at the joints.

0.0047

- 248 -

Table 6.3 (a) :

continuation of table 6.3

Events

Remarks

1 year/event
probability.

Cvi(1), CVi(0),
CVi(-1), CVI(L),
Ccvz(1), CVZ(0),
Cv2(-1),CVZ(L),

The failure rate for pnuematic
control valves is A = 0.3 /year.

CVv3(1), CV3(0), 0.259

CV3(-1), CV3(L)

CV4(1),CV4(0),

CV4a(-1),CV4(L)

P1(0), P2(0), The failure rate of pumps stopping

P3(0) is A = 107%/day. 0.036

PI(L), P2(L), Leakage to the environment via the

P3(L), P1(-1)}, pumps is due to catastrophic failure.| 1 x 107*

P2(-1), P3(-1) The failure rate is A = 10 */year.

TII(1), TIi(-1), The fluid temperatures are measured

Ti2(1), TI2(-1) by thermocouples. The failure rate| 0.156
is A = 0.17 /ycar.

LI11(1), LI1(-1), The level meter is assumed to be

LI12(1), LI2(-1) of the DP cell type. The failure 0.349
rate is A = 0.43 /year.

Flt(-1), FI1(0}, There is no failure rate data for

Fi(1), Fi2(-1), flowmeters. lHowever, since the

IF12(0), FI12(1), flowmeter used output electrical

F13(-1), F13(0), | pulses of which the frequency is

F13(1) linear to flowrate, one can assume | 0.252
that its failure rate is the same as
the failure rate of the temperature
transducer where A = 0.29 /year.

RBH(O) This event is due to loss of
electrical supply where A=0.005/yr.| 0.005

CRBH(-1), The rate of heat output from RBH

RBH(1) depends on the signal from the
controller. Thus, it can i‘m assumed
that the occurrence of these events| 0.252
is similar to failure of temperature
transducer where A = 0.29 /year.

bi(L), CiI(L), The failure rate of atmospheric

RBI(L), HEI(L) | vessels due to serious lecak is 1 x 104

CICOIL(L) A= 10"* /ycar.

- 249 -

Table 6.3 (b)

: continuation of table 6.3 (a)

Events

Remarks

| year/event
probability

CI1COIL(F)

There is no data for failure rate
due to fouling of the condenser
coil. A reasonable assumption for
failure rate is A = 0.01 / year.

0.01

CIVENT(0)

Blocking of the condenser vent is
due to failure to follow instructions
that tells the operator to remove
the cover of the vent prior to
operating the pilot plant.

0.065

LCI(1), LCI(-1),
LC2(1), LC2(-1),
TCIL), TCIG=1),
TC2(1), TCZ(~1)

The failure rate for set point is
A = 0.14 /year.

0.131

T1(41)

Tank T1 goes empty is due to
human error who fails to fill the
tank when its level has depleted.

T204)

Tank T2 is never used when
operating the pilot plant and is
always empty,

T1(22)

This event denotes extraordinary
cooling of liquid in tank T1 by cold
wind cor ice on the surface of the
tank. The probability for this event

is assumed to be 0.1 per event

0.1

HE1(-1), HE1(0)
CICOIL(-1),
CICOIL(0)

Assume that these events are
similar to air supply line being
blocked where A = 0.01 /year.

0.01

CHAPTER SEVEN

7. RESULTS OF TESTING THE DIAGNOSIS PACKAGE

7.1 : Introduction

The diagnosis package was tested using the cause and effect
data obtained from the HAZOP study of the pilot distillation plant
described in chapter 6. The HAZOP data, in the form of cause and
symptom equations, have first to be translated into a data structure
so that the probability of every event in the cause and effect
relationship can be evaluated. The data structure is also needed for
displaying the causes and consequences of any particular event, in the
form of a fault tree, on the VDU of the computer. The data structure

has already been described in chapter 5.

The test consisted of two stages. The first stage is to test the
data preparation program TRANSLAT. The second stage is to test the
display of fault trees on the VDU of the computer. In this case, the

program to be tested is DISFAULT.

7.2 : Translation of Cause and Symptom Equations into the Data

Structure
Translation of the cause and symptom equations is done by the

program TRANSLAT. The list of cause and symptom equations from

chapter 6 were stored in a text file called HAZOP.TXT. The

- 251 -

information contained in this file is translated by TRANSLAT into a
data structure which is stored in a file named HAZOP.COD. The
procedure TRANSLAT executes the translation task and has been
described in chapter 5. The contents of HAZOP.COD is shown in

Appendix G.

As an example, consider the following set of cause and symptom

cquations obtained from the list in chapter 6:

L10€12) = L9(12) + CV2(-1) + L10(-1) + L10(L) + FI2(1) 7.4
LI0(12) - N4(12) « N2(521) .. 7.2
LO(12) = LO(-1) +.LO(L) + P2(0) + P2(-1) . 73
L9(521) = N7(521) 7.4
L4(521) = N2(520) 7.8
L4(521) - N7(521) * 7.6
LINSZH = LOGZ 7.7

Table 7.1 shows the data structure containing the translated
information of the cause and symptom equations 7.1 to 7.7. The data

are extracted from table G.1 in Appendix G.

The result in table 7.1 shows that TRANSLAT has successfully
translated equations 7.1 to 7.7 into a structured form so that the
information about the cause and effect relationships are easily
cxtracted for both probability evaluation and fault tree display. For
example, looking at the event L10(12) in table 7.1, shows that it has §
causes connected by an OR gate. The cause equation for L10(12), i.e.,
cquation 7.1, has also 5 causal events, in which the occurrence of any

one of the events causes L10(12) to occur. In table 7.1, the record

= 292 =

Table 7.1 : Data structure containing the translated information of

equations 7.1 to 7.7.

Rec. | e$ g$ [bc$ can$ bq$ con$
no. 1) | (2) | (3) [(4) (1 [(2) | (3) | (4)
76 FI2(1) |PRI 0 |0 0 0 0 2 |72 |77 |0 0
77 L10(12)|ORC| 5 |78 |79 |80 |82 2 |89 |88 |0 0
78 L9(12Z) |ORC| 4 |97 (98 |93 (99 1 |77 |0 0 0
79 CV2(-1)|PRI 0 |0 0 0 0 1 {77 |0 0 0
80 L10(-1) |PRI 0 |0 0 0 0 1 |77 |0 0 0
81 L10(L) |[PRI 0 |0 0 0 0 1 177 |0 0 0

0 0 0 |0 0 0 0

82 & 11 CON| 2 |81 (76

174 |0 0 0

=]
<

88 N2(521) |ORS| 2 |72 |77
89 N4(12) |DIR | 1 |77 |O 0 0 2 (127 {132 (0 0

93 P2(0) |PRI 0 |0 0 0 0 3 (94 |78 [102 |0
97 L9(-1) (PRI | 0 |O 0 0 0 1 |78 |0 0 0
98 L9(L) |(PRI [O O 0 0 0 1 |78 |0 0 0

99 P2(-1) (PRI [O |O 0 0 0 1 |78 (0 0 0

111 L9(521) [DIR | 1 112 |O 0 0 1 (2460 |[O 0

112 N7(521)|DIR | 1 (174 |0 0 0 1 (111 {0 0 0
174 | L4(521) (DIR | 1 |88 |0 0 0 1 (12 o 0 0

246 | LII(SZH|DIR | 1 |11 |O 0 0 0 {0 0 0 0

numbers stored in the branch address fields at the record where

L10(12) is stored point to the same events as the causal events of

equation 7.1.

Since the results in table 7.1 are correct, implies that all the

cause and effect information stored in HAZOP.COD are also correct.

TRANSLAT also produced a random access file called HAZOP.PRI
containing the set of primary events for each event stored in the file
HAZOP.COD. The information contained in HAZOP.PRI is used to
check for independence when evaluating both the a priori and

posteriori probabilities of every event in the file HAZOP.COD.

7.3 : Probability Evaluation

Two types of probabilities are evaluated in the diagnosis
package. One is the a priori probability evaluation to provide the
probability data needed for the fault tree display part of the diagnosis
package. The a priori probability evaluation of every event in the data
file is done within the program TRANSLAT. The other probability
evaluation is the determination of posteriori probabilities of every
cvent in the data file, based on an event which has occurred. The
posteriori probability evaluation is done in the DISFAULT program,
after receiving the alarm event and before displaying the fault tree on

the VDU of the computer.

Before the a priori probabilities can be evaluated, every primary

ecvent has to be assigned probability values. This is done within

- 254 -

TRANSLAT where the program asks the user to input probability

values of each primary event in the HAZOP.COD file.

To verify the validity of the probability evaluation algorithms
implemented in TRANSLAT and DISFAULT, a sample cause and effect
relationships were taken and the probabilities were calculated
manually. These values were then compared with those obtained from

the computer programs.

For the purpose of the test, cause equations 7.1 and 7.2 were
used. Since both equations contains OR gates only, equation 4.35 was
used to manually calculate the a priori probabilities of the top events.
The posteriori probabilities were calculated based on the occurrence
of L10(12). Equation 4.69 was used to calculate the posteriori
probabilities. Table 7.2 shows the result of the probabilities
calculated manually. For primary events, their a priori probabilities
has already been assigned. The values obtained were then compared

with the values displayed on the VDU of the screen during the testing

of the fault tree display program.

7.4 : Display of Fault Trees

The display of a fault tree on the VDU of the microcomputer is
obtained by executing the program DISFAULT. The user has to input
the name of the file containing the fault tree information, e.g.
HAZOP.COD and the name of the fault event. After that, DISPLAY will
evaluate the posteriori probabilities of every event in the data file

before displaying the fault tree on the VDU of the computer.

Table 7.2 : Results of Manual A Priori and Posteriori Probability

Evaluations
e Gate Type | by ity Probability
L10(12) OR 0.48128 1.0
FI2(1) PRI 0.252 0.52360
L9(12) OR 0.05022 0.10435
Cv2(-1) PRI 0.259 0.53815
L10(-1) PRI 0.01 0.02078
L10(L) PRI 0.0047 0.009766
L9¢(-1) PRI 0.01 0.02078
L9(L) PRI 0.0047 0.009766
P2(0) PRI 0.036 0.07480
P2(-1) PRI1 0.0001 0.0002078

- 256 -

The following sections describe the various displays that are
obtained on the VDU of the microcomputer. The colour hardcopy of
the screen shots are obtained using a Tektronix 4693D colour thermal
printer. Two different alarm events were used to show how the
displays can be operated on to give their various effects. In one, the
event is less than normal flow in line L10, i.e. L10(12), and the other

event was no liquid in the condenser/reflux drum C1, i.e., C1(41).

7.4.1 : Displays of Causes and Consequences of L10(12)

The displays shown in this section are those when L10(12) is
input as the alarm event. When the posteriori probabilities have been
evaluated, the initial display that shows the causes and consequences
of L10(12) is shown in Plate 7.1. In the Cause column, the events
displayed with the green background are primary events and the event
displayed on a blue background is a secondary event which is caused
by other events not shown on the VDU. In the consequence column,
the events displayed on blue backgrounds indicates that they are not

the top most symptoms of the fault L10(12).

Pressing the Fl1 and F2 function keys switch on the the display
of the a priori and posteriori probabilities of every event displayed on
the VDU. This is shown on Plate 7.2. The values above the event names
and written in red are the posteriori probabilities and those below the
event names and written in blue are the a priori probabilities. Pressing
either of the F1 and F2 keys again will switch off the display of the

a priori and posteriori probabilitics respectively. The posteriori

= 287 -

1 L3(12)

2 CV2(-1)

3 L10(-1)

4 L1o(L)

Plate 7.1 :

Initial Display ror The Alarm Event L10(12).

0. 104347438

1 1902y - S

0.53814673
ZuZe-1) ¢ 1 S
. 25900060
.77
001000000
0, 0976560
0, 00470000
3, 52360219

0. 25200000

3 L16(-1)

4 L10(L)

Plate 7.2 :

L
10(12)

.46126140

4(12)

HHEERE
h.43178140
AR

63047434

Display After Pressing The F1 And F2 function Keys.

1
Z

probability values of 1 on the consequences indicate that these events

are bound to occur or have occurred due to the occurrence of the

alarm event.

The probabilities values on the display are compared with those
in table 7.2. It is found that the values are in close agreement. Thus
the probability evaluation algorithms implemented in TRANSLAT and

DISFAULT have done their tasks successfully.

From plate 7.2, the order to check the causes of less than

normal flow in line L10 would be:
1) CV2(-1), i.e., the control valve CV2 insufficiently open,
2) FI2(1), i.e., flow indicator Fl2 indicating higher than the
actual flow in line L10,
3) L9(12), i.e., there is less than normal flow in line L9,
4) L10(-1), i.e., there is partial blockage in line LI10,

5) L10(L), i.e., there is leakage to the environment from line L10.

This order is determined by the values of the posteriori probabilities

shown above each of the causal events on the display.

The event PRI2(1) is not a cause of L10(12). However, it is
included in the fault tree to show that the measuring instrument, FI2,

may have failed high and does not show the true value of the flowrate

in line L10,

The causes of the secondary event L9(12) can be shown by

directing the cursor to that event and pressing the F9 function key.

260

),02077786
0, 01000060

0, 00976560 e
¢ L3(L) L10(12

46120140
J

1 L9(-1)

). 00470000
4
J(12
0, 03600000 0. 05022048 D, 66047434
0, 00020778
0, 00010060

)
),
0, 07480031 0104347
)

4 P2(-1)

Plate 7.3 : Display After Directing The Cursor To L9(12) And Pressing

The 2 runction Key.

The effect of this operation is shown in Plate 7.3. The cursor is
represented by the blinking character of the first letter of an event.
Movement of the cursor is effected by pressing the cursor direction
keys on the numeric key pad. Pressing the F10 key will display the

initial fault tree as shown in Plate 7.2.

From plate 7.2, are two consequences of L10(12), which are:

1) N4(12), i.e., less flow at node N4,
2) N2(821), i.e., less concentration of trichloroethylene at node

N2,

The consequences are shown with blue background to indicate that
these events can develop to other consequences not shown on the
screen of the VDU. The operator can choose to see what are the other
consequences of the events displayed in the consequence column by
directing the cursor to the chosen event and pressing the F9 function
key. For example, the display in plate 7.4 is obtained from the display
shown in plate 7.2 by directing the cursor to the event N2(521) and

pressing the F9 fucntion key.

From plate 7.4, the event L4(521) still has other consequences
from its occurrence. These can be shown by repeating the same
procedure as described above. Plate 7.5 shows the effect obtained by
such operation. The event L11(521) in plate 7.5 displayed in a green box
indicates that it is one of the top most symptoms of L10(12), l.e.,

there is no other consequences of L11(521).

- 262 -

), 05022048

25300000 s

1

‘ L4(521)

1 13(12)

2 CV2(-1)

3 L1o(-1) 1
B 68047434
10(12)
0., 00976560 46128140
4 L10(L)

000470000
0,52360219

0, 25200000

Plate 7.4 : Display After Directing The Cursor To N2(521) And Pressing

The 9 function Key. Prior to this display, the status of

VDU screen 1is as shown in plate 7.2.

I

0.1043474 71
19Uy e e

0. 05022043 6804743

3,53814673
Eowzeny: it | R

0. 25900000 6804743

0.02077786

i
[

—
e,

II

e
Eo L11(521) 1
6804743 0 68047434

25200000
| fove cursor to required event, Meaning is displayed below.” =

| LESS:than nornal CONCENTRATION of TRICHLOROETHYLENE -in LINE

—

3 L10(-1) L4(52

4 L1o(L)

p—.
el .

[]
S—

-
(=
'_L
=2
o
'.._A
-
=]

i

Plate 7.5 : Display Showing One Of The Final Consequences of L10(12),

faesy LILISZL)S The display also shows the meaning of

the event where the cursor 1s located, activated by

pressing the ALT and E keys together.

e)
- £LDY -

The operator can obtain the meaning of the coded event by
pressing the ALT and E key together. The meaning of the event where
the cursor is located is shown below the fault tree display, called the
message arca. Plate 7.5 shows the effect of such an operation. For this
case, the cursor is at the cvent L11(521). Moving the cursor to other
cvents will automatically display the meaning of that event. Pressing
the ALT and E keys again will switch off the meaning of the event

where the cursor is located.

Plate 7.6 shows the effect of directing the cursor to L9(12) in
the cause column and then pressing the F9 function key followed by
consequtively directing the cursor to the events N4(12) and =19 and
pressing the F9 function key. The effect shows that the operator can
see how the occurrence of any of the primary events shown in the
cause column propagates to the final Consequence.‘i.e., TRAY1(23)

which means higher than normal temperature on tray 1 in the

distillation column,

The event 319. is a dummy event to indicate that it has inputs via
a gate type different from the gate type of its consequence, il.e.,
TRAY1(23). Plate 7.6 shows that in the box that displays the event =19,
are also displayed the word AND within parenthesis, to indicate that it
has inputs via an AND gate. This is the reason why the posteriori
porbabilities of event #19 and it consequence, i.e., TRAY1(23), are not

cqual to I.

- 9RG -

0. 6207778618

FLIGD
0. 51008000
0016508

60470000

047450031

2 L3(L)

0. 6360000)

0, 00020778

4 P2(-1) i
h.00010000

Plate 7.6 :

), 52044427

46128140

0.10434743
(87 IE
0, 05022048

Display Showing The Propagation Of

. 83707246
0. 71635187

Events To One Of The Top Most Consequences Of L10(12).

1

Faults f rom The Primary

7.4.2 : Displays of Causes and Consequences of C1(41)

The following displays in this section are put forward to show
what other facilities the operator has when using the diagnosis
package. For this purpose, the alarm event input from the keyboard is

C1(41), i.e., no fluid level in the condenser/reflux drum.

In plate 7.7, ignoring the message printed in the message area at
the bottom of the screen, are shown the display obtained after the
posteriori probability evaluation has completed its task and pressing
the F1 and F2 function keys. In the cause column, the causal events
are printed in black foreground. This is to show that these causal
events can cause other events apart from the alarm event, i.e. C1(41).
Also, the event in the consequence column is printed in black
foreground. This is to indicate that the consequence event can be

caused by other events apart from the alarm event.

The user can view what are the causes and consequences of any
other event. This is done by pressing the ALT and A keys together and
the message at the bottom of the screen as shown in plate 7.7, up to
the question mark, is displayed. The purpose is for the user to input
the name of the event from the keyboard for which its causes and

consequences are to be viewed.

As an illustration, from the display in plate 7.7, the event
C1(71), i.e., no heat transfer in the condenser Cl, is input from the
keyboard. After pressing the RETURN key, the display as shown in

plate 7.8 iIs obtained. The event just input via the keyboard is

= 207 -

0. 06566522
0. 61000000
094300616

1(41) 1
0.14317209 0.15162513 0. 16227183

0, 00065865
0, 00010000

Input event nane €0 to abort) :2 C1(71)

Plate 7.7 : Display showing the causes and consequences of the alarm
J e juences

event, Cl1(41), and also the message for the user to inpuf

name of an event to view 1ts causes and consequences,

activated by pressing the ALT and A keys together.

- 268 -

1(41)
),94300616 . 94300616 J518251°
1 L15(11) Soana ——oiGEEDET
D, 14317209).14317209

Plate 7.8 : Display of the cause and consequences of Cl1(71) which was

input via the keyboard from the display in plate 7.7.

displayed on brown background. The display shows that C1(71) can
cause two events, which are the alarm event, C1(41), still displayed on
the red background, and CIVENT(VR), i.e., vapour release to the
environment from the vent of the condenser Ci. Thus if C1(71), is
found to be the cause of the alarm event, apart from the consequences
emanating from C1(41) that cither have or will occur, consequences

due to C1(71) will also occur.

The value of 2, displayed above the event CIVENT(VR), is not
the posteriori probability of the event. In fact, the posteriori
probabilities of consequences of causes of the alarm event are not
evaluated. The reason for this omission will be discussed in chapter 8.
Instead the value of 2 are assigned to the consequences of the causes
of the alarm event, to indicate that any these events can occur if it is

found its cause which is also the cause of the alarm event is true.

Sometimes there may be more than 5 causes or consequences of
the alarm event. Since only 5 events can be displayed in each column,
those that cannot fit into the screen are not shown. However, the

operator can scroll up or down each individual screen to display

events that are off the screen.

On the top left hand corner of each column are reserved two
spaces to indicate whether the column needed to be scrolled to
display events that are off the screen. Dashes indicate that there is no
nced to scroll the column. A downward pointing arrow tells the
operator that the column needs to be scrolled downwards to display

events above the top-most event in the column. An upward pointing

= BE Q=

arrow tells the operator that the column needs to scrolled upwards to
display events below the bottom-most event in the column. If both
the downwards and upwards arrows are displayed in any one column,
then the operator has the choice to either scroll the column upwards
or downwards to see the events that are off the screen. The functions
keys that have been assigned for the scrolling tasks has already been

described in chapter 5.

As an illustration, plate 7.9 shows the primary causes of Ci1(41)
via the secondary events CI1(71) and L15(11), and also the chain of
consequences from C1(41) to RBI1(41). The fault column has more than
5 events to be displayed. The downward arrow on the top left hand
corner of the fault column indicates that the column needs to be
scrolled down to display the events that are off the top of the screen.
The dash next to the arrow indicates that there is no need for
scrolling upwards. Scrolling down the fault column is achieved by

pressing the F6 function key.

Plate 7.10 shows the effect when the F6 function key is pressed
twice. This time the top left hand corner of the fault column has both
the downward and upward arrows displayed. This is to indicate that
there are events off the top and bottom of the screen not displayed.
The operator can either press the F6 function key to further scroll
down the fault column or the F5 function key to scroll up the fault
column. This scrolling facility is also implemented on the cause and

consequence column.

- 2N -

I

0,42812392 |

cr
e
=
fars
fasteg
-3
| |

1 V7(0)

Joman

[y
o
£

9%
=]
—
&3

o

2 UB(0)

I

C1(41)

!

0. 06586522 1518251

3 L15(0)
0, 91000000 bl

0, 06586522 1431720

0. 51000000 3430061
L15(11)
0. 14317209

(W = |
e
(S |
=1
=
T

4 CICOIL(D)

! !
= (Yol

—

Plate 7.9 : Display showing the primary causes of Cl1(41) via the

secondary event C1(71), and the chain of consequences

to RB1(41).

).5204442
0, 428173518

0, 56500000
N4(11)

0. 16227183

4 CICOIL(0)

0, 01000000 & Bt
C1(41)

. 15122515

1 V7(0)

2 UB(0)

3 L15(0)

Plate 7.10 : Display showing the effect when the fault column,

originally as shown in plate 7.9, 1s scrolled downwards

by pressing the f6 function key twice.

7.5 : Discussion

The size of the screen of the VDU limits the operator to seeing
only one level of causes and consequences and five events per column
at a time. However, with the facilities that enable the user to view
other levels of causes and consequences and the ability to scroll each
column independently, all the cause and effect relationships can be
viewed. Thus the diagnosis package is flexible and versatile and the
user can view any part of the fault tree and can easily trace to the

root cause of the alarm event.

The operations on any display can be done by single key strokes
of the function keys or pressing combination of ALT key and either A
or E key. Each key stroke has its particular function. If the user does
not know which key performs the desired task, pressing the ALT and
H keys together will display a help frame. The help frame tells the

user what keys to press that perform the required task.

7.6 : Conclusion

From the results of the test, it has been demonstrated that:

1) TRANSLAT correctly translate the cause and symptom

equations into a data structure such that the cause and effect

information are easily accessible,

= g =

2) both the a priori and posteriori probability evaluations in the
program TRANSLAT and DISFAULT respectively have correctly

calculated probability values,

3) the fault trce display on the VDU of the computer can be
easily operated on so as to view other parts of the fault tree

that is off the screen.

= 278 =

CHAPTER EIGHT

8. DISCUSSION, RECOMMENDATION FOR FUTURE WORK
AND CONCLUSION

8.1 : DISCUSSION
8.1.1 : Introduction

HAZOP studies and fault tree analysis are currently used
primarily as a design tool to investigate the reliability, safety and
operability of process plants. The present work has shown that the
outcomes from HAZOP studies in the form of cause and symptom
equations, organised in a form of a fault tree display, can be used as a
diagnostic aid in finding the cause of a fault occurring whilst a
process plant is in operation. Th.e work has included the development
of a package which operates in four stages, assuming that a HAZOP

study is complete. These are:

1) translation of the cause and symptom equations obtained
from the IIAZOP study to a data structure stored in a file,

2) use of a new top-down recursive algorithm for evaluating the
a priori probability of every non-primary event stored in the
data file,

3) evaluation of the posteriori probability of every event in the
data file on the occurrence of any event,

1) display of the fault tree on the VDU of the microcomputer,

including probability information.

« 26 ~

The usefulness of the diagnosis package depends on the ability
of the HAZOP data to represent the actual process plant failure
modes and the cause and effect relationships. It is also dependent on
the spced of computation to evaluate the conditional probabilities on
the evidence that an event has happened. The fault tree display on the
VDU of the computer is important for the success of the diagnosis
package, because the intention is to communicate the results to the
opcrator. Some problems have occurred with the the development of
the diagnosis package. Some of these problems have been overcome
while others need further work. These are discussed in the following

sections.

8.1.2 : HAZOP In Relation To Fault Diagnosis

The general objective of HAZOP study is to identify hazards and
opcerability problems in a process plant. A general description of how
a HAZOP study is carried out and limitations of HAZOP have been
discussed in chapter 3. One problem of the HAZOP study is the
presentation of the accumulated data so that it is easy to comprehend.
Another problem is the storage of the information obtained from a
HAZOP study in a computer for access by computer programs. These
problems have been overcome in this work by using the Lihou [71]
coding method and representing the cause and effect relationships in
the form of cause and symptom equations. A cause equation relates a
deviation in a process plant variable to its causes. The way process
plant equipment responds to the deviation is described by a symptom
cquation. Thus the cause and symptom equation method of recording

the HAZOP findings is both concise and comprehensive.

- 271 -

For the purpose of testing the diagnosis package, a HAZOP
study was done on a pilot distillation plant. A problem encountered
during the HAZOP study was the occurrence of cycling effects,
especially when analysing recycle streams and feedback control loops.
A cycling effect occurs when an event is a cause of itself. The fact
that this has happened is not known until the cause and symptom
equations are processed to obtain the set of primary causes of an

event, during the data preparation stage of the diagnosis package.

As an illustration of a cycling effect, consider the buffer tank

arrangement as shown in figure 8.1.

4 #—FC1
s i FCL1
CcVi l

T1

FIl

L2

Figure 8.1 : A Schematic Diagram of a Buffer Tank

The series of cause equations which traces to the root causes of less

than normal flow of fluid in line L2 are as follows:

1. L2(12) = T1(42) + L2(-1) + L2(L)

2. Ti1(42) = L1(12) + Ti(L)
3. L1(12) = CVI(-1) + L1(-1) + LI(L) + FCLI(-1)

4. FECL1(-1) = FI1(1) + FCIi(-1) + L2(13)

- 278 -

5. L2(13) = T1(43)
6. T1(43) = L1(13)
7. L1(13) = CVI(1) + FCLI1(1)

8. FCL1(1) = Fli(-1) + FCi(1) + L2(12)

The explanation of the above symbols is found in chapter 3. If the
causes of L2(12) are traced from cause equations | to 8, it will be
found that from equation 8, L2(12) is itself a cause. When this
happens, there will be an endless display of the fault tree with L2(12)

as the event that causes the unbroken chain.

To avoid the cycling effect, natural responses of control loops
and recycling streams are not included in the cause and symptom
equations. For example, when flow of fluid in line L2 is less than
normal, then the response of the controller is to increase the flow of
fluid in L1 so that eventually the flow of fluid in L2 will return to
normal. Thus, for a short period of time, the flow control loop will be
at a state of giving high flow of fluid in L1, i.e., FCL1(1). In actual
fact, FCL1(1) in response to low flow of fluid in L2 is not a fault but
a natural reaction of the controller. Thus, the event L2(12) need not
be included in the cause equation for the causes of FCLI1(1). If this

rule is followed, then the cause equations 4 and 8 will be:

4* RCL1(-1) = FI1(1) + EC1(1)

8* FCL1(1) = FI1(-1) + EC1(-1)

By applying this rule, then the cycling effect is eliminated and the

fault tree will end with the primary events as the bottom events. This

= 299 =

rule has been applied during the HAZOP study of the pilot distillation

plant.

8.1.3 : The Fault Tree Data File

The cause and symptom equations are an unstructured collection
of cause and effect relationships. In this form, the information
required for constructing the fault tree and probability evaluations
cannot be easily extracted by the diagnosis package. For easy access
to the data, the cause and symptomm equations were translated to a
data structure and stored in a file. The format of the data file was
described in chapter 5. The package has only to search for the alarm
event name once from the data file and the causes and consequences

for that event can be easily obtained using pointers.

The number of causal events on the right hand side of a cause
equation varies from one equation to another. Also, the number of
causes for each particular symptom depends on the number of
symptom equations having the same event as a symptom. A benefit of
the format of the data structure is that the user does not have to
worry about the variability of these numbers. Theoretically, the data
structure can handle any number of causes of an event. The only
limitation is the amount of available space in the permanent storage
media of the computer to store the data file. Another advantage of the
data structure is that the number of consequences of an event is
easily known. This information is not easily extracted from the

collection of cause and symptom equations.

- 280 -

8.1.4 : Computation of Fault Tree Probabilities

Most of the published work on fault tree synthesis and analysis
has been based on the use of large computers. These machines
typically have large memories and fast execution times. On the IBM
PC compatible microcomputers, using the MS DOS operating system,
the amount of memory that can be used for loading and executing a
program is limited to less than 640 kilobytes. This limitation was

taken into account when designing the fault diagnosis package.

During the development of the diagnosis package, an algorithm
was chosen for evaluating the a priori and posteriori probabilities of
every event In the fault tree data file. The algorithm had to be small
enough for implementation on an IBM PC compatible computer. In
chapter 4, various fault trce probability calculation algorithms were
reviewed and evaluated. Most of the algorithms were developed for
design purposes and were used on large main-frame or mini
computers. The algorithms were unsuitable for implementation for

real-time application on the IBM PC compatibles where the size of

memory is limited.

The algorithm that had been successfully implemented on
a microcomputer was the top-down recursive algorithm known as
TDPP developed by Page and Perry [109, 110]). The use of recursion
makes the code for TDPP small and compact. TDPP also takes care the
problem of repeated events quite easily. The other algorithms

reviewed either address this problem in complex way or not at all.

- 281 -

The depth of recursion in TDPP when evaluating the probability
of a non-primary event depends on the number of primary events
connected to that event by OR gates and the number of repeated
primary events which are inputs to that event. For example, if the
cvent has n primary events as inputs via an OR gate, then the depth of
recursion by TDPP is n+t2 and the total number of calls to the

probability evaluation subroutine is (3xn)-1.

llowever, there is a limit to the depth of recursion on the IBM
PC compatibles. When a subroutine calls itself, the same subroutine is
loaded somewhere else in memory before execution of the called
subroutine begins. If there are repeated nested calls of the same
subroutine, there may not be enough memory to complete the
reccursion. This is a weakness when using the recursive method, which
could be overcome using recent methods that enable IBM PC

compatible computers to access more memory.

The fault tree probability evaluation developed for the diagnosis
package in this research work is based on TDPP and is called TDRA. A
few modifications were made to overcome the limitations of TDPP.
These modifications were described in chapter 5. An advantage of
TDRA is that the depth of recursion is greatly reduced. If an event is
caused by any one of mn independent primary events, the depth of
recursion using TDRA to evaluate the probability of the event is only
3. The total number of calls to the probability evaluation subroutine
is also 3. TDRA is thus much faster than TDPP. Theoretically, TDRA
c¢an handle any number of primary events connected to an OR gate. The
only limitation is the declaration of the sizes of the arrays 81 and s2

which hold the addresses of events which TDRA operates on.

- 282 -

8.1.5 : The Fault Tree Display

A fault tree can be very large, with several levels of secondary
events between the top event and the primary events. Normally, it is
drawn as an upside-down tree with the top event as the root, the
secondary events as the branches and the primary events as the leaves
of the tree. It is not possible to display such a fault tree on the VDU
of the computer due to the small size of the screen. This limitation

has been discussed in chapter 5.

An alternative method of displaying a fault tree was developed
so that enough information can be displayed without confusing the
user. In the new method, the fault tree is displayed on the VDU
sideways. The screen is divided into 3 columns. The alarm event is
displayed in the centre column, the causes are displayed in the column
to the left of the alarm column and the consequences are displayed in
the column to the right of the alarm column. Only one level of causes
and consequences can be displayed and a maximum of 5 events per
column. However, the user can operate on the display to view other
parts of the fault tree not shown on the VDU. The method of
operating on the display was described in chapter 5. Examples of the

display are shown in chapter 7.

8.1.6 : Testing of The Diagnosis Package

The diagnosis package was tested using data obtained from the

HAZOP study of the pilot distillation plant. The diagnosis testing was

= ZB3: =

done off-line. The fault tree display program is called DISFAULT.
Input of the alarm event is from the keyboard. The posteriori
probability of every event in the fault tree data file is then evaluated
before the fault tree is displayed on the VDU of the computer. From
then on, the user can switch on the display of the probability values
of the events displayed on the screen. These values can be used as a

guide for finding the most probable cause of the alarm event.

Onc problem faced during the testing of the diagnosis package
is the relatively slow completion of the posteriori probability
calculation, depending on the type of alarm event input to the
package. If the alarm event is near the bottom of the fault tree with
only primary events as inputs, then the time needed for completion of
the probability evaluation is relatively fast. However, if the alarm
cvent is the top event or near the top of a fault tre.e and there are
sceveral levels of secondary events, then the probability evaluation may
take quite some time. This is due to the slow rate of completing the
cevaluation of the conditional probabilities of the consequences of the

cansal events.

The procedure for evaluating the posteriori probability of a
consequence of a causal event is to first determine the probability of
that event ANDED with the alarm event. Since there are several
primary events common to both the consequence event and the alarm
cvent, this makes the probability evaluation relatively slow. The
problem is not serious if the common primary events are inputs to OR
gates or AND gates in both the consequence event and the alarm

event. The problem becomes more serious if the common primary

- 284 -

cvents are inputs to OR gates in one event as well as inputs to AND
gates in the other event. This problem is not due to any fault of the
probability evaluation algorithm. It is due to the complexity of the

evaluation when events which are not s-independent exist.

To make the probability evaluation process complete its task at
a faster rate, an alternative posteriori probability evaluation
subroutine was written which is very similar to the original
subroutine. The only difference is that the conditional probability of
the consequences of the causal events are not evaluated. Instead, a
value of 2 is assigned for each of such events to show that the
consequence will occur if it is found that the causal event is actually

the causc of the alarm event.

An alternative fault tree display program call.ed DISALT was
produced which includes the alternative posteriori probability
cevaluation subroutine. The user has a choice of which program to use
as an aid for diagnosing a fault in the plant. If it is found that the
posteriori prohability evaluation takes too long to complete its task
when using DISFAULT, the user can break off the program execution

and use DISALT instead to get the results more quickly.

8.1.7 : Significance of the Diagnosis Package

The package developed is of use in diagnosing both the cause
and conscquence of any single event. Using the package, the user can

view which event is the most likely cause of the alarm event and what

are the consequences that can occur if no remedial action is taken.
The probability values can be used as a guide for tracing the most
probable line of causes for the alarm event. Together with
measurements of process plant variables, the user can discount the
events that are false and proceed to find the causes of events that are

true.

There are two particular aspects in usage of the fault diagnosis
package that need to be discussed. They are observability and

instrument failure. These are discussed below.

8.1.7.1 : Observability

Observability in process control 1is concerned with the
identification of the process variables which can be observed and
those which cannot. By analogy, the observability in fault trees may be
sald to be concerned with the identification of which deviations or

events that are observable.

In the use of fault trees for design, all the deviations or events
are, in theory, observable. In real-timme applications, only the
deviations of measurements and status indicators are directly
observable by the computer. Thus the use of a fault tree in a process
computer as a diagnostic tool is limited by the measurements available
which can confirm whether the obscrvable events are true or false. It
can be noted that a human operator will observe a much greater

amount of information.

- 286 -

Martin-Solis et al [41] proposed that in displaying a fault tree
for alarm analysis, which is another term for fault diagnosis, failure
paths which have observable events which are false can be eliminated.
This will produce a concise fault tree since inactive branches have
been removed. However, such a display can be misleading because too
much trust is being placed on the measuring instruments giving the
true state of the variables. Instruments may fail normal, that is,
shows the normal value, whereas the actual state of the variables
measured may have deviated. Thus, the observable events that are
supposed to be true and active are not shown when the fault trece is

displayed by using Martin-Solis's method.

The fault tree display developed in this research work does not
eliminate any of the branches, whether active or inactive. This is to
show that observable events, whether true or false cannot be trusted.
An observable event which iIs active, i.e. true, is used to narrow down
the search space for determining the actual cause of the occurring
fault. If the primary events that cause the active observable event are
found to be false, it indicates that there is an instrument malfunction.
However, only after checking the other inactive branches and finding
that all the primary events are false, can the instrument malfunction
be considered as the actual cause of the alarm being raised and it Is a

false alarm.

8.1.7.2 : Instrument Failure

Instrument failure is a common type of failure on process

plants. Instruments which are not in control loops which fail high or

- 287 -

low may contribute to false alarms being raised. This will incur a high
load on the operator to search exhaustively through the plant items to

find the cause of the alarm, when in actual fact, the process plant is

running normally.

The most misleading response of process plant variables is when
instruments fail normal. For this type of failure, the process
computer and the operator would not know that the process variable
measured by the failed instrument is in a deviant state. This type of
failure can only be diagnosed when data gathered from measurements
of other process variables show that the process plant is behaving

abnormally.

The problem of instrument failure has similarities and
interactions with the observability problem. The diagnosis package
does not show events that indicate falled normal instruments.
However, the operator can infer the existence of a failed normal
instrument when it is proved that the inactive branch associated with

the instrument is actually active.

8.1.8 : Limitations of the Diagnosis Package

The package has been written and tested for off-line fault
diagnosis. It can be used whenever there is an alarm to aid the
operator to find the cause of the alarm. To confirm that the events
shown in the fault tree display are true or false, the operator has to

depend on the readings of the measuring instruments.

- 288 -

One important aspect the diagnosis package has not overcome is
the problem of time lag for operators to take remedial actions. This is

discussed below.

8.1.8.1 : Time Lag for Fault Diagnosis

The objective of real-time fault diagnosis is to take preventive
measures before any hazardous accidents could occur when there is an
abnormality in the process system. To achieve this, the fault diagnosis
system has to exploit the time lags in the fault propagation. In this

sense, the existence of time lags is fundamental for such application.

The fault tree is a pictorial representation of a set of system
states. Effectively, this representation assumes that time is not a

parameter in the fault propagation being considered.

In practice, all types of system exhibit some time lags as faults
propagate. The time lags may or may not be significant in analysing

how faults occur in the system.

In electro-mechanical systems, including most trip systems, the
system behaviour can be adequately modelled without considering the
time lags which exist. For this reason, fault tree analysis for such
systems are valid. This is not to say that the time lags do not affect
the system behaviour, but rather that if the lags are recognised by the
analyst and are effectively invariant, they will contribute little more

to an understanding of the failure mechanism.

= 289 =

In process systems, the time lags are more complex and vary
with the plant conditions. This is due to the variability of process
variables within a range of values. Thus the time for the responses to
take effect will also vary. If several primary faults have the same
consequence, the time for each fault to propagate to that consequence
will be different. Also, if a primary fault has several consequences,
the time for the consequences to take effect will be different. Thus,
an event may have several time lags due to having several different

causes that can activate it.

As an (illustration, from the HAZOP study of the pilot
distillation plant in chapter 6, the causes and consequence of a high

liquid level in the reflux drum is shown in figure 8.2.

CAUSES | ALARM CONSEQUENCES

|
| |
[cicoiLw) F— |
|
|
|

| L9(0) f—

| P2(0) —l— c143) }——— CIVENT(OF)

| L11(0) —

[LcLuny }—
l

A

Figure 8.2 : Fault tree display showing causes and consequences of

high liquid level in vessel C1.

290

The consequence of the high level in the reflux drum if no remedial
action is taken is that liquid may rise higher until there is an overflow
via the vent of the condenser. This is shown as CIVENT(OF) in the
consequence column in figure 8.2, If the cause of the high level is due
to leakage of water from the condenser cooling coil, shown as
C1COIL(L), the time for the overflow to occur will depend on the rate
of leakage and the input and output flow to the condenser. If the
cause is due to either a blockage in the exit line, shown as L9(0), or
the pump on the exit line not working, shown as P2(0), then the time
for the overflow to occur will depend on the rate of input to the
condenser. If the controller that is supposed to maintain the liquid
level in the condenser at its set-point fails and instead acts to
maintain the liquid at the high level, shown as LCL1(1), then the
overflow would not occur. Thus, different causes of the high liquid

level in the reflux drum will give different time lags for the overflow

of liquid via the vent of the condenser.

There are two ways in which a hazardous accident can occur
once an alarm has been raised. One way is when the accident is a
direct consequence of the alarm event itself. For this case, measures
can be taken quite easily to prevent the accident from occurring, if
sufficient time lag is present. Another way is when the accident is a
consequence of any one of the causes of the alarm. For this case, the
operator has to diagnose which event caused the alarm before any
preventive measures can be taken. Moreover, the time lapse between
the causal event happening and the occurrence of the alarm event has
to be known. This is needed for the operator to judge whether there is
enough time for remedial action to be taken from the time the causal

event has been found.

- 2701 -

The fault diagnosis package developed in this research work
does not show the time lags for the consequences to occur on the

onset of an alarm. The rcason is the complexity in obtaining the time

lags.

One way of obtaining the time lags in real-time is to solve an
adequate dynamic model of the process for the various failure modes
using the current values of the measured variables as inputs. However,
this would take quite a lot of the computer time and thus would
defeat the purpose of using the diagnosing package, in that, this is an
extra lag. The solution of the dynamic model is more complicated if
the time lag for the occurrence of a consequence of a cause of the
alarm is to be determined. This is due to the fact that the time when

the causal event has occurred in the past is not known.

In the absence of actual time lag data, the operator has to
estimate when hazardous incidents could occur based on the
occurrence of a particular fault in the process. Sound estimation of
the time lags depend upon the expericnce and engineering judgement
of the operator. The experience can only be gained if the operator has
faced similar circumstances previously or has undergone training for
fault diagnosis. Since faults which can bring about hazardous
incidents seldom occur, the training of operators so that they can gain
such experiences can only be done using simulators. Marshall et al
1116] and Yuan-Liang Su et al [117] have developed such training
simulators for process plants to train operators in fault diagnosis.
The diagnosis package developed in this work can be implemented for

such training purposes.

~ 292 ~

8.2 : OTHER USES OF THE DIAGNOSIS PACKAGE

8.2.1 : Introduction

The use of the diagnosis package developed in this research
work can be adapted for other uses apart from finding causes and
consequences of an alarm event. It is envisaged that other uses of the
diagnosis package are:

1) operator training,

2) determination of reliability of safety devices and measuring

instruments,

3) preparation of operating manuals,

8.2.2 : Operator Training

A process plant that behaves abnormally will put a heavy mental
load on the operators to find the causes so that remedial action can
be taken to put the plant back to its normal operation. Errors in
decision making and slow responses by the operators play the major
part in most disastrous accidents [118, 119]. The importance of training
operators to face unforeseen circumstances has already been discussed
earlier. The diagnosis package can be used to train operators to
realise how a specific cause can lead to other causes and what action

to take to prevent occurrence of major disasters.

- 293 -

8.2.3 : Reliability of Safety Devices and Measuring Instruments

Safety devices that are installed on the process plant may fail
when required to act, resulting in hazardous consequences. Measuring
instruments that fail high or low will output false alarms.
Instruments which fail normal are dangerous since the process
computer or the operator would not know from such instruments that
the plant is behaving abnormally. It is essential that safety devices
and instrumentation on a process plant should be reliable so that the
veracity of the measurements can be trusted and the frequency of
failure should be very small. The diagnosis package can be used as a
design tool to investigate and improve the reliability of the
measurements. With the help of the fault tree display and the
probability values, the designer can determine how reliable a safety
device or measuring instrument for a particular process variable

should be to justify the cost of installation.

8.2.4 : Operating Manuals

One of the difficult tasks for any plant management or process
engineer is the writing of start up and shut down procedures [120].
The start up procedure is normally easier than the shut down
procedure. An improper shut down can cause expensive wastes,
incomplete products and a long delay. The diagnosis package can be
used as an ald in understanding the sequences of events that arise
from specific actions. With the aid of the package, the appropriate
action which can be carried out more safely and quickly can be

evaluated.

- 294 -

8.3 : RECOMMENDATION FOR FUTURE WORK

As it stands now, the diagnosis package is initiated by the user
input of the alarm event via the keyboard. There are no on-line
process variable measurements to the computer. This is not a major
setback. The user can still use the diagnosis package with operators
checking observable measurements to verify whether events displayed
on the VDU are true or false so as to lead to the primary cause of the

alarm.

The diagnosis package can be extended for use with on-line
measurements so that the fault tree display can be Iinitiated
automatically. With the on-line measurements, verification of events
can be done automatically. This will reduce the load of operators to

check on the measuring instruments.

A common feature when a process plant is behaving abnormally
is that there will be several alarms going off. Usually, most of the
alarms are interelated. The package can be extended to show at the
bottom of the VDU screen what alarms have been raised. The user can
then choose to view the cause and effect relationships of any one of
the alarm events. The fault trce display will then show which alarms
are interelated that have a common cause. Also alarms that are
inconsistent can be checked to see which one is true or to verify that

the inconsistent alarms are false.

The present package only calculates the posteriori probability of

cvery event in the fault tree data file once, based on the alarm event

- 295 -

input by the user. With on-line information, the status of events
which are false at one time may become true and vice versa as time
proceeds. There is a need to update the posteriori probability
information for such a situation. This facility can be included in

future work of extending the diagnosis package.

In the present diagnosis package, the choice of which line of
events that is to be traced to find the cause of the alarm is
determined by the operator, guided by the posteriori probability
values. A useful extension of this work is to include a facility where
the package guides the operator of which line of events to search for
the primary cause of the alarm. This can be done using an expert
system technique with the information contained in the fault tree and
the on-line measurements as the knowledge base for the system. Such
application has been done by Kumamoto and llenley [54]1. The extra
facility of the fault tree display can be used by the operators to verify

the findings of the expert system.

Another recommendation for future extension of the diagnosis
package is to include time lag data so that operators would know how
long they have to remedy an abnormal situation. The problem of
obtaining the time lag for reponses of certain magnitudes of process
variables has been discussed earlier. A general method of obtaining

the time lag information will be very useful for fault diagnosis

purposes.

- 296 -

8.4 : CONCLUSION

This work set out to:

1) investigate the use of the outcome of a HAZOP study for
real-time fault diagnosis,

2) gencrate a fault tree display on the VDU of a computer using
the information from the HAZOP study,

3) use the probability of occurrences of events as a guide for the

fault diagnosis.

The major result of the work has been the development of a
diagnosis package which can be used to diagnose the causes and

consequences of any single fault in a process plant.

The achievements of the work can be summarised as follows:

1) A method of storing the HAZOP information in the computer
has been developed so that the diagnosis package can easily
extract the information for probability evaluations and

generating the fault tree on the VDU of the computer.

2) A new fault tree probability evaluation algorithm has been
developed based on the top-down recursive method developed
by Page and Perry [109, 110] called TDPP . The new algorithm
is called TDRA which evaluates the probabilities of every
independent event in a fault trec in onc traversal from the top
event to the primary events. The number of recursions in

TDRA is much less when compared to TDPP.

- 297

3) A new method of displaying the fault tree on the VDU of the
computer has been developed which takes into account of the

limited space available on the screen of the VDU.

The diagnosis packape has been wriiten using Microsoft

Quickbasic and is intended for use on any IBM PC compatible

microcomputer.

The use of HAZOP studies to investigate the safety, reliability
and operability of process plant is now accepted In the process
industries. The result from the HAZOP studies is not wasted if it is
used for real-time fault diagnosis as shown from the achievements of

this work.

- 298 -

10.

12.

13.

14.

REFERENCES

Marshall, V.C.; "Major Chemical Ilazards", Ellis Harwood Ltd.,
London, 1987, p. 6.

ibid reference 1, p. 7.

Health and Safety Executive; "Advisory Committee on Major
Hazards - First Report"”, HMSO, London, 1976.

Health and Safety Executive; "Advisory Committee on Major
Hazards - Second Report”, HMSO, London, 1979.

Health and Safety Executive; "Advisory Committee on Major
Hazards - Third Report"”, IIMSO, London, 1980.

Lees FE.P.; "Loss Prevention in the Process Industries”, Vol. 1,
Butterworths, London, 1980, p. 2.

Berenblut, B.J.; Menashe, J.; "Ranking Risks in Commerce and
Industry”, Developments '82, I.Chem.E. Symposium Series No. 73,
I.Chem.E., London, 1982.

Health and Safety Executive; "A Guide to the HSW Act"”, HMSO,
London, 1980.

ibid reference 1, pp. 442-445.

Anon.; "The Flixborough Disaster - Report of the Court of
Inquiry"”, HMSO, London, 1975.

European Community Directive, "On the Major Accident Hazards
of Certain Industrial Activities”, 82/501/EEC, 1982,

ibid reference 1, p. 446.

Lawley, H.G.; "Operability Studies and lazard Analysis", Loss
Prevention, CEP, A.I.Ch.E., Vol. 8, 1974, pp.105-116.

Kletz, T.A.; "HAZOP and HAZAN", 1.Chem.E., London, 1983.
Roach, J,; Lees, F.P.; "Some Features of and Activities in Hazard

and Operability (HAZOP) Studies™; The Chemn. Engineer,
I.Chem.E., Oct. 1981, pp. 456-462.

16.

17.

18.

19.

20.

21,

22

23.

24,

235.

26.

27

28.

29.

Jones, M.C.; Lihou, D.A.; "CAFOS - The Computer Aid for
Operability Studies™, I1.Chem.E. Symposium Series No. 97,
[.Chem.E., 1986, pp. 249 - 260

Lihou, D.A.; "Computer Aided Operability Study"”, Loss
Prevention Bulletin No. 051, I.Chem.E., 1983.

Browning, R.L.; "Use of Fault Tree to Check Safeguards", Loss
Prevention, Vol. 12, CEP, A.1.Ch.E., 1979

Anon., "The Technical Lessons of Flixborough”, A Symposium in
Dec. 1975, I.Chem.E., 1976

Edwards, E., Lees, F.P.; "Man and the Computer in Process
Control”, I.Chem.E., 1972, p.118

Rasmussen, J.; "Notes on Diagnositc Strategies in Process Plant
Environment"”, RISO-M-1983, RISO National Laboratorym,
Denmark, Jan. 1978.

Lees, F.P.; "Process Computer Alarm and Disturbance Analysis: A
Review of the State of the Art", Computers and Chem. Engg.,
Vol. 7, No. 6, 1983, pp. 669 - 694

Andow, P.K., Lees, F.P.; "Process Plant Alarm Systeimns: General
Considerations”, in Loss Prevention and Safety Promotion in the
Process Industries, Buschman, C.H. (Ed.), 1974, pp. 299 - 307

Kramer, M.A. "Malfunction Diagnosis Using Quantative Models
with Non-Boolean Reasonong in Expert Systems”, A.I.Ch.E., Vol.
33, No. 1, 1987, pp. 130 - 140

Himmelblau, D.M. "Fault Detection and Diagnosis in Chemical
and Petrochemical Processes”, Elsevier Scientific Publishing Co.,
Amsterdam, 1978, p. 13.

Isermann, R.; "Process Fault Detection Based on Modelling and
Estimation Methods - A Survey", Automatica, Vol. 20, No. 4,
1984, pp. 387 - 404

ibid reference 25, pp. 168 - 273

ibid reference 25, p. 184

ibid reference 25, pp. 273 - 342

Berenblut, B.J.; Whitehouse, H.B.; "A Method for Monitoring

Process Plant Based on a Deccision Table Analysis™, The Chem.
Engr., March 1977, pp. 175 181.

- 300 -

31.

32.

34.

36.

37.

38.

39.

40,

41.

40.

41.

Munday, G.; "On-Line Monitoring and Analysis of Hazard of
Chemical Plant”, Loss Prevention and Safety Promotion,

ibid reference 25, p. 293

Rasmussen, J.; Jensen, A.; "Mental Procedures in Real Life Tasks:
A Case Study of Electronic Trouble Shooting”, Ergonomics, Vol.
17, 1974, p. 293

Edwards, F.; Lees, F.P.; "Man and Computer in Process Control”,
I.Chem.E., London, 1972

Kay, P.C.M.; "On-Line Computer Alarm Analysis"”, Ind. Electron.,
Vol. 4, 1966, p. 50

Welbourne, D.; "Alarm Analysis and Display at Wyfla Nuclear
Power Station", Proc. ICE, Vol. 115, 1968, p. 1726

Patterson, D.; "Application of Computerised Alarm Analysis
System To Nuclear Power Station", Proc. ICE, Vol 115, 1968,
p. 1858

Baarth, J.; Maarleveld, A.; "Operational Aspects of a D.D.C.
System", I.Chem.E. Symp. Serics No. 24, 1967, p. 23

Andow, P.K.; "Real-Time Analysis of Process Plant Using a Mini
Computer”, Computers and Chem. Engg., Vol 5, 1980,
pp. 143 - 155

Andow, P.K.; Lees, F.P.; "Process Computer Alarm Analysis:
OQOutline of a Method Based on List Processing”, Trans. I.Chem.E.,
Vol. §3, 1975, p. 195

Martin-Solis, G.A.; Andow, P.K.; Lees, F.P.; "Fault Tree Synthesis
for Design and Real-Time Applications”, Trans. [.Chem.E., Vol.
60, 1982, pp. 14 - 25

Andow, P.K.; Lees, F.P.; "Process Computer Alarm Analysis:
Outline of a Method Based on list Processing”, Trans. 1.Chem .E.,
Vol. §3, 197§, p. 195

Martin-Solis, G.A.; Andow, P.K.; Lees, FF.P.; "Fault Tree Synthesis
for Design and Real-Time Applications”, Trans. I.Chem.E., Vol.
60, 1982, pp. 14 - 25

Tsuge, Y.; Shiozaki, J.; Matsyama, H.; "Fault Diagnosis

Algorithins Based on the Signed Directed Graph and Its
Modifications"”, 1.Chem.E. Symp. Series, No. 92, 1985, p. 133.

—-301 -

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Tsuge, Y.; Matsuyama, H.; "Equivalence Between The Two
Formulations of the Problems of Fault Diagnosis of the
Chemical Process”, Memoirs of the Faculty of Engineering,
Kyushu University, Japan, Vol. 44, No. 3, 1984, p. 360

Iri, M.; Aoki, K.; "A Graphical Approach to the Problem of
Locating the Origin of the System Failure”, J. of the Operation
Research Society of Japan, Vol. 23, No. 24, 1980, p. 295

Tsuge, Y.; Shiozaki, J.; Matsuyama, H.; O'shima, E.; Iguchi, Y.;
Fuchigami, M.; Matshushita, M.; "Feasibility Study of a Fault
Diagnosis System For Chemical Plants"”, International Chem.
Engg., Vol. 25, No. 4, 1985, p.660.

Shiozaki, J.; Matsuyama, H.; Tano, K.;. O'shima, E.; "Fault
Diagnosis of Chemical Processcs By The Usc of Signed Directed
Graphs - Extension To Five-range Patterns of Abnormality"”,
International Chem. Engg., Vol. 25, No. 4, p. 651.

Umeda, T.; Kuriyama, T.; O'shima, E.; Matsuyama, H.; "A
Graphical Approach to Cause and Effect Analysis of Chemical
Processing Systems", Chem. Engg. Sci., Vol. 35. 1980, p. 2379

Lind, M.; "The Use of Flow Models for Automated Plant
Diagnosis"” in Human Detection and Diagnosis of System Failures,
Rasmussen,).; Rouse, W.B. (Ed.), Plenum Press, 1980, p. 411

Andow, P.K.; "Fault Diagnosis Using Intelligent Kwnoledge
Based Systems", Chem. Iingg. Res. & Design, Vol. 63, 1985, p. 368

Lees, F.P.; "Computer Support for Diagnostic Tasks in Process
Industries”, in Human Detection and Diagnosis of System
Failures, Rasmussen, J.; Rouse, W.B.; (Ed.), Plenum Press, 1980

Lapp, S.A.; Powers, G.J.; "Computer-Aided Synthesis of Fault
Trees", IEEE Trans. on Reliability, April 1977, pp. 2 - 13

Galluzo, M.; Andow, P.K.; "Expert Systems in Chemical
Engineering"”, EFCE XVIII Congress: The Use of Ccomputer in
Chemical Engineering, Glardini, Nuxos (Italy), April 1987,

pp. 661 - 667

Klemes, J.; Krus, A.; "Strategy of Development of Expert
Systems for Prompt Solution of Failures”, EFCE XVIII Congress:
The Use of Computer in Chemical Engineering, Glardini, Nuxos
(Italy), April 1987, pp. 851 - 857

Kumamoto, H,; Ikenji, K.; Inoue, K.; lienley, E.J.; "Application of

Expert System TEchnique to Fault Diagnosis”, The Chem. Engg.
Journal, Vol. 29. 1984, pp. 1 - 9

- 302 -

56,

57.

58.

59.

60.

6l.

62.

63.

64

62.

Niida, K.; Itoh J.; Umeda, T.; Kobayashi, S.; Ichikawa, A.; "Some
Expert System Experiments in Process Engineering”, Chem.
Engg. Res. & Des., Vol. 64, 1986, pp 372 - 382

Chester, D.; Lamb, D.; Dhurjati, P.; "Rule-Based Computer Alarm
Analysis in Chemical Process Plants", Conference on Computer
Techniques, Micro Dcicon 84, IEEE, March 1984, pp. 22 - 29

Yamada, N.; Motoda, H,; "A Diagnosis Method of Dynamic
System Using Knowledge on System Description”, Proc. 8th Int.
Joint Conf. on Artificial Intelligence, Karsluhe, W. Germany,
1983, pp. 225 - 229

Kramer, M.A.; Palowitch Jr., B.L.; "A Rule-Based Approach to
Fault Diagnosis Using the Signed Directed Graph"”, A.I.Ch.E. J.,
Vol. 33, No. 7, 1987, pp. 1067 - 1078

Nelson, W.R., "Reactor: An Expert System For Diagnosis and
Treatment of Nuclear Reactor Accidents"”, Proc. of the National
Conf. on Artificial Intelligence, 1982, pp 296 - 301

Sgurev, V.; Dochev, D.; Dichev, C.; Agre, G.; Markov, Z.; "An
Approach to Building Technical Diagnostic Expert Systems”,
Computers & Artificial Intelligence, Vol. 5, No. ‘2, 1986,

pp 103 - 115

Fox, M.S.; Lowenfield, S.; Kleinosky, S.; "TEchniques for
Sensor-Based Diagnosis"”, Proc. 8th, Int. Joint Conf. on Artificial
Intelligence, Karsluhe, W. Germany, 1983, pp.. 158 - 163

Lihou, D.A.; "Aiding Process Plant Operators in Fault Finding
and Corrective Action”, in Human Detection and Diagnosis of
System Failures, Rasmussen, J.; Rouse, W.B.; (Ed.), Plenum
Press, 1980, pp. 501 - 521

Bainbridge, L.; "Analysis of Verbal Protocol From A Process
Control Task", in The Human Operator in Process Control,
Edwards, E.; Less, F.P.; (Ed.), Taylor and Francis, London, 1974,

p. 146

Edwards, E.; Lees, F.P.; (Ed.) "The Human Operator in Process
Control”, Taylor and Francis, London, 1974

Lihou, D.A.; "Aiding Process Plant Operators in Fault Finding
and Corrective Action”, in Human Detection and Diagnosis of
System Failures, Rasmussen, J.; Rouse, W.B.; (Ed.), Plenum
Press, 1980, pp. 501 - 521

- 303 -

63.

64

66.

67.

68.

69.

70.

i 2

72

73.

74.

75.

76.

Bainbridge, L.; "Analysis of Verbal Protocol From A Process
Control Task"”, in The Human Operator in Process Control,
Edwards, E.; Less, F.P.; (Ed.), Taylor and Francis, London, 1974,

p. 146

Edwards, E.; Lees, F.P.; (Ed.) "The Human Operator in Process
Control”, Taylor and Francis, London, 1974

Michie, D.; (Ed.), "Introductory Readings in Expert Systems”,
Gordon and Breach, New York, 1983

Chemical Industries Safety & Health Council, "A Guide for
Hazard and Operability Studies”, Chemical Industries Assoclation
Ltd., London, 1977, p. 7

Elliott, D.M.; Owen, J.M.; "Critical Examination in Process
Design"”, The Chem. Engr., Nov. 1968, pp. 377 - 383

ibid reference 14, p. B
ibid reference 66, p. 6

Taylor, J.R.; "Evaluation of Costs, Quality and Benefits for Six
Risk Analysis Procedures”, Internal Report, Electronics Dept.,
RISO N-14-82, Denmark, May 1982

Lihou, D.A.; "Computer Aided Operability Studies For Loss
Control”, 3rd, Int. Symp. in Loss Prevention and Safety
Promotion in the Process Industries, Basle, Switzerland, Vol. 2,

Sept. 1980, p. 579
ibid. reference 25, p. 346

Fussell, J.B.; "Fault Tree Analysis - Concepts and Techniques",
NATO Adv. Study, Inst. on Generic Techniques of System
Reliability Assessment, Nordhoff Publishing Co., Liverpool, July
1973, pp. 133 - 162

Spiegelman, A.; "Risk Evaluation of Chemical Plants"”, Loss
Prevention, CEP, A.I.Ch.E., Vol. 3, 1969, pp. 1 - 10

Browning, R.L., "Use of Fault Tree To Check Safegaurds”, Loss
Prevention, CEP, A.1.Ch.E., Vol. 12, 1979, pp. 20 - 26

Lee, K.K.; "A Compilation Technique For Exact System

Reliability”, 1IEEE Trans. on Reliability, Vol R-30, No. 3, 1981,
pp. 284 - 288

- 304 -

77.

78.

79,

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

U.S. Nuclear Regulatory Commission; "Reactor Safety Study - An
Assessment of Accident Risk in U.S. Commercial Nuclear Power
Plants”, WASH-1400 (NUREG - 75/10/014)

Fussell, J.B.; "A Formal Methodology For Fault Tree
Construction”, Nuclear Sci. & Engg., Vol. 52, 1973, pp. 421 - 432

Powers, G.J.; Tompkins, F.C.; "Computer Aided Synthesis of
Fault Tree For Complex Processing”, NATO Adv. Study, Inst. on
Generic Techniques of System Reliability Assessment, Nordhoff
Publishing Co., Liverpool, July 1973, pp. 307 - 314

Powers, G.J.; Tompkins, F.C.; "Fault Tree Synthesis for Chemical
Processes™, A.1.Ch.E. J., Vol. 20, 1974. pp. 376 - 387

Rudd, D.P.; Watson, C.C.; "Strategy of Process Engineering";
Wiley, New York, 1968

Salem, S.L.; Apostolakis, G.E.; Okrent D.; "A New Methodology
For The Computer-Aided Construction of Fault Trees", Annals of
Nuclear Energy, Vol. 4, 1977, pp. 417 - 433

Henley, F.J.; Kumamoto H.; "Reliability Engineering and Risk
Assessment”, Prentice Hall Inc., New Jersey, U.S.A., 1981, p. 310

Hastings, N.A,; Peacock, J.B.; Statistical Distributions”,
Butterworths, London, 1974.

Lihou, D.A.; "Estimation/Calculation of Probabilities”, Short
Course on Hazard Evaluation and Control, Dept. of Chem. Engg.,
University of Aston, Sept. 1982

Fussell, J.B.; Marshall, N.H.; "MOCUS - A Computer Program To
Obtain Minimal Sets From Fault Trees"”, ANCR-1156, Aerojet
Nuclear Co., ldaho Falls, USA, March 1974

Semanderes, S.N.; "ERLAFT - A Computer Program For The
Efficient Logic Reduction Analysis of FAult Trees”, IEEE Trans.
on Nuclear Science, Vol. NS-18, No. 1, 1971, pp. 481 - 487

Richardson, M.; "College Algebra"”, Prentice Hall, 1958

Wheeler, D.B.; Hsuan, J.S.; Duersch, R.R.; Roe, G.M.; "Fault Tree
Analysis Using Bit Manipulation"”, IEEE Trans. on Reliability,
Vol. R-26, June 1977, pp. 95 - 99

Caldarola, L.; Wickenhouser, W.; "The Karlsruhe Computer
Program For The Evaluation Of The Availability And Reliability
Of Complex Repairable Systems"”, Nuclear Engg. & Design,

Vol. 43, 1977, pp 463 - 470

- 305 -

91.

92.

93.

94.

935.

96.

97.

98.

99.

100.

101.

102.

103.

Bengiamin, N.W.; Brown, B.A.; Schenck, K.F.; "An Efficient
Algorithm For Reducing The Complexity Of Computation In
Fault Tree Analysis", IEEE Trans. on Nuclear Science,

Vol. NS-23, Oct. 1976, pp. 1442 - 1446

Fussell, J.B.; Vesely, W.E.; "A New Methodology For Obtaining
Cut Sets For Fault Trees", Trans. Am. Nuclear Society, Vol. 15§,
No. 1, 1972, p. 263

Rasmusson, D.M.; Marshall, N.H.; "FATRAM - A Core Efficient
Cut Set Algorithm", IEEE Trans. on Reliability, Vol. R-37, Oct.
1978, pp. 250 - 253

Bennetts, R.G.; "On The Analysis OF Fault Trees", IEEE Trans.
on Reliability, Vol. R-24, Aug. 1975, pp. 175 - 185

Nakashima, K.; Hattori, Y.; “"An Lfficient Bottom-up Algorithm
For Enumerating Minimal Cut Scts Of Fault Trees", IEEE Trans.
on Reliability, Vol. R-28, Dec. 1986, pp. 559 - 561

Limnios, N.; Ziani, R.; "An Algorithm For Reducing Cut Sets In
Fault Tree Analysis"”, IEEE Trans. on Reliability, Vol. R-35,
Dec. 1986, pp. 559 - 561

Garibba, S.; Mussio, P.; Naldi, F.; Reina, G.; Volta, G.; "Efficient
Construction Of Minimal Cut Sets From Fault Trees", IEEE
Trans. on Reliability, Vol. R-26, June 1977, pp. 88 - 93

Kumamoto, H.; Henley, E.]J.; "Top-down Algorithm For Obtaining
Prime Implicant Sets Of Non-Coherent Fault Trees"”, IEEE Trans.
on Reliability, Vol. R-27, Oct. 1978, pp 242 - 249

Magee, D.; Refsum, A.; "RESIN, A Desktop Computer Program
For Findiong Cut Sets”, IEEE Trans. on Reliability, Vol. R-30,
Dec. 1981, pp. 407 - 410

Pullen, R.A.; "AFTP - Fault Tree Analysis Program”, IEEE Trans.
on Reliability, Vol. R-33, June 1984, p. 171

Jasmon, G.B.; Kai, O.S.; "A New Technique in Minimal Path And
Cut Set Evaluation", IEEE Trans. on Reliability, Vol. R-34, June
1985, p. 136

Vesely, W.E.; "Reliability and Fault Tree Applications at the
NTRS", IEEE Trans. on Nuclear Sci., Vol. NS-18, No. 1, 1971,
pp. 472 - 479

Vesely, W.E.; "A Time-dependent Methodology For Fault Tree
Evaluation”, Nuclear Engg. & Design, Vol. 13, 1970, p. 337

- 306 -

104.

106.

107.

108.

109,

10.

112.

113.

114.

115.

116.

Bennetts, R.G.; "Analysis of Reliability Block Diagrams By
Boolean Technique”, IEEE Trans. on Reliability, Vol. R-31,
June 1982, pp. 159 - 166

Jiongsheng, L.; "A New Approach l'or l‘ault Tree Analysis”,
Scientia Simica Series A, Vol. 25, Sept. 1982, pp. 983 - 992

Ramadaan, §.Y.; "Reliability Analysis For Hazard and Operability
Studies™, PhD Thesis, University ofAston, Birmingham, UK, 1987

Feo, T.; "PAFT 77 - Program l‘or the Analysis of Fault Trees",
IEEE Trans. on Reliablity, Vol. R 35, April 1986, pp. 48 - 50

Koen, B.; Carnino, A.; "Reliability Calculations With A List
Processing Technique", 1I:EE Trans. on Reliability, Vol. R-23,
April 1974, pp. 43 - 50

Page, L.B.; Perry J.E.; "A Simple Approach To Fault Tree
Probabilities", Computers & Chem. Engg., Vol. 10, No. 3, 1986,
pp. 249 - 257

Page, L.B.; Perry J.E.; "An Algorithm For Exact Fault Tree
Probabilities Without Cut Sets", IEEE Trans. on Reliability, Vol.
R-35, Dec. 1986, pp. 544 - 558

Sax, N.I.; "Dangerous Properties of Industrial Materials", 6th
IEdition, Van Nostrand Reinhold, 1984

Daie, S.; "Computer Control of Chemical Process Plant with
Special Reference to Distillation”, PhDD Thesis, University of
Aston, Birmingham, United Kingdom, 1980.

Shafii, A.F.; "The use of Microprocessors in the Control of
Chemical Process Plant with special reference to the use of
Distributed Processors"”, PhD Thesis, University of Aston,
Birmingham, U.K., 1983.

Folami, T.O.; "Application of Modern Control Techniques To
Distillation”, PhD Thesis, University of Aston, Birmingham,
United Kingdom, 1989.

Anon., "Microsoft QuickBASIC Compiler for IBM Personal
Computers and Compatibles - Version 3.0", Microsoft
Corporation, 1986.

Marshall, E.C.; Scanlon, K.E.; Shepherd, A.; Duncan K.D.; "Panel

Diagnosis Training for Major- Hazard Continuous-Process
Installations"”, The Chem. Engr., I'cbruary 1981, pp. 66 - 69.

- 307 -

117.

118,

119.

120.

Su, Yuan-Liang; Govindaraj, T.; "Fault Diagnosis in a Large
Dynamic System: Experiments on a Training Simulator™; IEEE
Transactions on Systems, Man, and Cybernetics, Vol. SMC-16,
No. 1, 1986, pp. 129 - 141.

Lees, F.P.; "Loss Prevention in the Process Industries”, Vol. 2,
Butterworths, London, 1980, Appendix 1, pp. 863 - 881.

Lihou, D.; "Bhopal and Beyond"”; The Chem. Engr., No. 414,
I.Chem.E.; U.K., May 1985, p. 15.

Nisenfield, A.E.; "Shutdown Features of In-Line Process
Control"”, Loss Prevention, CEP, A.l1.Ch.E., Vol. 6, 1972, pp. 1 - 3.

- 308 -

APPENDICES

- 309 -~

APPENDIX A

RULES FOR FORMULATING CAUSE EQUATIONS

The following tables give the rules for formulating cause equations devised

by Lihou [17] to avoid illogical fault trecs.

Table A.1 : Rules for Pipelines

Index Meaning Cause

i1 FLOW NO a) No flow in the line(s) immediately
upstream.

b) No flow at the node where the line
leaves an equipment.

¢) The supply tank empty.

d) A valve shut in the line.

e) A filter fully blocked.

f) A pump in the line stopped.

g) A blockage in the line.

12 FLOW LESS a) Less flow in the supply line(s)
immediately upstream.

b) Less flow at the node where the line
leaves an equipment.

c) Vent blocked on a storage tank.

d) More flow in a branch line (judged by
the relative magnitude of the normal
flows).

e) A valve insufficiently open downstream
of a pressure control.

f) A pressure or flow controller set too
low.

g) A pressure or flow transmitter
indicating too high.

h) A pnuematic trip valve leaking to vent.

i) A flow control valve fully open AND a
valve in the line insufficiently open or
other blockage.

j) A valve insufficiently open; filter or
exchanger tubes partly blocked in a
line without flow or pressure control.

k) Bypass around a pump open or leaking.
Leak(s) downstream of a flow
transmitter.

m) Pump delivery reduced by cavitation or
speed reduction.

- 310 -

Table A.1 (a) : (continued from table A.1)

Index

Meaning

Cause

13

FLOW MORE

a) More flow in line(s) downstream.

b) More flow at the nodes where the line
leaves or enter an equipment.

c)* Leak in the line(s) downstream without
flow control.

d)*Leak upstream of flow controllers In
downstream line(s)

e) Pressure or flow controller set too high.

f) Pressure or flow transmitter indicating
too low.

g) Control valve stuck open.

h) Bypass around a control valve fully open

i) Bypass flow around a pump too low.

14

FLOW AS
WELL AS

a) Contamination of inlet line.

b) Contamination in storage tank.

c) Tubes leaking in exchanger.

d) Steam or nitrogen purge valves leaking.

e) Supply tank level low allowing air plus
liquid to enter the discharge pipe.

f) Steam trap leaking or its bypass valve
leaking.

15

FLOW FLUC-
TUATING

a) On/off controller or an unstable
control loop.

16

FLOW
REVERSE

a) Differential pressures.
b) Unequal levels AND no non-return valve
fitted or non-return valve leaking.

17

FLOW OTHER
THAN

a) Gas or vapour entering the discharge
pipe from an empty supply tank.

22

TEMPERA-
TURE LESS

a) Low temperature at the node where the
line leaves an equipment.

b) Trace heating not on or falled.

c) Temperature controller set low.
Temperature indicator indicating too
high.

23

TEMPERA-
TURE MORE

a) High temperature at the node where the
line leaves an equipment.

b) Trace heating on when it should be off.

c) Temperature controller set high.

d) Temperature indicator indicating too
low.

- 31 -

Table A.1 (b) : (continued from table A.1 (a))

Index

Meaning

Cause

32

PRESSURE
LESS

a)

b)
c)

d)

f)
g)

Less pressure in the supply line.

Less pressure at the node where the line
leaves an equipment.

A valve insufficiently open down stream
of a pressure controller.

Pressure or flow controller set low.
Pressure of flow transmitter indicating
too high.

Pnuematic trip valve leaking to vent.
Control valve fully open AND a valve

in the line insufficiently open or other
blockage.

33

PRESSURE
MORE

a)
b)

c)
d)
e)

f)
g)
h)

High pressure at the beginning of the
line and no pressure of flow control.
High pressure at the end of the line
and flow is controlled.

Pressure or flow control set too high.
Control valve stuck open.

Bypass valve around a control valve is
fully open.

Flow is controlled and flow transmitter
indicating too low.

Pressure is controlled and pressure
transmitter indicating too low.
Pressure regulator set high or its valve
stuck open. (Downstream pressure
controller valve only if two are used in
series)

* Leaks from a line are equated to drain or bleed valves open or
leaking, filters leaking, etc.

- 312 -

Table A.2 : Rules for pipeline junctions

L1

L2

rL3

Event Meaning Cause
L3(11) FLOW NO in L3 No flow in L1 AND no flow in L2.
L3(12) FLOW LESS in L3 | Low flow in L1 OR low flow in L2.
L3(13) FLOW MORE in L3 | High flow in L1 OR high flow in L2.
L3(22) TEMPERATURE Low temperature in L1 OR low
LESS in L2. temperature in L2.
L3(23) TEMPERATURE High temperature in L1 OR high
MORE in L3 temperature in L2.
L3(32) PRESSURE LESS LLow pressure in L1 or low pressure in
in L3. L2
Table A.2 : Rules for vessels
Index Meaning Cause
41 LEVEL NO a) Vessel is empty.
42 LEVEL LESS a) Level transmitter indicating too high.
b) Level controller set low..
c) No flow into vessel.
d) Low flow into vessel.
e) Lower isolation valve on the level
indicator or trasnsmitter is closed.
f) Level control valve on the discharge line
stuck open.
g) Bypass valve around a down stream
level control valve open.
43 LEVEL MORE| a) Level transmitter indicating too low.
b) Level controller set high.
c) Upper isolation valve on the level
indicator or transmitter closed.
d) Level control valve stuck open if on a
supply line or stuck closed if on a
discharge line.
e) Bypass valve around the level control
valve in a supply line open.
f) Kick-back liquid flow going to a non-

supply storage tank.

- 33 -

APPENDX B

SYMBOLS COMMONLY USED IN FAULT TREE

outFut

inputs

output

—

inputs _

output

N

inputs

O

GRAPHICAL REPRESENTATION

OR_Gate: The OR gate indicates that the output
event occurs if any of the input events occur.

AND Gate: The AND gate indicates that the output
event occurs only when all the input events occur.

BASIC Event: The BASIC event represents a basic
equipment fault or failure that requires no further

development into more basic faults or failures.

INTERMEDIATE LEvent: The INTERMEDIATE event

<>

/X

out in

represents a fault event that results from the
interactions of other fault events that are developed
through logic gates such as those defined above.

UNDEVELOPED Event: The UNDEVELOPED event
represents a fault event that is not examined further
because information is unavailable or because its

consequence is insignificant.

TRANSFER Symbol: The TRANSFER IN symbol
indicates that the fault tree is developed further at
the occurrence of the corresponding TRANSFER OUT
symbol (e.g. on another page). The symbols are

labelled using numbers or a code system to ensure
that they can be differentiated.

- 314 -

APPENDIX C

FAILURE RATE AND HUMAN ERROR PROBABILITY DATA

Table C.1: Fallure rates for chemical plant items

Plant Item

Remarks

Failure Rate

PUMPS AND PIPEWORK

Pump Failures Starting 10" 3/day
Stopping 10 */day
Abnormal running 3 x1075%/yr.
Catastrophic failure 107 %/yr.

Piping up to 50 mm. diameter 1071%/m. hr.

(catastrophic 50 - 150 mm. diameter 3 x 107''/m. hr.

rupture) above 150 mm. diameter 10"""/m. hr.

Piping up to 50 mm. diameter 10°°/m. hr.

(significant 50 - 150 mm. diameter 6 x 107'%m. hr.

leakage) above 150 mm. diameter 3 x 107/m. hr.

Hose rupture Heavily stressed 4 x 10 5/hr.
Lightly stressed 4 x 10”%/hr.

Loading arm Catastrophic failure 4 x 1075/hr.
Leak 3 x 10”%/hr.

VALVES

Pneumatic control All failures 0.3 /yr.

valves

Solenoid valves All failures 0.3 /yr.

Manual valves All failures 0.1 /yr.

Motor-operated Fails to operate 10 3/day

valves Blockage 10" 4/day
External leak 10" 8/hr.

Pressure relief Blocked 0.001 /yr.

valve Lifts heavy 0.004 /yr.
Lifts light 0.06 /yr.

Vacuum relief Fails to operate 0.005 /yr.

valve

- 315 -

Table C.1 (a) :

continuation of table C.1

Plant Item

Remarks

Failure Rate

MEASURING DEVICES (Failure to sense variable)

Level DP cell 0.43 /yr.
Float type 0.41 /yr.
Temperature Thermocouple 0.17 /yr.
Resistance thermometer 0.14 /yr.
Temperature transducer 0.29 /yr.
Pressure All types 0.47 /yr.
Guage 0.09 /yr.
Gas detectors All types i 2.5 /yr.
CONTROLLING AND TRANSMITTING DEVICES
Controller General failure 0.29 /yr.
Set point 0.14 /yr.
Control loops PIC 0.8 /yr.
PRC 0.9 /yr.
FIC 10 £y
FRC 1.4 /yr.
LIC 1.6 /yr.
ERC 1.5 /yr.
TIC 0.6 /yr.
TRC 1.3 /yr.
Switch (failure to Pressure 0.15 /yr.
operate) Manual 10" 5/day

Relay (failure to
operate)

Impulse Line

Air supply line

Trip systems

Audible alarm

Push button

Heavy duty electrical
Pneumatic

Blocked
Leaking

Blocked / crushed
Fractured/holed

General

Fails to sound

4.4 x 1073/yr.

0.44 /yr.
0.17 /yr.

0.03 /yr.
0.06 /yr.

0.01 /yr.
0.01 /yr.

0.5 /yr.

2 x 107%/day

- 316 -

Table C.1 (b) :

continuation of table C.1 (a)

Plant Item Remarks Failure Rate
Electrical Terminal | Loss of supply 0.005 /yr.
Fire Alarm System 10 3/day
GENERAL ELECTRICAL EQUIPMENT

Standby Battery Incorrect output 10 %/hr.

Motors

Emergency Diesel

Fails to start

Stops

Fails to start

3 x 10 */day
7 x 10”%/hr.

3 x 107 %/day

System Stops 0.003 /hr.

VESSELS

Pressure Catastrophic rupture 107 ¢/yr.
Serious leak 1075 /yr.

Atmospheric Tanks | Catastrophic rupture 6 x 10" %/yr.
Serious leak 1074%/yr.

Double-walled Inner and outer wall 1075 /yr.

refrigerated Inner tank 2 x 107 %/yr.

LEnvionmental Effects

The rates in table C.1 are for perfect environments. Rates of up
to 4 times larger are possible under poor conditions. This
environmental factor corresponds to the shape parameter of the

Weibull distribution.

- 37 -

Table C.2 : Probabilities for Human Errors

Probability Event

Value

1.0 Fallure to operatc second step of two closely related
actions. Failure to act correctly in 60 seconds in
high stress alarm condition.

0.9 Falls to respond correctly to an alarm within § minutes.

0.5 Fails to detect undesired position of valves during
tour of plant.

0.25 General error rate under high stress conditions.

0.1 Alters status of wrong switch whilst leavingh correct
switch in unchanged status. Personnel fail to check
hardware on shift change unless required by checklist.
Supervisor fails to recognise initial error of operator.
Operator fails to respond correctly to an alram after
30 minutes, under extreme stress.

0.0635 Failure to follow instruction.

0.03 Simple arithmatic errors with self-checking but
without calculation.

0.016 Improperly adjusting mechanical linkage.

0.01 General errors of omission. Failure to respond
correctly to an alarmm after several hours under high
stress.

0.007 Failure to solder joint correctly.

0.005 Incorrect reading of guage. Installs wrong size of
line orifice.

0.0047 Incorrect hose connection. Incorrect tightening of nut.

0.003 General errors of omission. Misreading label and
therefore selecting wrong switch. Omission of an
action embedded in a procedure.

0.002 Drilling and tapping wrong size.

0.0018 Failure to close valve completely.

0.0015 Bending pins when assembling connectors.

0.001 Failure to observe. Omission of parts when assembling
equipment. Failure to take correct action after
observing chart reading. Selection of wrong switch
which is clearly different in shape or location to the
correct switch.

6 x 10 Failure to install nuts, bolts.

3 x 10 Failure to take action. Failure to observe audible alarm.

1074 Incorrect adjustment of torque on fluid lines.

Selection of key operated switch rather than a non-key
switch.

- 318 -

APPENDIX D

FEATURES OF MICROSOFT QUICKBASIC’®

Microsoft Quickbasic [115] provides a complete development
environment, including a program editor and enhanced debugging
mode, designed to speed up the compile-debug-edit cycle. Quickbasic
also has an easy-to-learn, menu-orientated user interface, in which
commands can be selected from menus using the keyboard, an optional
mouse or both. Once Quickbasic is started, programs can be compile,
run, debug, edit, and recompile without leaving Quickbasic. During
compilation, Quickbasic "remembers” error locations, so that when
compilation is finished, a special search command can help find and
correct the errors quickly.

Quickbasic is an extension of interpreted BASIC* BASICA* and
GW-BASIC! Programs written in these versions of BASIC are
compatible with Quickbasic. The programs have to be saved in ASCII
format so that they can be loaded and run in the Quickbasic
environment. There are some extra features in Qulckﬁaslc to help in
writing programs that run faster and are easier to maintain and debug.
These features are described below.

e Subprograms

Programs, especially large ones, are easier to maintain and
debug if they are divided into smaller, more manageable parts.
Quickbasic provides a way to segment programs, i.e. the subprograms.
The use of subprograms allow for distinct modules to be written that
perform tasks that are frequently used over and over in many different

programs. Variables and arrays in a subprogram are local and will not

Quickbasic is a registered trademark of Microsoft Corporation.

* BASIC and BASICA are registered trademarks of International

Business Machine Corporation.

* GW-BASIC is a registered trademark of Microsoft Corporation.

= Y =

affect those in the main program which have the same name, unless:
- the variables and arrays are passed from the main program in
an argument list when the subprogram is called,
- the variables and arrays are declared global at the beginning

of main program.

e Structured programming support

There are several features that Quickbasic provides for writing a
better structured programs. They are:

- multiline IF . . . THEN . . . ELSE which provides more

flexibility than single-line IF . . THEN . . ELSE. It allows more

complicated case structures while preserving readability of the

program.

- SELECT CASE statements which simplify complex condition

testing.

- WHILE . . . WEND statements which allow a series of

statements to be executed in a loop as long as a given condition

is true.

- DO ... LOOP statements which is another form of executing a

series of statements in a loop. Execution within the loop

continues as long as a condition is true or until a condition

becomes true.

~ BXIT statements which provide alternative exits from

DO...LOOP and FOR...NEXT statements.

e Alphanumeric labels

Quickbasic does not require line numbers and allows the use of
alphanumeric labels. With alphanumeric labels, statements and
subroutines can be given descriptive names which makes the program

easier to read and can provide simpler debugging.

e [lexible array dimensioning

The size of arrays can be dynamically declared at run time, thus
providing more efficient use of memory.

e Large numeric arrays

Quickbasic allows as many 64 kilobytes numeric arrays as will fit

into memory.

- 320 -

APPENDIX E

SOURCE CODE OF THE PROGRAM TRANSLAT

' Maln program to code CSE stored in a sequential access file
" into a random access file.

" Define variable types

DEFINT A-U
DEFSNG V-Z

' Declare global variables

DIM SHARED e$ g$ bc$ bq$ pr$, cpr‘i; maxind

DIM SHARED r I , ec, gate$, nu$, pri$(80)

DIM SHARED caus{;m con$?4) pf(50), pg(50, 2), andflg(50)
DIM SHARED zp(50), ztemp(50), zcase(50), kpos(SO). done(320)
DIM SHARED si1(50, 80), s2(50, 80), orgate(50), andgate(50)
DIM SHARED evset(50, 80), leaves(50, 100)

" Initialise variables

rl=20
h =1
ct=0
ec =0

ERASE pf, pg
" Input name of CSE text file to be analysed
fla
l-?ILE flag
LOCATE 4, 1
INPUT “Input name of cse file to be coded : "; cse$

* Give a name to file in which analysed CSE data is to be stored

IF IINSTR(csez, “.") = 0) AND (LEN(cse$) <= 8) THEN

cd$ = cse ".COD"
prims$ = cse$ + ".PRI"
flag = 0

ELSEI (|NSTRlcse$ ") » 0) AND (INSTR(cse$, ".") <= 9) THEN
LEFT$(cse$ "INSTR(cse$, “.")) + "COD"
rrlms$ = LEFT$(cse$ INSTR(cse$, “.")) + "PRI"
|

ELSE
LOCATE 2, 1
PRINT “Incorrect file name specification. Please input again.”
END IF
WEND ‘flag

* Open file to store analysed CSE

OPEN cd$ FOR RANDOM AS =2 LEN = 51
CLOSE =2

- 321 -

KILL cd$
OPEN cd$ FOR RANDOM AS 22 LEN = 51
FIELD =2, 20 AS e$, 3 AS g$, 2 AS bc$
ka = 25
FOR kb =1 TO 4
FIELD 22, ka AS dy$, 2 AS cau$(kb)
ka = ka + 2
NEXT kb
FIELD =2, ka AS dy$, 2 AS bq$
ka = ka + 2
FOR kb = 1 TO 4
FIELD 22, ka AS dy$, 2 AS con$(kb)
ka = ka + 2
NEXT kb
FIELD =2, ka AS dy$, 4 AS pr$, 4 AS cpr$

' Open file containing CSE

OPEN "I", u1, cse$
PRINT
PRINT "Please wait while coding is being done."
FOR ka =1 TO 78
PRINT "-";
NEXT ka

" Analyse CSE

ec =0

WHILE NOT EOF(1)
LINE INPUT =1, eq$
ct=ct + 1
| 1

1
f(g) = 1
fr ?INSTR(eq:t, "=") > 0) THEN
i = INSTR(eq$, "=")
k =i
CALL CAUSE(eq$)
ELSEIF (INSTR(eq$, "-") > 0) THEN
i = INSTR(qu,)
k =1
CALL SYMPTOM(eq$)
END IF
WEND °"EOF(1)
PRINT
PRINT “Finished coding CSE file.”
IF ec = 0 THEN
PRINT
PRINT “No errors.”
ELSE
PRINT
PRINT "There are”; ec; " errors.”
END IF
PRINT
PRINT “Name of coded CSE file Is "; cd$
FOR ka =1 TO 78
PRINT -7,
NEXT ka
IF ec = 0 THEN
PRINT
PRINT "Now getting all the primary events connecting to top and”
PRINT “secondary events and storing into file ; prims$; = .-
CALL LEAF(prims$)

- 322 -

PRINT

FOR ka = 1 7O 78
PRINT "-"

NEXT ka

PRINT

PRINT "Now assigning probabilities values to primary events and”

PRINT “storing them iIn ~; cd$; "."

PRINT

CALL SETPROB

PRINT

PRINT “Now evaluating probabilities of top and secondary events.”

start$ = TIME$

CALL EVALPROB

fin$ = TIME$
ELSE

PRINT

PRINT “Probability evaluation not done.”
END IF
PRINT

PRINT “Finished !"

PRINT “Probability evaluation started at “; start$
PRINT "Probability evaluation finished at "; fin$
PRINT "Maximum indx used = “; maxind

CLOSE

END

. SUB ANDGATET1 (TP, ca) STATIC

GET 52, TP
IF (CVI(bc$) > 4) THEN
itp = CVIi(cau$(4))
fg3 = 1
WHILE fg3
GET =2, it
IF NOT (LEFT$(e$, 1) = "&") THEN
ca = it
fg3 = g
ELSE
IF CVI(bc$) = 4 THEN
itp = CVIi(cau$(4))

ELSE
= CVi(cau$(CVi(bc$)))
fg3 = 0
END IF
END IF

= CVi(cau$(CVI(bc$)))
END IF

LSET bc$ = MKI$(CVI(bc$) - 1)
PUT =2, TP

GET =2, ca

LSET bgq$ = MKI$(CVI(bg$) - 1)
PUT =22, ca

p?(g, 2) = TP

]ca = ca
en$ = "2" + STR$(h)
h="h#+ 1
CALL DUMMY2(en$)

- 323 -

ca = rl

CALL STORE(TP, ca)
TP =

ca =

CALL STORE(TP ca)
GET =2 TP

LSET g* = gate$
PUT =2, TP

END SUB

SUB ANDGATEZ2 (TP, ca) STATIC

pglg, 2) =

pf(g) = 2

jca = ca

en$ = "n" + STR$(h)
h=h+1

CALL DUMMY2(en$)
ca = rl

al = rl

CALL STORE(TP, ca)
TP =

ca = jca

GET =2, TP

LSET g$ = "AND"
PUT =2, TP

END SUB

SUB ASSIGN (eq$, rt, ca) STATIC

en$ = MID$(eq$, I, k - 1)
evnam$ = SPACE$(20)
LSET evnam$ =
rt = 0
IF NOT (rl = 0) THEN
FOR ka = rl TO 1 STEP -1
GET =2, ka
IF e$ = evnam$ THEN
IF (g$ = “"PRI") THEN
=1
ELSElF (g$ “ORC"”) OR (g$="AND") OR Ig$ “DIR") THEN

ELSEIF (g$ = "ORS™) THEN
rt =3
END IF
= ka
ka = 1
END IF
NEXT ka
END IF
IF (rt = 0) THEN
rl=rl +1
ca =rl
GET =2 rl
LSET ei = en$
LSET g$ = "PRI"
PUT =2, rl

- 324 -

END IF
END SuB

e e e o —————————— T o

SUB BRANCH (indx, gadd) STATIC

gtemp = gadd
si(indx, 1) = 0
true = 1
WHILE true
GET 22, gtemp
IF CVI(bc$) >= 4 THEN

ka = 4
ELSE

ka = CVIi(bc$)
END IF

FOR kb = 1 TO ka
si(indx, 1) = si(indx, 1) +
si(indx, s1(indx, 1) +1) =
NEXT kb
IF CVI(bc$) < 4 THEN
true = 0
ELSE
glemp = CVli(cau$(4))
ET 82, gtemp
IF LEFT$?9$ 1) = "&" THEN
s1(indx, 1) = si(indx, 1) - 1
ELSE
true = 0
END IF
END IF
WEND ‘true
END SUB

CVi(cau$(kb))

SUB CAUSE (eq$) STATIC

evig = 0
CALL ASSIGN(eq$, rt, ca)
IF (rt >= 2) THEN
CALL ERRMSGS(eq$)
ELSE
TP = ca
CALL DUMMY1(eq$, TP, ca)
=10+ 1
= 1

CVHILE u
IF (MID$(eq$, I, 1) = “(") THEN
evflg =
i=1+1
k = k + 1
ELSEIF (MID$(eq$, 1, 1) =)") AND (evfig
evflg = 0
F=1+1
k =k + 1
ELSEIF (MID$(eq$, ")") AND (evflg
CALL ASSIGN(eq$ ca)

=

1) THEN

0) THEN

- 325 -

CALL STORE(TP, ca)
CALL PREVIOUS(eq$, TP, ca, p1)
IF pt = 1 THEN

CALL DUMMY1(eq$, TP, ca)
END IF
AR

i
k =1
ELSEIF (MID$(eq$, I, 1) = “+") THEN
gate$ = "ORC"
CALL ASSIGN(eq$, rt, ca)
CALL STORE(TP, ca)
CALL GATETYPI(TP, ca)
CALL DUMMY1(eq$, TP, ca)
i=i+1
1=
k=1
ELSEIF (MID$(eq$, i, 1) = “#") THEN
gate$ = "AND"
CALL ASSIGN(eq$, rt, ca)
CALL GATETYPI(TP, ca)
CALL STORE(TP, ca)
CALL DUMMY1(eq$, TP, ca)

pnn

i=1+1
I =i
k =1
ELSEIF (i » LEN(eq$)) THEN
ate$ = "DIR"

ALL ASSIGN(eq$, rt, ca)
CALL GATETYPI(TP, ca)
CALL STORE(TP, ca)

pl =0
ELSE
i=1i+1
k =k +1
END IF
WEND ’pi
END IF
END SUB

SUB DUMMY1 (eq$, TP, ca) STATIC

WHILE MID$(eq$, | + 1, 1) = "("
g=g+1
pflg) = 1
palg, 1) = TP
i=i+1
en$ = "2" + STR$(h)
h=h+1
CALL DUMMY2(en$)
ca = rl
al = rl
CALL STORE(TP, ca)
TP = atl

WEND

END SUB

- 326 -

SUB DUMMY2 (en$) STATIC

rl=rl + 1

GET =#2_rl

LSET e$ = en$

IF LEFT$(en$, 1) = “&" THEN
LSET g$ = "CON"

ELSEIF LEFT$(en$, 1) = "s" THEN
LSET g$ = "PRI"

END IF

e T T T T T T T T T T T T T T T

e S o o T — ——— ——————— ——

SUB ERRMSGS (eq$) STATIC

ec = ec + 1

PRINT

PRINT "ERROR at line number "; ct; " of CSE file.”
PRINT CHR$(26); ct; ": "; eq$

PRINT

PRINT “"Attempt to redefine cause equation already processed.”
PRINT
PRINT "Continuing processing the rest of CSE file EXCEPT eqn. no.”; ct
FOR ka = 1 TO 78
PRINT "=";
NEXT ka
END SUB

SUB EVALPROB STATIC
" Start calculating probability of top/secondary events

q=1
WHILE q <= rl
GET =2, q
IF NOT ((g$ = "PRI") OR (donel(q) = 2) OR—
(EEFT$(e$, 1) = "@") OR (LEFT$(e$, 1) = "&")) THEN
ERASE s1, s2, evset, ztemp
indx = 1
s2(indx, 1) = 1
s2(indx, 2) = g
CALL PROB(indx, zp(indx))
GET =2, q
LSET pr$ = MKS$(zplindx))
PUT =2, q
donel(q) = 2
END IF
q=q+1
WEND ‘q
END SUB

- 327 -

e e gt

SUB EXPCAUS l(itp, ca) STATIC

GET =2, itp

itm = CVi(cau$(4))

GET =2, itm

IF LEFT$(e$, 1) = "&" THEN

HFp = Itm
IF CVI(bc$) = 4 THEN
CALL EXPCAUS(itp, ca)
ELSE
branch = CVIi(be$) + 1
LSET bc$ = MKI$(branch)
LSET cau$(branch) = MKI$(ca)
PUT =22, itm
END IF
ELSE
end = "&" + STR$(h)
h="h+1
CALL DUMMY2(en$)
GET ®2, itp
LSET cau$(4) = MKI$(rI)
PUT =2, Itp
GET 52 rl
LSET bc$ = MKI$(2)
LSET cau$(1) = MKI$(itm)
LSET cau$(2) = MKI$(ca)
PUT =2, ri
END IF
END SUB

SUB EXPCONS (ica, TP) STATIC

GET =2, ica
itm = CVi(con$(4))
GET =2, itm
IF LEFT$(e$, 1) = "@" THEN
ica = Itm
IF CVI(bg$) = 4 THEN
CALL EXPCONSl(ica, TP)
ELSE
conseq = CVl(bqi) + 1
LSET bq$ = MKI$(conseq)
LSET con$(conseq) = MKI$(TP)
PUT =2, itm
END IF
ELSE
end = "@" + STR$(h)
h="h+1
CALL DUMMY2(en$)
GET #2, ica
LSET con$(4) = MKI$(rl)
PUT =2, ica
GET =2, ri
LSET bq$ = MKI$(2)
LSET con$(1) = MKI$(itm)
LSET con$(2) = MKI$(TP)
PUT =2, rl

- 328 -

bt e

SUB GATETYP1 (TP, ca) STATIC

GET =2, TP
IF g$ = "PRI” THEN
LSET g$ = gate$
PUT 22, TP
ELSEIF ate$ = “DIR" THEN
IF 93 “ORC"” OR g$ = "AND" THEN
gate$ = g$
END IF
ELSEIF NOT (g$ = gate$) THEN
IF g$ = "AND" THEN
CALL ORGATE(TP, ca)
ELSEIF g$ = "ORC"” THEN
CALL ANDGATE2(TP, ca)
END IF
END IF
END SUB

SUB GATETYP2 (TP) STATIC

GET =2, TP
IF g$ = "PRI" THEN
LSET g$ = "DIR"
ELSE
LSET g$ = "ORS"
END IF
PUT =2, TP
END SUB

e R A - B B I E B B EE - B E A B EEB
o e e e o i — ——— i ———— T o i —— T —— i — —— — T ———— — —————

SUB INDEPT (indx, disjt, indevt) STATIC

FOR ka = 2 TO s2(indx, 1) + 1
GET =3, s2(indx, ka)
kz = CVl(nu$)

disg
kb = 2 TO s2(indx, 1) + 1
IF NOT (kb = ka) THEN
GET =3, s2(indx, kb)
ky = CVi(nu$)
FOR kc =1 TO kz
GET =23, s2(indx, ka)
kx = CVi(prI$lkc])
GET =3, s2(indx, kb)
FOR kd =1 TO ky
IF kx = CVI(pri$(kd)) THEN
disjt =
= ky
ke = kz
END IF
NEXT kd

- 329 -

NEXT kc
IF disjt = 0 THEN kb = s2(indx, 1) + 1
END IF
NEXT kb
IF disjt = 1 THEN
indevt = s2(indx, ka)
ka = s2(indx, 1) + 1
END IF
NEXT ka
END SUB

o — — — —— T —— i ————— o ——————————— o ———— —— o ————————

SUB INDEPTOR (indx, disjt, indevt) STATIC

FOR ka = 2 TO silindx, 1) + 1
GET =23, si(indx, ka)
kz = CVI(nu$)
disjt = 1
FOR kb = 2 TO si(indx, 1) + 1
IF NOT (kb = ka) THEN
GET 23, si(indx, kb)
ky = CVi(nu$)
FOR kc = 1 TO kz
GET =3, si(indx, ka)
kx = CVI(pri$(kc))
GET =3, si(indx, kb)
FOR kd = 1 TO ky

IF kx = CVI(pri$(kd)) THEN

disjt = 0
kd = ky
kc = kz
END IF
NEXT kd
NEXT kc
END IF
IF disjt = 0 THEN kb = si(indx, 1) + 1
NEXT kb

IF disjt = 1 THEN
indevt = si(indx, ka)
FOR kb = 2 TO s2(indx, 1) + 1
GET =3, s2(indx, kb)
ky = CVI(nu$)
FOR kc = 1 TO ky
GET =3, s2(indx, kb)
kx = CVi(pri$(kc))
GET #3, Indevt
FOR kd = 1 TO kz
IF kx = CVI(pri$(kd)) THEN

disjt = 0
kd = kz
kc = ky
END IF
NEXT kd
NEXT kc
IF disjt = 0 THEN kb = s2(indx, 1) + 1
NEXT kb
END IF
IF disjt = 1 THEN ka = si(indx, 1) + 1
NEXT ka
END SUB

Pt e — = P e R

SUB INTERSEC (indx, true) STATIC

true = 0
FOR ka = 2 TO s2(indx, 1) + 1
FOR kb = 2 TO silindx, 1) + 1
IF s2(indx, ka) = si(indx, kb) THEN
true = 1
kb = silindx, 1) + 1
ka = s2(indx, 1) + 1
END IF
NEXT kb
NEXT ka
END SUB

" Subroutine to set a file named prim$ that contain for each
" event a set primary events that causes that event.

SUB LEAF (prim$) STATIC
" Open file prim$ to store array leaves.

OPEN prim$ FOR RANDOM AS =3 LEN = 162
FIELD #3, 2 AS nu$
ka = 2
FOR kb = 1 TO 80
FIELD =3, ka AS dy$, 2 AS pri$(kb)
ka = ka + 2
NEXT kb

' Proceed to obtain set of primary events of an event.

ERASE done
q =1
WHILE q <= rl
IF NOT (done(q) = 1) THEN
ERASE si, s2, pf, leaves
indx = 1
pflindx) = q
CALL PRIMARY(indx)
END IF
q=q+I1
WEND ‘q

END SUB

—————— o —— T —————

SUB NEWADDR (TP, ca, bux) STATIC

IF bux > 4 THEN
ka = 4
ELSE
ka = bux
END IF
GET =2, TP
FOR kb =1 TO ka
LSET con$(kb) = MKI$(kpos(kb))
NEXT kb

33].

LSET bq$ = MKI$(bux)
PUT =2, TP
fg5 = 1
WHILE fg5
FOR kb =1 TO ka
fgb = 1
WHILE fg6
GET 22, kpos(kb)
kc = CVI(bc$)
rpc = 0
IF kc >= 4 THEN
kd = 4
ELSE
kd = kc
END IF
FOR ke =1 TO kd
IF CVi(cau$(ke)) = ca THEN
LSET cau$(ke) = MKI$(TP)
PUT =2, kpos(kb)
rpc = 1
ke = kd
END IF
NEXT ke
IF rpc = 1 THEN
fg6 = 0
ELSEIF kc >= 4 THEN
kpos(kb) = CVi(cau$(4))

END IF
WEND ‘fg6
NEXT kb

IF NOT (ka < 4) THEN
GET =2, kpos(4)
IF LEFT$(e$, 1) = "@” THEN
kf = CVIi(bq$)
FOR kb = 1 TO kf
kpos(kb) = CVi(con$(kb))
NEXT kb
ELSE
fg5 = 0
END IF
ELSE
fg5 =0
END IF
WEND ‘fg5
END SUB

e s e — —

SUB ORGATE (TP, ca) STATIC

IF pf(g) = 2 THEN
TP = pglg, 2)
Ef[g) =1

end = “=” + STR$(h)
h=h+1

trans = 0

GET$B2, ;P

ntm$ = e

LSET e$ = en$

PUT =2, TP

GET =2, TP

ELS

- 332 -

IF CVI(bq$) > O THEN
trans = 1
bux = CVI(bq$)
CALL TEMPSTORE(TP, bux)
END IF
en$ = ntm$
CALL DUMMY2(en$)
ca = TP
TP = rl
CALL STORE(TP, ca)
GET =2, TP
LSET $ = gate$
PUT ﬂg, TP
IF trans = 1 THEN
CALL NEWADDR(TP, ca, bux)
END IF
IF g > 1 THEN CALL REPLACE(TP)
END IF
END SUB

SUB PREVIOUS (eq$, TP, ca, pl) STATIC

WHILE MID$(eq$, 1, 1) =)"
TP = pglg, 1)
g=g -1
i=i+1
WEND
IF MID$(eq$, i, 1) = “+" THEN
gate$ = "AND"
ELSEIF MID$(eq$, i, 1) = “+" THEN
gate$ = "ORC"
ELSE
pl =0
END IF
IF NOT (p1 = 0) THEN
GET =2, TP
IF NOT (g$ = gate$) THEN
IF g$ = "ORC” THEN
CALL ANDGATEI(TP, ca)
ELSE
CALL GATETYPU(TP, ca)
END IF
END IF
END IF
END SUB

SUB PRIMARY (indx) STATIC

GET =2, pflindx)
IF NOTILEFTIe. 1) = "&" OR LEFT$(e$, 1) = "@") THEN
IF g$ = "PRI" THEN
leaves(indx, 1) = 1
leaves(indx, 2) = pf(indx)
ELSEIF g$ = "DIR" THEN
findx + 1) = CVi(cau$(1))
F NOT (done(pf(indx + 1)) = 1) THEN
indx = indx + 1

CALL PRIMARY(indx)
indx = indx - 1
leaves(indx, 1) = leaves(indx + 1, 1)
FOR ka = 2 TO leaves(indx, 1) + 1
leaves(indx, ka) = leaves(indx + 1, ka)
NEXT ka
ELSE
GET =23, pf(indx + 1)
leaves(indx, 1) = CVi(nu$)
ka = 2
FOR kb = 1 TO leaves(indx, 1)
leaves(indx, ka) = CVI(pri$(kb))
ka = ka + 1
NEXT kb
END IF
ELSEIF (g$ = “AND") OR (LEFT$(g$, 2) = "OR") THEN
leaves(indx, 1) = 0
CALL BRANCH(indx, pflindx))
kpos(indx) = 2
WHILE kpos(indx) <= si(indx, 1) + 1
rl(indx + 1) = silindx, kpos(indx))
F NOT (done(pf(indx + 1)) = 1) THEN
indx = indx + 1
CALL PRIMARY(indx)

indx = indx - 1
ka = leaves(indx, 1) + 2
kb = 2

leaves(indx, 1) = leaves(indx, 1) + leaves(indx + 1, 1)
FOR kc = ka TO leaves(indx, 1) + 1
leaves(indx, kc) = leaves(indx + 1, kb)
kb = kb + 1
NEXT kc
ELSE
GET =3, pflindx + 1)
ka = leaves(indx, 1) + 2
kb = 1
leaves(indx, 1) = leaves(indx, 1) + CVi(nu$)
FOR kc = ka TO leaves(indx, 1) + 1
leaves(indx, kc) = CVI(pri$(kb))
kb = kb + 1
NEXT kc
END IF
CALL REMREP2(indx)
kpos(indx) = kpos(indx) + 1
WEND ‘kpos(indx)
END IF

GET =3, pflindx)

LSET nu$ = MKI$(leaves(indx, 1))

ka = 1

FOR kb = 2 TO leavesl(indx, 1) + 1
LSET pri$(ka) = MKI$(leaves(indx, kb))
ka = ka + 1

NEXT kb

PUT =3, pflindx)

done(pf(indx)) = 1

END IF
END SUB

334

® —————————————— i —— — —— —— —
e e i S S A e e i s o S e e o e e i i v

SUB PROB (indx, zpv) STATIC
IF indx > maxind THEN

maxind = indx
END IF

: Priliminary reduction when s1() not empty.
IF NOT (s1(indx, 1) = 0) THEN

- Case P.1 : Evaluation for si1() intersection s2() non empty.
’ If this is true, then set s1() empty and s2()
as before.

CALL INTERSEC(indx, true)
IF true = 1 THEN
si(indx, 1) = 0

" Case P.2 : Evaluation for si() containing a single node.
' Add the node In si() to s2() and set si() empty.

ELSEIF si(indx, 1) = 1 THEN
s2(indx, 1) = s2(indx, 1) + 1
s2(indx, s2(indx, 1) + 1) = si(indx, 2)
si(indx, 1) = 0
END IF
END IF

. Case 1 : Evaluation for si1() empty.
IF si(indx, 1) = 0 THEN
" Case 1.1 : PROB returns zpv = 1 if s2() is empty.

IF s2(indx, 1) = 0 THEN
zpv = 1

" Case 1.2 : Evaluation for s2() containing one node.
ELSEIF s2(indx, 1) = 1 THEN

" Case 1.2.1 : Evaluation for probability of node has been
’ evaluated. Return to caller with its probability.

IF (done(s2(indx, 2)) = 2) THEN
GET =2, s2(indx, 2)
zpv = CVS(pr$)

" Case 1.2.2 : Evaluation for probability of node has not been

' evaluated. Evaluate probability by calling PROB
with s1() containing the branches of the node If
It is an OR gate or s2() containing the branches
of the node if it iIs an AND gate.

ELSE
indx = indx + 1
silindx, 1) = 0
s2(indx, 1) = 0
GET 22, s2(indx - 1, 2)
IF (g$ = "DIR") OR {g$ = "AND") THEN
CALL SIBLING(Indx, 2, s2(indx - 1, 2), s2())

335

' Case

: Case

' Case

: Case

ELSE
CALL SIBLING(indx, 2, s2(indx - 1, 2), s1())

END IF

CALL PROB(indx, zp(indx))

Indx = indx - 1

zpv = zp(indx + 1)

GET =2, s2(indx, 2)

LSET pr$ = MKS$(zpv)

PUT #2, s2(indx, 2)

done(s2(indx, 2)) = 2
END IF

1.3 : Evaluation for case of s2() containing more than
one node. First set ztemp = 1. Then determine if
there is a node in s2() which is disjoint from the
other nodes in s2().

ELSE
ztemplindx) = 1
andgate(indx) = 1
WHILE andgate(indx)
CALL INDEPT(indx, disjt, indevt)

1.3.1 : Evaluation for case where a member in s2() is found
found to be disjoint from the other members In s2().

IF disjt = 1 THEN
evset(indx, 2) = indevt

1.3.1.1 : Evaluation for case where the probability of the
independent event has been evaluated.

IF (done(evset(indx, 2)) = 2) THEN
GET =2, evset(indx, 2)
ztemplindx) = ztemp(indx) * CVS(pr$)

1.3.1.2 : Evaluation for case where the probability of the
Independent event has not been evaluated.

ELSE
indx = indx + 1
si(indx, 1) = 0
s2(indx, 1) = 0
GET #2, evset(indx - 1, 2)
IF (g$ = "DIR") OR (g$ = "AND") THEN
CALL SIBLING(indx, 2, evset(indx - 1, 2), s2())
ELSE
CALL SIBLING(indx, 2, evset(indx - 1, 2}, si())
END IF
CALL PROB(indx, zp(indx))
indx = indx - 1
GET =2, evset(indx, 2)
LSET pr$ = MKS$(zplindx + 1))
PUT =2, evset(indx, 2)
done(evset(indx, 2)) = 2
ztemp(indx) = ztemplindx) * zp(indx + 1)
END IF

* Remove evset(indx, 2) from s2(). If s2() is not empty, repeat finding
" an s-independent node in s2().

FOR ka = 2 TO s2(indx, 1) + 1
IF s2(indx, ka) = evset(indx, 2) THEN

- 336 -

IF NOT (ka = s2(indx, 1) + 1) THEN

FOR kb = ka TO s2(indx, 1)
s2(indx, kb) = s2(indx, kb + 1)

NEXT kb
ka = s2lindx, 1) + 2

END IF

s2(indx, s2(indx, 1) + 1) = 0

s2(indx, 1) = s2(indx, 1) - 1

END IF
NEXT ka

"~ 1f s2() is empty, return to caller with zpv = ztemplindx).

IF s2(indx, 1) = 0 THEN
andgate(indx) = O
zpv = ztemplindx)

END IF

" Case 1.3.2 : Evaluation for case where there Is no node found
) to be disjoint from the other members in s2().

ELSE

" Find all AND gate nodes in s2() and replace the nodes in s2()
" with their branches.

replc = 0
stot = s2(indx, 1) + 1
smem = 2
WHILE smem <= stot
GET 22, s2(indx, smem)
IF (g$ = "DIR") OR (g$ = "AND") THEN
replc = 1
CALL SIBLING(indx, smem, s2(indx, smem), s2())
END IF
smem = smem + 1
WEND ‘smem

" Case 1.3.2.1 : Evaluation for case when replacements. Repetition
: of nodes is removed. Then determine if there Is a
node disjoint from the rest of the nodes in s2().

IF replc = 1 THEN
CALL REMREP(indx, s2())

" Case 1.3.2.2 : Evaluation for case of no AND gate and no disjoint
; nodes found in s2(). An OR gate node m In s2() Is
picked and probability is evaluated via call to PROB
with s1() containing the branches of m and s2()
containing nodes without m.

ELSE
FOR ka = 2 TO s2(indx, 1) + 1
GET =2, s2(indx, ka)
IF LEFT$(g$, 2) = "OR" THEN
ornode = s2(indx, ka)
ka = s2(indx, 1) + 1
END IF
NEXT ka
indx = indx + 1
si(indx, 1) = 0
EALL SIBLING(indx, 2, ornode, si())
a=2

- 337 -

FOR kb = 2 TO s2(indx - 1, 1) + 1
IF NOT (s2(indx - 1, kb) = ornode) THEN
s2(indx, ka) = s2(indx - 1, kb)
ka = ka + 1
END IF
NEXT kb
s2(indx, 1) = s2(indx - 1, 1) - 1
CALL PROB(indx, zp(indx))
indx = indx - 1
zpv = ztemplindx) * zplindx + 1)
andgate(indx) = 0
END IF
END IF
WEND ‘andgate(indx)
END IF

" Case 2 : Evaluation for s1() non empty. First initialise evset() so
' that it is empty. Then determine if there is a node In si()
which is disjoint from the other nodes of s1() as well as s2().

ELSE
evsetl(indx, 1) = 0
andgate(indx) = 1
WHILE andgate(indx)
CALL INDEPTOR(Indx, disjt, indevt)

" Case 2.1 : Case where a node in s1() is found to be disjoint
' from other nodes in s1() as well as from all nodes
in s2(). Save the disjoint node in evset().

IF disjt = 1 THEN
evset(indx, 1) = evset(indx, 1) + 1
evset(indx, evset(indx, 1) + 1) = indevt
. Remove the disjoint node from si.

FOR ka = 2 TO si(indx, 1) + 1
IF si(indx, ka) = indevt THEN
IF NOT (ka = si1(indx, 1) + 1) THEN
FOR kb = ka TO si(indx, 1) + 1
si(indx, kb) = si(indx, kb + 1)
NEXT kb
ka = si(indx, 1) + 1
END IF
si(indx, s1(indx, 1) + 1) = 0
silindx, 1) = silindx, 1) - 1
END IF
NEXT ka
IF s1(indx, 1) = 1 THEN
andgate(indx) = 0

END IF
ELSE
replc = 0
stot = si(indx, 1) + 1
smem = 2

WHILE smem <= stot
GET =22, si(indx, smem)
IF (LEFT$(g$, 2) = "OR") OR (g$ = "DIR") THEN
replc = 1
CALL SIBLING(indx, smem, silindx, smem), si1())
END IF
smem = smem + 1
WEND ‘smem

= 338 =

" Case 2.2.1 : Evaluation for replacements made in si(). Determine if
' there Is a node In s1() which Is disjoint from the other
nodes in s1() as well as disjoint with all the nodes in s2().

IF replc = 1 THEN
CALL REMREP(indx, si())
IF si(indx, 1) = 1 THEN

andgate(indx) = 0

END IF

ELSE
andgate(indx) = 0

END IF

END IF
WEND ‘andgate(indx)

IF NOT (evsetlindx, 1) = 0) THEN

indx = Indx + 1

s1(indx, 1) = si(indx - 1, 1)

FOR ka = 2 TO si(indx, 1) + 1
s1(indx, ka) = si(indx - 1, ka)

NEXT ka

s2(indx, 1) = s2(indx - 1, 1)

FOR ka = 2 TO s2(indx, 1) + 1
s2(indx, ka) = s2(indx - 1, ka)

NEXT ka

CALL PROB(indx, zp(indx))

indx = indx - 1

ztemp(indx) = zplindx + 1)

indx = indx + 1

si(indx, 1) = 0

s2(indx, 1) = s2(indx - 1, 1)

FOR ka = 2 TO s2(indx, 1) + 1
s2(indx, ka) = s2(indx - 1, ka)

NEXT ka

CALL PROB(indx, zp(indx))

indx = indx - 1

zcaselindx) = zp(indx + 1)

andflg(indx) = 2
WHILE andfig(indx) <= evset(indx, 1) + 1

IF done(evset(indx, andfiglindx))) = 2 THEN
GET =2, evset(indx, andflglindx))
zpr = CVS(pr$)

ELSE
indx = indx + 1
si(indx, 1) = 0
s2(indx, 1) = 0
GET =2, evset(indx - 1, andfig(indx - 1))
IF (g$ = "DIR”) OR (g$ = "AND") THEN

CALL SIBLING(indx, 2, evset(indx-1,andflg(indx-1)),s2())
ELSE
CALL SIBLING(indx,2,evset(indx-1,andfiglindx-1)),s1())

END IF
CALL PROBI(indx, zp(indx))
indx = indx - 1
GET =2, evset(indx, andfiglindx))
LSET pr$ = MKS$(zplindx + 1))
PUT =2, evset(indx, andflg(indx))
done(evset(indx, andflg(indx))) = 2
zpr = zplindx + 1)

END IF

- 339 -

ztemp(indx) = zpr * (zcase(indx) - ztemp(indx)) + ztemp(indx)
andflg(indx) = andflg(indx) + 1

WEND ‘andflig(indx)

zpv = ztemp(indx)

' Case 2.2 : Evaluation for case of no nodes in si() disjoint in si()
’ as well as In s2(). Find all OR and DIR nodes In si() and
replace the nodes in s1 with their branches.

ELSE

" Case 2.2.2 : Evaluation for case of no replacements made in si().
) A node Is picked from si() and saved in orgate(indx).

orgate(indx) = si(indx, 2)

indx = indx + 1

si(indx, 1) = 0

FOR ka = 2 TO s2(indx - 1, 1) + 1
s2(indx, ka) = s2(indx - 1, ka)

NEXT ka

s2(indx, 1) = s2(indx - 1, 1) + 1

s2(indx, s2(indx, 1) + 1) = orgate(indx - 1)

CALL PROB(indx, zp(indx))

indx = indx - 1

ztemplindx) = zplindx + 1)

Indx = indx + 1
ka = 2
FOR kb = 2 TO si(indx - 1, 1) + 1{
IF NOT (st(indx - 1, kb) = orgate(indx - 1)) THEN
silindx, ka) = si(indx - 1, kb) ,
ka = ka + 1
END IF
NEXT kb
si(indx, 1) = silindx - 1, 1) - 1
FOR ka = 2 TO s2(indx - 1, 1) + 1
s2(indx, ka) = s2(indx - 1, ka)
NEXT ka
s2(indx, 1) = s2(indx - 1, 1)
CALL PROB(indx, zp(indx))
indx = indx - 1
ztemplindx) = ztemp(indx) + zp(indx + 1)

indx = indx + 1
ka = 2
FOR kb = 2 TO si(indx - 1, 1) + 1
IF NOT (s1(indx - 1, kb) = orgate(indx - 1)) THEN
s1(indx, ka) = silindx - 1, kb)
ka = ka + 1
END IF
NEXT kb
si(indx, 1) = si(indx - 1, 1) - 1
FOR ka = 2 TO s2(indx - 1, 1) + 1
s2(indx, ka) = s2(indx - 1, ka)
NEXT ka
s2(indx, 1) = s2(indx - 1, 1) + 1
s2(indx, s2(indx, 1) + 1) = orgate(indx - 1)
CALL PROB(indx, zp(indx))
indx = indx - 1
zpv = ztemp(indx) - zplindx + 1)

END IF

- 340 -

SUB REMREP (indx, set(2)) STATIC

FOR ka = 2 TO set(indx, 1)
FOR kb = ka + 1 TO setl(indx, 1) + i
IF set(indx, ka) = set(indx, kb) THEN
FOR kc = kb TO setlindx, 1)
set(indx, kc) = set(indx, kc + 1)
NEXT kc
set(indx, 1) = setlindx, 1) - 1
END IF
NEXT kb
NEXT ka
END SUuUB

SUB REMREP2 (indx) STATIC

FOR ka = 2 TO leaves(indx, 1)
FOR kb = ka + 1 TO leaves(indx, 1) + 1
IF leaves(indx, ka) = leaves(indx, kb) THEN
FOR kc = kb TO leaves(indx, 1)
leaves(indx, kc) = leaves(indx, kc + 1)
NEXT kc
leaves(indx, 1) = leaves(indx, 1) - 1
END IF
NEXT kb
NEXT ka
END SUB

SUB REPLACE (TP) STATIC

GET =1, pglg, 1)
IF CVi{bc$) > 4 THEN
itp = CVIi(cau$(4))
fg4 = 1
WHILE fg4
GET =2, itp
IF CVI(bc$) = 4 THEN
itm = CVi{cau$(4))

GET =2, Itm

IF LEFT$(e$, 1) = “&" THEN
itp = itm

ELSE
GET =2, itp
LSET cau$(4) = MKI$(TP)
PUT =2, itp
fgd = 0

END IF

ELSE

LSET cau$(CVS(bc$)) = MKI$(TP)

PUT =2, Itp

fg4 = 0

- 341 -

END IF

END IF
END SuUB

SUB SETPROB STATIC
FOR ka = 1 TO rl
GET %2, ka
IF g$ = "PRI” THEN
PRINT “Input a priori probability for event "; e$; " :";
INPUT zpr
LSET pr$ = MKS$(zpr)
PUT =2, ka
done(ka) = 2
END IF
NEXT ka
END SUB

" Subroutine to replace a member of s2() which is either a DIR
' or an AND gate with its child or children respectively.

P o ———— — {————————— T — T ———— -

SUB SIBLING (ndx, setpos, evadd, set(2)) STATIC

dtemp = evadd
GET »2, dtemp
set(ndx, setpos) = CVi(cau$(1))
IF set(ndx, 1) = 0 THEN set(ndx, 1) = 1
true = 1
WHILE true
GET =2, dtemp
IF CVI(bc$) >= 4 THEN

ka = 4
ELSE

ka = CVIi(bc$)
END IF

FOR kb = 1 TO ka
IF NOT (CVi(cau$(kb)) = set(ndx, setpos)) THEN
set(ndx, 1) = set(ndx, 1) + 1
set(ndx, set(ndx, 1) + 1) = CVI(cau$(kb))
END IF
NEXT kb
IF CVI(bc$) <« 4 THEN
true = 0
ELSE
dtemp = CVi(cau$(4))
GET 2, dtemp
IF LEFT$(e$, 1) = "&" THEN
set(ndx, 1) = set(ndx, 1) - 1
ELSE
true = 0
END IF
END IF
WEND ‘true
END SUB

- 342 -

SUB STORE (TP, ca) STATIC

GET =2, TP
branch = CVi(bc$) + 1
LSET bc$ = MKI$(branch)
PUT =2, TP
IF branch > 4 THEN
Itp = TP
CALL EXPCAUSIitp, ca)
ELSE
GET =2, TP
LSET cau$(branch) = MKI$(ca)
PUT =2, TP
END IF
GET =2, ca
conseq = CVIi(bq$) + 1
LSET bq$ = MKI$(conseq)
PUT =2, ca
IF conseq > 4 THEN
ica = ca
CALL EXPCONS(ica, TP)
ELSE
GET 22, ca
LSET con$(conseq) = MKI$(TP)
PUT 82, ca
END IF
END SUB

o T T T S — i S s s Sl s il o e s e e e g S . o e . o i . . e i i S N S T e s e s S S, . .

SUB SYMPTOM (eq$) STATIC
CALL ASSIGN(eq$, rt, ca)

1
IF IﬁllD$(e‘l$. i, 1 = "*") OR (I » LEN(eq$)) THEN
CALL ASSIGN(eq$, rt, ca)
TP = ca
ca = sca
CALL GATETYP2(TP)
CALL STORE(TP, ca)
=i+ 1
i

1

I » LEN(eq$) THEN
pl =0

D IF

|
k
|

E
ELSE
i

z“

i+ 1
k +1

T

k

END IF
WEND ’pi
END SUB

- 343 -

SUB TEMPSTORE (TP, bux) STATIC

IF bux > 4 THEN
ka = 4
ELSE
ka = bux
END IF
GET =2, TP
FOR kb = 1 TO ka
kpos(kb) = CVi(con$(kb))
LSET con$(kb) = MKI$(0)
NEXT kb
LSET bq$ = MKI$(0)
PUT =2, TP
END SUB

- 344 -

APPENDIX F

SOURCE CODE FOR THE PROGRAM DISFAULT

" Define variable types

DEFINT a - y
DEFSNG z

" Declare shared variables between main program and subprogram

DIM SHARED cau$(4l c0n$(4} p, nm$

DIM SHARED e$, g$ bq$, pr$, cpr$

DIM SHARED cai(BO) bc(BO) fc(30), zc(30), zcp(30)

DIM SHARED qa$(30), bq(30), iq{BO), zq(30), zqp(30)

DIM SHARED alc (30) bac(BO) fac(30), zac(30), zapc(30)
DIM SHARED alq (30), baq(30), faq(30), zaq(30), zapq(30)
DIM SHARED acbr, aqbr, fxacbr, fxaqbr, av, aw, alb, alin, falin
DIM SHARED cbr, cv, cw, clb, clin, fclin

DIM SHARED qbr, qv, qw, qlb, qlin, fqlin

DIM SHARED apos, atr, hnum, vhum, btemp, ftem

DIM SHARED fIt$, alﬂ* aev$ zalrm zalcn, sym

DIM SHARED meant, a rl ost, top, zd, ze

DIM SHARED nu$, pri (BO)p

DIM SHARED zp(50), ztemp(50), zcase(50), kpos(50)

DIM SHARED 51(50,50). s2(50,50), orgate(50)

DIM SHARED donel(800), done2(20), done(320), andflg(50), andgate(50)
DIM SHARED comset(3, 50), evset(50, 50)

DIM SHARED donefig, etop

DIM SHARED fxtop, fxcbr, fxqbr, zffx, zcfx

" Set key traps

KEY 15, CHR$(&HO08)+CHR$(&HIE)
KEY 16, CHR$(&HO08)+CHR$(&H12)
KEY 17, CHR$(&HO08)+CHR$(&H23)
ON KEY(1) GOSUB TOGGLE1

ON KEY(2) GOSUB TOGGLEZ2

ON KEY(3) GOSUB CAUSEUP

ON KEY(4) GOSUB CAUSEDN

ON KEY(5) GOSUB FAULTUP

ON KEY(6) GOSUB FAULTDN

ON KEY(7) GOSUB CONSEQUP
ON KEY(8) GOSUB CONSEQDN
ON KEY(9) GOSUB OTHERS

ON KEY(10) GOSUB ORIGINAL
ON KEY(11) GOSUB CURUP

ON KEY(12) GOSUB CURLEFT

ON KEY(13) GOSUB CURRIGHT
ON KEY(14) GOSUB CURDOWN
ON KEY(15) GOSUB ANOTHER

ON KEY(16) GOSUB EXPCODE

ON KEY(17) GOSUB HELP

SCREEN 0, 1, 0
CLS

- 345 -

COLOR 2, 0, 1
fit$ = SPACE$(20)

alft$ = SPACE%$(20)
aev$ = SPACE$(20)
nm$ = SPACE$(3)

" Input name of file containing fault tree data

LOCATE 2,1

INPUT "Input name of data file containing coded CSE :

" Open file as random access and declare variables in the

" various fields

OPEN cs$ AS =1 LEN = 51
FIELD =1, 20 AS e$, 3 AS g$, 2 AS bc$
ka = 25
FOR kb =1 T0O 4
FIELD =1, ka AS my$, 2 AS cau$(kb)

ka = ka + 2
NEXT kb

FIELD =1, ka AS my$, 2 AS bq$
ka = ka + 2

FOR kb =1 TO 4
FIELD =1, ka AS my$, 2 AS con$(kb)
ka = ka + 2
NEXT kb
FIELD =1, ka AS my$, 4 AS pr$, 4 AS cpr$

prlm$ = LEFT$(cs$, INSTR(cs$, “.")) + “PRI"
OPEN prlm$ AS n2 LEN = 162
FIELD =2, 2 AS nu$
ka = 2
FOR kb =1 TO 80
FIELD =2, ka AS dy$, 2 as pri$(kb)
ka = ka + 2
NEXT kb

' Determine no. of records in data file

p = INT(LOF(1)/51)
true = 1
WHILE true
GET =1, p
IF ASC(e$) =
p=p -1
ELSE
true = 0
END IF
WEND ‘true

0 THEN

" Input name of initial alarmed event

true = 1
WHILE true
LOCATE 3,1
INPUT "Input name of alarmed event : ";en$
LSET fit$ = en$
LSET alft$ = en
LSET aev$ = en

' Find event name in data file and the first level causes

* and consequences

- 346 -

-t;cs$

CALL FIND.EV (fd, top, tcbr, tqbr, zd, ze)

" Test if event name found in data file. If not found,
" re-input event name.

IF fd = 0 THEN
PRINT "Event not found. Please input again!”

ELSE

fxcbr = tcbr
fxqbr = tqgbr
fxtop = top
zffx = zd
zalrm = zd
acbr = 0
aqbr = 0

fxaxbr = acbr
fxagbr = aqbr
doneflg = 0
ERASE alc$, bac, fac, zac, zapc, alq$, baq, faq, zaq, zapq
CALL FORM1
true = 0
END IF
WEND ‘true

" If event name found then proceed with drawing of cause
' and consequence tree

apri = 0

post = 0
meant = 0
CALL DISPLAY

" Set variables for cursor position at fault event

hnum = falin
voum = 30
apos = 160 * (hnum - 1) + 2 # vhum - 1

" Get attribute at fault event
CALL PIXATR

" Set cursor at fault event
CALL CURSOR

" Switch on soft-key

KEY(1) ON
KEY(2) ON
KEY(3) ON
KEY(4) ON
KEY(5) ON
KEY(6) ON
KEY(7) ON
KEY(8) ON
KEY(9) ON
KEY(10) ON
KEY(11) ON
KEY(12) ON
KEY(13) ON
KEY(14) ON

- 347 -

KEY(15) ON
KEY(16) ON
KEY(17) ON

" Clear keyboard buffer

DEF SEG = 0
POKE 1050, PEEK(1052)
DEF SEG

' Single keyboard Input to direct program to do certain task

true = 1
WHILE true
kb$ = INKEY$
IF LEN(kb$) = 2 THEN
kb$ = RIGHT$(kb$,1)
END IF
IF kb$ = " THEN
true = 1

" End display and go back to system
ELSEIF kb$ = CHR$(79) THEN

true = 0
END IF
WEND
COLOR 2,0 : CLS : CLOSE
END

e e e o e e e e

SUB DISPLAY STATIC
: Draw screen columns
CALL FORM2
: Initialise fault column.
CALL IN.FAULT
: Calculate conditional probabilites

IF doneflg = 0 THEN
COLOR 14, 5
LOCATE 21, 42
PRINT “"Calculating conditional probabilities™;
etop = top
CALL CONPROB
COLOR 0, 5
LOCATE 21, 42
PRINT SPACE$(37);
doneflg = 1

END IF

" Get the causes of the alarm
CALL GET.CAUSE(top)

" Get the consequences of the alarm

- 348 -

. CALL GET.CONSEQ(top)
" Initialise cause column.

CALL IN.CAUSE

Initialise consequence column.
~ CALL IN.CONSEQ
. Display fault event

CALL ALARM

" Display causes
CALL CAUSES

" Display consequences

CALL QUENCE
Return to main program

. END SuUB

Subroutine DISPLAY1 to handle screen display.
SUB DISPLAY1 STATIC

: Clear cause column.
~ CALL FORM3
~ Initialise fault column.
~ CALL IN.FAULT
" Initialise cause column.
. CALL IN.CAUSE
: Display fault event
CALL ALARM

" Display causes

CALL CAUSES
' Set variables for cursor position at fault event

hnum = falin
vihum = 30
= 160 * (hnum - 1) + 2 * vpum - 1

apos
* Get afttribute at fault event

CALL PIXATR

* Set cursor at fault event

- 349 -

CALL CURSOR
" Return to main program

END SuB

SUB DISPLAY2 STATIC

- Clear consequence column.
CALL FORM4

" Initialise fault column.
CALL IN.FAULT

" Initialise consequence column.
CALL IN.CONSEQ

' Display fault event
CALL ALARM

: Display consequences
CALL QUENCE

" Set variables for cursor position at fault event
hnum = falin

vaum = 30
apos = 160 * (hnum - 1) + 2 * vhum - 1

" Get attribute at fault event
CALL PIXATR

: Set cursor at fault event
CALL CURSOR

. Return to main program

END SuUB

SUB FIND.EV (ffd, ftop, ftcbr, ftqbr, zfd, zfe) STATIC
" Initialise flag for testing if event have been found

ffd = 0
FOR ka = 1 TO p

Get data at record no. ka

GET =1, ka

: Test if there Is event name found In file.
IF e$ = fIt$ THEN
: Event name found in data file

ftcbr = CVi(bc$)
ftqbr = CVI(bq$)
ftop = ka

zfd = CVS(pr$)

zfe = CVS(cpr$)
ka = p

fid

: Reset event name for display for cases of mixed gates

IF (LEFT$(e$,1) = "2") AND (g$ = "AND") THEN
fit$ = SPACE$(15)
LSET flt$ = e$
fit$ = f1it$ + "(AND)"

ELSEIF (LEFT$(e$,1) = "=") AND (LEFT$(g$,2)
fit$ = SPACE$(16)
LSET fit$ = e$
fit$ = f1t$ + "(OR)"

END IF

END IF

" If data at record no. nf is not the same as event name,
' proceed to next record.

NEXT ka
" Return to main program

END SUB

SUB GET.CAUSE(gtop) STATIC

‘ Set sym$ to relevant symbol according to type of gate
" or type of event

GET =1, gtop

cbr = CVIIbc$)

IF g$ = "PRI” THEN
sym$ = CHR$(32)

ELSE
IF cbr = 1 THEN

sym$ = CHR$(196)

ELSEIF LEFT$(,2) = "OR" THEN

""CH (219)
ELSE!F $ = "AND" THEN
symg CHR${1GI
END IF

" Initialise variables for getting causes

ka = 1
ctop = gtop
truel = 1

351

"OR") THEN

: Test no. of branches attached to event name and set kb

WHILE truetl
GET =1, ctop
IF CVI(bc$) => 4 THEN

kb = 4
ELSE

kb = CVI(bc$)
END IF

. Proceed with getting causes of event

FOR kc =1 TO kb
GET =1, ctop
kd = CVi(cau$(kc))
GET =1, kd
ca$(ka) = e$

' Get probability data

zc(ka) = CVS(pr$)
zcplka) = CVS(cpr$)

. Set display attributes
IF g$ = "PRI" THEN

bec(ka) = 2
ELSE
bclka) = 3
END IF
IF CVI(bg$) > 1 THEN
fc(ka) = 0
ELSE
fc(ka) = 15
END IF
IF e$ = aev$ THEN
belka) = 4
fc(ka) = 14
END IF

: Reset event name for display for cases of mixed gates

IF (LEFT$(e$,1) = "s") AND (g$ = "AND") THEN
ca$(ka) = SPACE$(15)
LSET ca$(ka) = e$
ca$(ka) = ca$(ka) + “(AND)"
ELSEIF (LEFT$(e$,1)="2") AND (LEFT$(g$,2)="0OR") THEN
ca$(ka) = SPACE$(16)
LSET ca$(ka) = e$
ca$(ka) = ca$(ka) + “"(OR)"
END IF

" Increment ka, the cause array index
ka = ka + 1

: Get next cause

NEXT kc

" Get record containing top event

GET =1, ctop

352 -

‘ Test if no. of branches iIs less than 4. |If It is then set
" truel to zero.

IF CVI(bc$) < 4 THEN
truel = 0

" If no. of branches => 4 then reset top event equal to
" the fourth branch

ELSE
ctop = CVi(cau$(4))

" Test If new top event indicates a continuation event. If it
" is not a continuation event then set truel to zero.

GET =1, clo_F
IF NOT(LEFT$(e$,1) = "&") THEN
truel = 0

" If continuation event then reset variables to get more causes.

ELSE
ka = ka - 1
END IF
END IF
WEND ‘truel
END IF

" Return to caller.

END SUB

e o o S o o e . e e e W o i o B o o e e o e S S T T B i e e e ¥

SUB GET.CONSEQ(gtop) STATIC
" Test if there are any consequences attached to top event.
GET =1, gtop

gbr = CVI(bq$)
IF gqbr > O THEN

" If there are any consequences, initialise variables for
' getting them.

ka = 1
ctop = gtop
truel = 1

' Test no. of consequences attached and set kb.

WHILE truel
GET =1, ctop
IF CVI(bg$) => 4 THEN
kb = 4
ELSE
kb = CVI(bq$)
END IF

" Proceed with getting the consequences of event.

- 353 -

FOR kc = 1 TO kb
GET =1, ctop
kd = CVi(con$(kc))
GET =1, kd
qa$(ka) = e$

_ Get probability data

zq(ka) = CVS(pr$)
zqplka) = CVS(cpr$)

" Set display attributes

IF CVI(bgq$) = 0 THEN
bq(ka) = 2

ELSE
bq(ka) = 3

END IF

IF CVI(bc$) > 1 THEN
fq(ka) = 0

ELSE
fq(ka) = 15

END IF

IF e$ = aev$ THEN
fq(ka) = 14
bq(ka) = 4

END IF

. Reset event name for display for cases of mixed gates

IF (LEFT$(e$,1) = “s") AND (g$ = "AND") THEN
qa$(ka} = SPACE%$(15) .
LSET qa$(ka) = e$
qa$(ka) = 13 (ka) + "(AND)"

ELSEIF (LEFT$(e$,1) = "n") AND (LEFT$(g%$,2) = "OR") THEN
qa$(ka) = SPACE$(16)
LSET qa$(ka) = e$
qa$(ka) = qa$(ka) + “(OR)"

END IF

' Increment ka, the consequence array index

ka = ka + 1
NEXT kc

" Get record containing top event
GET =1, ctop

' Test if there are less than 4 consequences attached.
*If it Is then set truel to zero.

IF CVI(bq$) < 4 THEN
truel = 0

“If no. of consequences => 4 then reset ctop to the
' fourth consequence.

ELSE
ctop = CVi(con$(4))

" Get new top event and test If it is a continuation event.
*If it Is not then set truel to zero.

GET =1, ctop
IF NOTILEFT$(e$ 1) = "@") THEN

truel =
" If continuation then reset variables to get more consequences.

ELSE
ka = ka - 1
END IF
END IF
WEND ‘truel
END IF

" Return to calling program

END SUB

SUB IN FAULT STATIC

" Test no. of events to be displayed in fault column and
" set av and aw accordingly.

IF (acbr = 0) AND (aqbr = 0) THEN

aw = 0

av = 0

alb = 0

fxacbr = 0

fxagbr = 0

ELSEIF NOT(acbr = fxacbr) THEN

aw = achr

fxacbr = acbr

alb = 0

IF acbr > 4 THEN
av = acbr - 4

ELSEIF (acbr <= 4) AND (aqbr = 0) THEN
av = 0

ELSEIF (acbr + aqbr) > 4 THEN
av = acbr - 4

ELSE
av = —aqbr

END IF

ELSEIF NOT(aqbr = fxaqbr) THEN

IF (aqbr + acbr) => 4 THEN

aw = 4 - aqbr

ELSE
aw = acbr

END IF

IF aw ¢ acbr THEN
alb = 1

ELSE
alb = 0

END IF

fxagbr = aqbr
av = -agbr
END IF
* Calculate alin.

alin = 12 - (aw - av + 1) - 2 * [NT((aw - av + 1)/2)

P

Reset alin if less than 3

IF alin ¢« 3 THEN
alin = 3

ELSEIF (alin » 3) AND (({(aw - av + 1) = 2) OR ((aw - av + 1) = 4)) THEN
alin = alin + 1

END IF

' Store alin for future reference
falin = alin
' Return to caller.

END SUB

SUB IN.CAUSE STATIC
cv = 1

Test no. of causes and set cw and clb

IF cbr > 5 THEN
cwW = ¢cv + 4
clb = 1

ELSE
cw = cbr
clb=0

END IF

" Calculate CLIN
clin =12 - ¢cbr - 2 # INT(cbr/2)
' Reset CLIN if less than 3
IF clin ¢ 3 THEN
clin = 3
ELSEIF (clin > 3) AND ({cbr = 2) OR (cbr = 4)) THEN
clin = clin + 1
END IF
" Store CLIN for future reference
fclin = clin

" Return to caller.

END SuUB

SUB IN.CONSEQ STATIC
qv = 1

* Test no. of consequences and set QW and QLB

IF gbr > 5 THEN
qw = qv + 4
qlb = 1

ELSE
qw = gbr
qlb =0

END IF

: Calculate QLIN
~qlin =12 - qbr - 2 * INT(qbr/2)
: Reset QLIN if less than 3

IF qlin < 3 THEN
qlin = 3

ELSEIF (qlin > 3) AND ((gbr = 2) OR (qbr = 4)) THEN
qlin = qlin + 1

END IF

: Store QLIN for future reference
fglin = qlin
: Return to calling program

END SuUB

SUB FORMI1 STATIC

CLS

COLOR O, 5
LOCATE 1, 1

PRINT SPACE$(80);
COLOR 2,0

LOCATE 1, 26
PRINT CHR$(186);
LOCATE 1, 54
PRINT CHR$(186);
COLOR O, 5
LOCATE 1, 10
PRINT "CAUSES";
LOCATE 1, 38
PRINT “FAULT";
LOCATE 1, 60
PRINT "CONSEQUENCES";
COLOR O, 5
LOCATE 21, 1
PRINT SPACE$(80);
COLOR O, 5
LOCATE 21, 2
PRINT "Press <Alt-H> for HELP";
COLOR 0, O

' Return to calling program

END SUB

- 357 -

Sttt PP e A et - E T L T L T ¥ T ¥ T 3 F

Sttt sttt st bt st b b e L L L L L L L L T S L T L]

SUB ALARM STATIC
" Output scroll indicator.

COLOR 4, 7
LOCATE 1, 27
IF (av » -aqbr) OR (av » 0) THEN
PRINT CHR$(25);
ELSE
PRINT "-*;
END IF
LOCATE 1, 28
IF alb = 1 THEN
PRINT CHR$(24);
ELSE
PRINT "-";
END IF

" Output event(s) Iin alarm column.

IF (av <= 0) THEN
IF -av < agbr THEN
COLOR 15, 0
LOCATE 2, 48
PRINT CHR$(179);
ELSE
COLOR 0, O
LOCATE 2, 48
PRINT SPACES$(1);
END IF
COLOR 0, 0
LOCATE 2, 31
PRINT SPACES$(1);
ELSE
COLOR 0, O
LOCATE 2, 48
PRINT SPACE$(1);
COLOR 15, 0
LOCATE 2, 31
PRINT CHR$(179);
END IF
FOR ka = av TO aw
IF ka <« 0 THEN
kb = -ka
COLOR faq(kb), baq(kb)
LOCATE alin, 30
PRINT alq$(kb)
IF NOT(apri = 0) THEN
CALL APROB(alin+1, 35, zaq(kb), 9)
END IF
IF NOT(post = 0) THEN
IF (zapq(kb) > 1) OR (zapq(kb) = 0) THEN
fg =5
ELSE
fg = 4
END IF
CALL APROB(alin-1, 35, zapq(kb), fg)
END IF
COLOR 15, 0
LOCATE alin+1, 31

- 358 -

PRINT SPACE$(1);

LOCATE alin+1, 48

PRINT CHR$(179);

IF NOT(alin+2 = 21) THEN
LOCATE alin+2, 31
PRINT SPACE$(1);
LOCATE alin+2, 48
PRINT CHR$(179);
LOCATE alin+3, 31
PRINT SPACE$(1):
LOCATE alin+3, 48
PRINT CHR$(179);

END IF

ELSEIF ka = 0 THEN

IF alft$ = aev$ THEN
COLOR 14, 4

ELSE
COLOR 15, 6

END IF

LOCATE alin, 30

PRINT alft$

IF NOT(apri = 0) THEN
CALL APROB(alin+1, 35, zalrm, 9)

END IF

IF NOT(post = 0) THEN
IF (zalcn > 1) OR (zalcn = 0) THEN

fg = 5
ELSE

fg = 4
END IF

CALL APROB(alin-1, 35, zalcn, fg)
END IF
COLOR 15, 0
IF NOT(ka = aw) THEN
LOCATE alin+1, 31
PRINT CHR$(179);
LOCATE alin+1, 48
PRINT SPACE$(1);
IF NOT(alin+2 = 21) THEN
LOCATE alint2, 31
PRINT CHR$(179);
LOCATE alin+2, 48
PRINT SPACE$(1);
LOCATE alin+3, 31
PRINT CHR$(179);
LOCATE alint3, 48
PRINT SPACE$(1);
END IF
END IF
ELSE
COLOR fac(ka), bac(ka)
LOCATE alin, 30
PRINT alc$(ka);
IF NOT(apri = 0) THEN
CALL APROBI(alin+1, 35, zac(ka), 9)
END IF
IF NOT(post = 0) THEN
IF (zapc(ka) > 1) OR (zapc(ka) = 0) THEN

fg = 5
ELSE

fg = 4
END IF

CALL APROB(alin-1, 35, zapcl(ka), fg)

END IF
COLOR 15, 0
IF NOT(ka = aw) THEN
LOCATE alin+1, 31
PRINT CHR$(179);
LOCATE alin+1, 48
PRINT SPACE$(1);
IF NOT(alin+2 = 21) THEN
LOCATE alin+2, 31
PRINT CHR$(179);
LOCATE alin+2, 48
PRINT SPACES$(1);
LOCATE alin+3, 31
PRINT CHR$(179);
LOCATE alin+3, 48
PRINT SPACE$(1);

END IF
END IF
END IF
IF ka ¢« aw THEN alin = alin + 4
NEXT ka
ka = ka - 1
COLOR 15, 0

IF ka ¢ acbr THEN
IF ka < 0 THEN
LOCATE 20, 31
PRINT SPACES$(1);
ELSE
LOCATE 20, 31
PRINT CHR$(179);
LOCATE 20, 48
PRINT SPACE$(1);
END IF
ELSE
LOCATE 20, 31
PRINT SPACE$(1);
LOCATE 20, 48
PRINT SPACES$(1);
END IF

" Draw connecting line from causes to relevent event in alarm
" column.

IF NOT(cbr = 0) THEN
IF alin = 11 THEN
LOCATE 11, 27
PRINT CHR$(196);CHR$(196):CHR$(196);
ELSE

LOCATE 11, 27

PRINT CHR$(196);CHR$(191);

FOR kb = 12 TO alin-1
LOCATE kb, 28
PRINT CHR$(179):

NEXT kb

IF ka = acbr THEN
LOCATE alin, 28
PRINT CHR$(192);CHR$(196);
LOCATE 20, 28
PRINT SPACE$(1);

ELSE
LOCATE 19, 28
PRINT CHR$(179);SPACE$(1):
LOCATE 20, 28

-360_

PRINT CHR$(179);
END IF
END IF
END IF

" Draw connecting line from consequence to relevent event
" in alarm column.

IF NOT(gqbr = 0) THEN
IF falin = 11 THEN
LOCATE 11, 50
ELSERINT CHR$(196);CHR$(196);CHR$(196):CHR$(196);
IF (-av = aqbr) THEN
LOCATE 2, 52
PRINT SPACE$(1);
LOCATE falin, 50
ELSERINT CHR$(196);CHR$(196);CHR$(191);
LOCATE 2, 52
PRINT CHR$(179);
LOCATE 3, 50
PRINT SPACE$(2);CHR$(179);
END IF
FOR kb = falin+1 TO 10
LOCATE kb, 52
PRINT CHR$(179);
NEXT kb
LOCATE 11, 52
PRINT CHR$(192);CHR$(196);
END IF
END IF

" Return to calling program

END SuUB

SUB CAUSES STATIC

COLOR 4, 7
LOCATE 1, 1
IF cv » 1 THEN
PRINT CHR$(25);
ELSE
PRINT “-*;
END IF
LOCATE 1, 2
IF clb = 1 THEN
PRINT CHR$(24);
ELSE
PRINT "-*;
END IF
IF sym$ <> CHR$(32) THEN
F NOT(cv = 1) THEN
COLOR 15, 0,
LOCATE 2, 26
PRINT CHR$(179);
ELSE
COLOR 2, 0
LOCATE 2, 26

..36]_

PRINT CHR$(186)
END IF
FOR ka = ¢cv TO cw
LSET nm$ = MID$(STR$(ka), 2)
COLOR 15, 5
LOCATE clin, 3
PRINT nm$;
COLOR fc(ka), bclka)
LOCATE clin, 5
PRINT ca$(ka);
COLOR 15, 0
LOCATE clin, 25
PRINT CHR$(196);
LOCATE clin, 26
IF ka = 1 THEN
PRINT CHR$(191);
ELSEIF ka = ¢cbr THEN
PRINT CHR$(217);
ELSE
PRINT CHR$(180);
END IF
IF NOT(apri = 0) THEN
CALL APROB (clin+1, 15, zc(ka), 9)
END IF
IF NOT(post = 0) THEN
IF (?cp(kgl > 1) OR (zcpl(ka) = 0) THEN
g —
ELSE
fg = 4
END IF
CALL APROB (clin-1, 15, zcp(ka), fg)
END IF
IF NOT(ka = cbr) THEN
COLOR 15, 0
LOCATE clin+1, 26
PRINT CHR$(179);
IF NOT(clin+2 = 21) THEN
LOCATE clint2, 26
PRINT CHR$(179);
LOCATE clin+3, 26
PRINT CHR$(179);
END IF
ELSE
COLOR 2,0
LOCATE clin+1, 26
PRINT CHR$(186);
END IF
IF ka < ¢cw THEN clin = clin + 4
NEXT ka
COLOR 14, 0
LOCATE 11, 26
PRINT sym$;
END IF

" Return to calling program

END SUB

- 362 -

e o e e e e e - ———————————
e e T e e s

SUB QUENCE STATIC

COLOR 4, 7

LOCATE 1, 55

IF qv > 1 THEN
PRINT CHR$(25);

ELSE
PRINT “-";

END IF

LOCATE 1, 56

IF qlb = 1 THEN
PRINT CHR$(24);

ELSE
PRINT "-";

END IF

IF NOT(qv = 1) THEN
COLOR 15, 0

LOCATE 2, 54
PRINT CHR%$(179);
ELSE
COLOR 2, 0
LOCATE 2, 54
PRINT CHR$(186);
END IF
FOR ka = qv TO qw
RSET nm$ = RIGHT$(STR$(ka), 2)
COLOR 15, 0
LOCATE qlin, 54
IF (qlin = 11) AND (qbr > 1) THEN
PRINT CHR$(197);
ELSEIF qbr = 1 THEN
PRINT CHR$(196);
ELSEIF ka = 1 THEN
PRINT CHR$(218);
ELSEIF ka = gbr THEN
PRINT CHR$(192);
ELSE
PRINT CHR$(195);
END IF
LOCATE gqlin, 55
PRINT CHR$(196);
COLOR fq(ka), bq(ka)
LOCATE gqlin, 56
PRINT qa$(ka);
COLOR 15, 5
LOCATE gqlin, 76
PRINT nm$;
IF NOT(apri = 0) THEN
CALL APROB (qlin+1, 66, zq(ka), 9)
END IF
IF NOT(post = 0) THEN
IF (zqp(ka) > 1) OR (zqp(ka) = 0) THEN
fg = 5
ELSE
fg = 4
END IF
CALL APROB (qlin-1, 66, zqp(ka), fg)
END IF
IF NOT(ka = qbr) THEN
COLOR 15, 0

FOR kb =1 TO 3
IF qlintkb <= 20 THEN
LOCATE qlintkb, 54
IF qlin+tkb = 11 THEN
PRINT CHR$(180);
ELSE
PRINT CHR$(179);
END IF
ELSE
kb = 3
END IF
NEXT kb
ELSE
COLOR 2, 0
LOCATE qlln+1 54
PRINT CHR${IBBJ
END IF
IF ka <« qw THEN qlin = qlin + 4
NEXT ka
COLOR 2,0

" Return to calling program

END SUB

SUB PIXATR STATIC

DEF SEG = &HB800
atr = PEEK(apos)
DEF SEG

END SUB

SUB CURSOR STATIC

DEF SEG = &HB80O0
POKE apos, atr
apos = 160 * (hnum - 1) + 2 * voum - |
atr = PEEK(apos)
POKE apos, 128+atr
DEF SEG
IF meant = 1 THEN
col = vhnum
row = hnum
CALL EVTNAM(evt$)
IF LEFT$(evt$, 1) = "#" THEN
evt$ = LEFT$(evt$, 7)
END IF
CALL MEANING(evt$, mean$)
COLOR 4, 7
LOCATE 24, 5
PRINT SPACES$(74);
LOCATE 24, 5
PRINT mean$;
END IF
END SUB

- 364

o —— T — —— e e T e T T e i T o e o S S o S . . T T

L e — e T —— o —————— — T —— ——— o

SUB FAUCOLUP STATIC

IF (aw = acbr) THEN
SOUND 400, 2
ELSE

alin = falin
CALL ALARM
IF vhum = 30 THEN
apos = 160 * (hnum - 1) + 2 *« voum - 1
CALL PIXATR
CALL CURSOR
END IF
END IF
END SUB

ey S U S S S S S S S S ———

SUB FAUCOLDN STATIC

IF -av = aqbr THEN
SOUND 400, 2
ELSE
av = av - 1
aw = aw - 1
alb = 1
alin = falin
CALL ALARM
IF vhum = 30 THEN
apos = 160 * (hnum - 1) + 2 * vaum - |
CALL PIXATR
CALL CURSOR
END IF
END IF
END SUB

SUB CAUCOLUP STATIC

IF (cw = cbr) OR (sym$ = chr$(32)) THEN
SOUND 400, 2
ELSE
cvy = cv + 1
cw = cw + 1
IF cw = cbr THEN
clb =0
ELSE
clb = 1
END IF
clin = fclin
CALL CAUSES

IF vnum = 5 THEN
apos = 160 # (hnum - 1) + 2 # vohum - |
CALL PIXATR
CALL CURSOR
END IF
END IF
END SUB

SUB CAUCOLDN STATIC

IF (cv = 1) OR (sym$ = CHR$(32)) THEN
SOUND 400, 2

ELSE
cv = ¢cv - 1
cw = cw - |
clb = 1

clin = fclin
CALL CAUSES
IF vnum = 5 THEN
apos = 160 * (hnum - 1) + 2 * vaum - 1
CALL PIXATR
CALL CURSOR
END IF
END IF
END SUB

o o o o . o o o o o o S o o e o o = ?

" Subroutine to scroll consequence column upwards.

SUB QONCOLUP STATIC

IF qw = qbr THEN
SOUND 400, 2
ELSE
qv = qv + 1
qw = qw + |
IF qw = qbr THEN
qlb = 0
ELSE
qlb = 1
END IF
qlin = fqlin
CALL QUENCE
IF vhum = 56 THEN
apos = 160 * (hnum - 1) + 2 » vhum - 1
CALL PIXATR
CALL CURSOR
END IF
END IF
END SUB

SUB QONCOLDN STATIC

IF qv = 1 THEN
SOUND 400, 2
ELSE
qv = qv - 1

- 366 -

qw = qw - 1
qlb =
qlin = fqlin

CALL QUENCE
IF vnum = 56 THEN
apos = 160 * (hnum - 1) + 2 * vhum - 1
CALL PIXATR
CALL CURSOR
END IF
END IF
END SUB

SUB APRIORI STATIC

alin = falin
FOR ka = av TO aw
IF apri = 0 THEN
COLOR 0, O
LOCATE alin+1 35
PRINT SPACE$(10)
ELSE
IF ka ¢ 0 THEN
kb = -ka
CALL APROB (alint1, 35, zaql(kb), 9)
ELSEIF ka = 0 THEN
CALL APROB (alin+1, 35, zalrm, 9)

ELSE
CALL APROB (alin+1, 35, zac(ka), 9)
END IF
END IF
IF ka « aw THEN alin = alin + 4
NEXT ka

clin = fclin
FOR ka = cv TO cw
IF apri = 0 THEN
COLOR 0, O
LOCATE clin+1, 5
PRINT SPC(20);

ELSE
CALL APROB (clin+1, 15, zc(ka), 9)
END IF
IF ka < cw THEN clin = clin + 4
NEXT ka
qlin = fqlin

FOR ka = qv TO qw
IF apri = 0 THEN
COLOR O, O
LOCATE qlin+1, 56
PRINT SPC(20);

ELSE
CALL APROB (qlint+1, 66, zq(ka), 9)
END IF
IF ka < qw THEN gqlin = glin + 4
NEXT ka

' Return to caller.

END SUB

367 -

SUB POSTER STATIC

alin = falin
FOR ka = av TO aw
IF post = 0 THEN
COLOR 0, O
LOCATE alin-1, 35
PRINT SPC(10);

ELSE
IF ka ¢ 0 THEN
kb = ~ka
IF lfapq(lscb) > 1) OR (zapq(kb) = 0) THEN
ELSE
fg = 4
END IF

CALL APROB (alin-1, 35, zapq(kb), fg)
ELSEIF ka = 0 THEN
IF (zalen > 1) OR (zalecn = 0) THEN

fg =5
ELSE

fg = 4
END IF

CALL APROB (alin-1, 35, zalcn, fqg)
ELSEIF ka » 0 THEN
IF (zapc(ka) > 1) OR (zapc(ka) = 0) THEN

fg = 5
ELSE
fg = 4
END IF
CALL APROB (alin-1, 35, zapc(ka), fg)
END IF
END IF
IF ka < aw THEN alin = alin + 4
NEXT ka

clin = fclin
FOR ka = ¢cv TO cw
IF post = 0 THEN
COLOR 0, O
LOCATE clin-1, 5
PRINT SPC(20);
ELSE
IF (zcp(ka) > 1) OR (zcp(ka) = 0) THEN
fg =5
ELSE
fg = 4
END IF
CALL APROB (clin-1, 15, zcp(ka), fg)
END IF
IF ka < cw THEN clin = clin + 4
NEXT ka

qlin = fqlin
FOR ka = qv TO qw
IF post = 0 THEN
COLOR 0, O
LOCATE qlin-1, 56
PRINT SPC(20);
ELSE

- 368 -

IF (zqp(ka) > 1) OR (zqp(ka) = 0) THEN
fg = 5
ELSE .
fg =
fg = 4
END IF
CALL APROB (alin-1, 35, zapclka), fg)
END IF
END IF
IF ka ¢« aw THEN alin = alin + 4
NEXT ka

clin = fclin
FOR ka = cv TO cw
IF post = 0 THEN
COLOR 0, O
LOCATE clin-1, 5
PRINT SPC(20):
ELSE
IF (?cp(kg) > 1) OR (zcp(ka) = 0) THEN
g -
ELSE
fg = 4
END IF
CALL APROB (clin-1, 15, zcp(ka), fg)
END IF
IF ka < cw THEN clin = clin + 4
NEXT ka

qlin = fqlin
FOR ka = qv TO qw
IF post = 0 THEN
COLOR 0, O
LOCATE gqlin-1, 56
PRINT SPC(20);

ELSE
IF l:qp(ka) > 1) OR (zqp(ka) = 0) THEN
g =3
ELSE
fg = 4
END IF
CALL APROB (qlin-1, 66, zqp(ka), fg)
END IF
IF ka < qw THEN qlin = qlin + 4
NEXT ka

" Return to caller.

END SuB

TOGGLE1:

IF apri = 0 THEN
apri = 1
ELSE

apr
END fF
CALL APRIORI
RETURN

i=0

- 369 -

T'OGGLEZ2:

IF post = 0 THEN

ELSEOSt: 1

post = 0
END IF
CALL POSTER
RETURN

o - — i ——— — — — — — o —— T e T o

CAUSEUP:

CALL CAUCOLUP
RETURN

CAUSEDN:

CALL CAUCOLDN
RETURN

e

FAULTUP:

CALL FAUCOLUP
RETURN

et e e et

FAULTDN:

CALL FAUCOLDN
RETURN

et el e e e et

CONSEQUP:

CALL QONCOLUP
RETURN

e e e e e e e e e e e e e e e — = — o —

CONSEQDN:

CALL QONCOLDN
RETURN

- 370 -

OTHERS:

IF vnum = 30 THEN
IF (acbr = 0) AND (agqbr = 0) THEN
SOUND 600, 1
ELSE
CALL EVTNAM (evt$)
LSET fit$ = evt$

indxk = 0
ipost = 0
0

FOR ka = aqgbr TO 1 STEP -1
IF fit$ = alq$(ka) THEN

indx = ka
ipost = 1
ka =
END IF
NEXT ka

IF NOT(indx = 0) THEN EXIT DO
FOR ka = acbr TO 1 STEP -1
IF fIt$ = alc$(ka) THEN

indx = ka
ipost = 2
ka =1
END IF
NEXT ka
EXIT DO
LOOP
IF ((indx = aqbr) AND (ipost = 1)) OR—
((indx = acbr) AND (ipost = 2)) THEN

SOUND 600, 1
ELSE

IF LEFT$(evt$, 1) = "s" THEN
evt$ = LEFT$(evt$, 7)

END IF

LSET fit$ = evt$

CALL FIND.EV ({d, top, tcbr, tqbr, zd, ze)

IF (ipost = 1) OR ((indx = 0) AND (acbr = 0)) THEN
CALL GET.CONSEQ(top)

aqbr = indx
CALL DISPLAY2
ELSE

CALL GET.CAUSE(top)
acbr = indx
CALL DISPLAY1
END IF
END IF
END IF
ELSE
CALL NUMB(jdx)
CALL EVTNAM (evt$)
IF LEFT$(evt$, 1) = “2" THEN
evt$ = LEFT$(evt$, 7)
END IF
LSET fit$ = evt$
CALL FIND.EV (fd, top, tcbr, tqbr, zd, ze)
IF vhum = 5 THEN
acbr = acbr + 1
alc$(acbr) = fit$
zaclacbr) = zd

- 371 -

zapclacbr) = ze
bac(acbr) = bc(jdx)
fac(acbr) = fc(jdx)
CALL GET.CAUSE(top)
CALL DISPLAY1
ELSE
aqbr = aqbr + 1
alq$(aqbr) = fIt$
zaq(aqgbr) = zd
zapqlaqbr) = ze
baq(aqbr) = bq(jdx)
faqlaqbr) = fq(jdx)
CALL GET. CONSEQ(IDP)
CALL DISPLAY2
END IF
END IF
RETURN

pRIGINAL:

IF (acbr = 0) AND (agbr = 0) AND (alft$ = aev$) THEN
SOUND 600, 1

ELSE
ERASE alc$, fac, bac, zac, zapc, alq$, faq, baq, zaq, zapq
acbr = 0
agbr = 0
fxacbr = acbr
fxaqgbr = aqbr
alft$ = aev$

zalrm = zffx
zalcn = zcfx
top = fxtop
CALL DISPLAY

' Set variables for cursor position at fault event

hnum = falin
vaum = 30
apos = 160 * (hnum - 1) + 2 * voum - 1

' Get attribute at fault event
CALL PIXATR
' Set cursor at fault event

CALL CURSOR
END IF
RETURN

CURLEFT.

IF (vhum = 30) AND (cbr = 0) THEN
SOUND 350, 1

ELSE
IF vhum = 30 THEN
vium = 5

- i =

hnum = fclin
CALL CURSOR
ELSEIF vnum = 56 THEN
vhum = 30
hnum = falin
CALL CURSOR
ELSE
SOUND 350,1
END IF
END IF
RETURN

CURDOWN:

hnum = hnum + 4
IF ((hnum » clin) AND (vhum

= 5)) OR—
((hnum > glin) AND (vhum = 56)) OR—
((thnum > alin) AND (vhum = 30)) THEN
hnum = hnum - 4
SOUND 350, 1
ELSE
CALL CURSOR
END IF
RETURN
: Subroutine to move cursor up.
CURUP
hnum = hnum - 4
IF ((hnum ¢ fclin) AND (vhum = 5)) OR—
((hnum ¢ fqlin) AND (vhum = 56)) OR—
((hnum ¢ falin) AND (vhum = 30)) THEN

hnum = hnum + 4

SOUND 350, 1
ELSE

CALL CURSOR
END IF
RETURN

i e s e W S e S e R D s e A e .l i s s S W iy g . s i Y e i i o O S, s s e St e e W O s i i

CURRIGHT:

IF (vhum = 30) AND (gqbr = 0) THEN
SOUND 350, 1
ELSE
IF vnum = 30 THEN
voum = 56
hnum = fqlin
CALL CURSOR
ELSEIF vnum = § THEN
vhum = 30
hnum = falin
CALL CURSOR
ELSE
SOUND 350,1
END IF

= S =

END IF
RETURN

ANOTHER:

" Save characters and attributes in message area of screen in
" array donel().

ERASE donel
DEF SEG = &HB80O0
kb = 1
FOR ka = 22 TO 24
kc = 160 * (ka - 1) + 4
kd = 160 * (ka - 1) + 153
FOR ke = kc TO kd
donel(kb) = PEEK(ke)
kb = kb + 1
NEXT ke
NEXT ka
DEF SEG

" Output message.

COLOR 5, 7
LOCATE 22, 3
PRINT CHR$(186);SPACE$(73);CHR$(186);
LOCATE 23, 3
PRINT CHR$(186);SPACE$(73);:CHR$(186):
LOCATE 24, 3
PRINT CHR$(200);
FOR ka = 1 TO 73
PRINT CHR$(205);
NEXT ka
PRINT CHR$(188);
truetl = 1
WHILE truel
COLOR 1, 7
LOCATE 23, 5
PRINT “Input event name (0 to abort) :";

INPUT evt$

IF evt$ = "0" THEN
truet = 0

ELSE

LSET fit$ = evt$

CALL FIND.EV({d, top, tcbr, tqbr, zd, ze)

IF fd = 0 THEN
COLOR 4, 7
LOCATE 22, 5
PRINT "Event not found! Please Input again.”;
SOUND 600, 3

ELSE
ERASE alc$, bac, fac, zac, zapc, alq$, baq, faq, zaq, zapq
acbr =
agbr =
fxacbr acbr
fxaqbr = aqgbr
alit$ = fit$
zalrm = zd
zalcn = ze
CALL DISPLAY

nnoo

- 374 -

truel = 0
END IF
END IF
WEND ‘truetl
DEF SEG = &HB800
kb = 1
FOR ka = 22 TO 24
kc = 160 * (ka - 1) + 4
kd = 160 * (ka - 1) + 153
FOR ke = kc TO kd
POKE ke, donel(kb)
kb = kb + 1
NEXT ke
NEXT ka
DEF SEG

" Set variables for cursor position at fault event

IF NOT(evt$ = "0") THEN
hnum falin

vaum = 30
apos = 160 * (hnum - 1) + 2 * vaum - 1

: Get attribute at fault event
CALL PIXATR
: Set cursor at fault event

CALL CURSOR

END IF
RETURN

EXPCODE:

IF meant = 0 THEN
meant = 1
ELSE
meant = 0
END IF
CALL EXPLAIN
RETURN

e e e e e e e e e e EE E E e e T T T T T T T T T e e T e e e e e e - ———

SCREEN 0, 1, 1
CLS
COLOR 14, 0
LOCATE 1,1
PRINT CHR$(201);
FOR I=1 TO 78

PRINT CHR$(205);
NEXT 1|
PRINT CHR$(187);
LOCATE 2,1
PRINT CHR$(186);
COLOR 2,0

- 375 -

LOCATE 2,8
PRINT "HELP for operating on display. Press ";
COLOR 3, 0
PRINT "ESC *;
COLOR 2, 0
PRINT "key to return to display.”;
COLOR 14, 0
LOCATE 2,80
PRINT CHR$(186);
LOCATE 3, 1
PRINT CHR$(204);
FOR I =1 to 10
PRINT CHR$(205);
NEXT 1|
PRINT CHR$(209);
FOR i=1 TO 67
PRINT CHR$(205);
NEXT i
PRINT CHR$(185);
LOCATE 4, 1
PRINT CHR$(186);
COLOR 2, 0
LOCATE 4, 5
PRINT "Key™
COLOR 14, 0
LOCATE 4, 12
PRINT CHR$(179);
COLOR 2, 0
LOCATE 4,40
PRINT “Function”;
COLOR 14, 0
LOCATE 4, 80
PRINT CHR$(186);
LOCATE 5, 1
PRINT CHR$(199);
FOR I =1 to 10
PRINT CHR$(196);
NEXT |
PRINT CHR$(197);
FOR i=1 TO 67
PRINT CHR$(196);
NEXT |
PRINT CHR$(182);
LOCATE 6, 1
PRINT CHR$(186)
COLOR 3, 0
LOCATE 6,5
PRINT "F1";
COLOR 14, 0
LOCATE 6, 12
PRINT CHR$(179);
COLOR 7, O
LOCATE 6, 14
PRINT "Switch on/off display of a priori probabilities.”
COLOR 14, 0
LOCATE 6,80
PRINT CHR$(186);
LOCATE 7, 1
PRINT CHR$(199);
FOR I=1 to 10
PRINT CHR$(196);
NEXT i
PRINT CHR$(197);

- 376 -

FOR i=1 to 67

PRINT CHR$(196);
NEXT i
PRINT CHR$(182);
LOCATE 8, 1
PRINT CHR$(186);
COLOR 3, 0
LOCATE 8, 5
PRINT "F2";
COLOR 14, 0
LOCATE 8, 12
PRINT CHR$(179);
COLOR 7, O
LOCATE 8, 14
PRINT "Switch on/off display of posteriori probabilities.”
COLOR 14, 0
LOCATE 8, 80
PRINT CHR$(186);
LOCATE 9, 1
PRINT CHR$(199):;
FOR i=1 to 10

PRINT CHR$(196);
NEXT |
PRINT CHR$(197);
FOR i=1 to 67

PRINT CHR$(196);
NEXT |
PRINT CHR$(182);
LOCATE 10, 1
PRINT CHR$(186);
COLOR 3, 0
LOCATE 10, 4
PRINT “F3/F4"
COLOR 14, 0
LOCATE 10, 12
PRINT CHR$(179);
COLOR 7, O
LOCATE 10, 14
PRINT “Scroll CAUSE column upwards/downwards.”;
COLOR 14, 0
LOCATE 10, 80
PRINT CHR$(186);
LOCATE 11, 1
PRINT CHR$(199);
FOR I=1 to 10

PRINT CHR$(196);
NEXT |
PRINT CHR$(197);
FOR i=1 to 67

PRINT CHR$(196);
NEXT i
PRINT CHR$(182);
LOCATE 12, 1
PRINT CHR$(186);
COLOR 3, 0
LOCATE 12, 4
PRINT "F5/F6"
COLOR 14, 0
LOCATE 12, 12
PRINT CHR$(179);
COLOR 7, O
LOCATE 12, 14
PRINT "Scroll ALARM column upwards/downwards.”;

- 377 -

COLOR 14, 0
LOCATE 12, 80
PRINT CHR$(186);
LOCATE 13, 1
PRINT CHR$(199):;
FOR I=1 to 10

PRINT CHR$(196);
NEXT |
PRINT CHR$(197);
FOR i=1 to 67

PRINT CHR$(196);
NEXT i
PRINT CHR$(182);
LOCATE 14, 1
PRINT CHR$(186);
COLOR 3, 0
LOCATE 14, 4
PRINT "F7/F8"
COLOR 14, 0
LOCATE 14, 12
PRINT CHR$(179);
COLOR 7, 0
LOCATE 14, 14
PRINT “Scroll CONSEQUENCE column upwards/downwards.”;
COLOR 14, 0
LOCATE 14, 80
PRINT CHR$(186):
LOCATE 15, 1
PRINT CHR$(199):;
FOR i=1 to 10

PRINT CHR$(196):;
NEXT |
PRINT CHR$(197);
FOR i=1 to 67

PRINT CHR$(196);
NEXT |
PRINT CHR$(182);
LOCATE 16, 1
PRINT CHR$(186);
COLOR 3, 0
LOCATE 16, 5
PRINT "F9"
COLOR 14, 0
LOCATE 16, 12
PRINT CHR$(179);
COLOR 7, 0
LOCATE 16, 14
PRINT "Display causes or consequences of event at cursor.”
COLOR 14, 0
LOCATE 16, 80
PRINT CHR$(186);
LOCATE 17, 1
PRINT CHR$(199):
FOR I=1 to 10

PRINT CHR$(196);
NEXT |
PRINT CHR$(197);
FOR I=1 to 67

PRINT CHR$(196);
NEXT |
PRINT CHR$(182);
LOCATE 18, 1
PRINT CHR$(186):

- 378 -

COLOR 3, 0
LOCATE 18, 5
PRINT "F10*
COLOR 14, 0
LOCATE 18, 12
PRINT CHR$(179);
COLOR 7, 0
LOCATE 18, 14
PRINT “"Display original fault tree.”;
COLOR 14, 0
LOCATE 18, 80
PRINT CHR$(186);
LOCATE 19, 1
PRINT CHR$(199);
FOR i=1 to 10

PRINT CHR$(196);
NEXT i
PRINT CHR$(197);
FOR I=1 to 67

PRINT CHR$(196);
NEXT i
PRINT CHR$(182);
LOCATE 20, 1
PRINT CHR$(186);
COLOR 3, 0
LOCATE 20, 3
PRINT "ALT-A"
COLOR 14, 0
LOCATE 20, 12
PRINT CHR$(179):;
COLOR 7, 0
LOCATE 20, 14
PRINT "Display causes and consequences of event input via keyboard.”;
COLOR 14, 0
LOCATE 20, 80
PRINT CHR$(186);
LOCATE 21, 1
PRINT CHR$(199);
FOR i=1 to 10

PRINT CHR$(196);
NEXT i
PRINT CHR$(197);
FOR i=1 to 67

PRINT CHR$(196);
NEXT i
PRINT CHR$(182);
LOCATE 22, 1
PRINT CHR$(186);
COLOR 3, 0
LOCATE 22, 3
PRINT “ALT-E"
COLOR 14, 0
LOCATE 22, 12
PRINT CHR$(179);
COLOR 7, 0
LOCATE 22, 14
PRINT "Switch on/off display of meaning of event at cursor.”;
COLOR 14, 0
LOCATE 22, 80
PRINT CHR$(186);
LOCATE 23, 1
PRINT CHR$(200);
FOR i=1 to 10

- 379 -

PRINT CHR$(205);
NEXT i
PRINT CHR$(207);
FOR i=1 to 67
PRINT CHR%$(205);
NEXT i
PRINT CHR$(188);
truel = 1
WHILE truel
kb2$ = INKEY$
IF LEN(kb2%$) = 2 THEN
kb2$ = RIGHT$(kb2%$,1)
END IF
IF kb2$
true
ELSE
IF kb2% = CHR%$(27) THEN
truel = 0
SCREEN 0, 1, O
COLOR , , 1
END IF
END IF
WEND ‘truef
RETURN

"" THEN
1

SUB FORM2 STATIC

COLOR 2, 0

FOR ka = 2 TO 20
LOCATE ka, 1
PRINT SPACE$(80);
LOCATE ka, 26
PRINT CHR$(186);
LOCATE ka, 54

PRINT CHR$(186);
NEXT ka

END SUB

SUB FORM3 STATIC

COLOR 2, 0

FOR ka = 2 TO 20
LOCATE ka, 1
PRINT SPACE$(53);
LOCATE ka, 26
PRINT CHR$(186);

NEXT ka

END SUB

SUB FORM4 STATIC

COLOR 2, 0
FOR ka = 2 TO 20

- 380 -

LOCATE ka, 27

PRINT SPACE$(53);

LOCATE ka, 54

PRINT CHR$(186);
NEXT ka

END SUB

SUB EXPLAIN STATIC

IF meant = 1 THEN
col = vhum
row = hnum
CALL EVTNAM(evt$)
IF LEFT$(evt$, 1) = "=" THEN
evt$ = LEFT$(evt$, 7)
END IF
CALL MEANING(evt$, mean$)
COLOR 5, 7
LOCATE 22, 3
PRINT CHR$(186);" Move cursor to required event. *:
PRINT "Meaning is displayed below. ";CHR*“BB);
LOCATE 23, 3
PRINT CHR$(199);
FOR ka =1 TO 73
PRINT CHR$(196);
NEXT ka
PRINT CHR$(182);
LOCATE 24, 3
PRINT CHR@(1BB);SPACE$(73);
LOCATE 24, 77
PRINT CHR$(186);
LOCATE 25, 3
PRINT CHR$(200);
FOR ka =1 TO 73
PRINT CHR$(205);

NEXT ka
PRINT CHR$(188);
COLOR 4, 7

LOCATE 24, 5
PRINT mean$;
ELSE
COLOR 2, 0
FOR ka = 22 TO 25
LOCATE ka, 3
PRINT SPACE$(75);
NEXT ka
END IF

END SUB

e e i O e, . e W A A A A e i e Gl N W e O W U D e s i v

SUB NUMB (jdx) STATIC

ev‘$ - LNty

IF vnum = 5 THEN
cpos = apos - 7

ELSEIF vhum = 56 THEN

- 381

cpos = apos + 39
END IF
DEF SEG = &HB80O
FOR ka =170 3

cas = PEEK(cpos)

evt$ = evt$ + CHR$(cas)
cpos = cpos + 2

NEXT ka

DEF SEG

jdx = VAL(evt$)

END SUB

SUB EVTNAM (evt$) STATIC

evt$ =

chs = apos - |

DEF SEG = &HB80O

FOR ka =1 TO 20
cas = PEEK(cpos)
evt$ = evt$ + CHR$(cas)
cpos = cpos + 2

NEXT ka

DEF SEG

END SUB

SUB APROB (evrow, evcol, zval, fg) STATIC

COLOR fg, 7

LOCATE evrow, evcol

PRINT SPACE$(10);

LOCATE evrow, evcol

IF (zval = 0) OR (zval =» 1) THEN
PRINT USING "sz".zval

ELSE
PRINT USING "# nazzuxsaz™.zval

END IF

END SUB

SUB CONPROB STATIC

ERASE s1, s2, andflg, comset, done
zalen = 1

zcfx = 1

gtop = etop

cq =0

" Evaluate conditional probability of events and causes
" connected to alarmed event by DIR gate.

proceed = 1

WHILE proceed
GET =1, gto
LSET cpr$ = MKS$(1.0)
PUT =1, gtop

- 382 -

donel(gtop) = 1
" Evaluate conditional probabilities of consequences of event.

GET =1, gtop
IF CVI(bg$) > cq THEN

ctop = ?top

zcal = 1.0

CALL REPROB3(ctop, zcal)
END IF

" Determine if event node is a "DIR™ gate. If so set gtop to
" child of event.

GET =1, gtop
IF g$ = "DIR” THEN
gtop = CVi(cau$(1))

cq = 1
ELSE

proceed = 0O
END IF

WEND ‘proceed

" Check if gtop is a primary node. If not, store the gate
" type of gtop in gt$.

GET =1, gtop
IF NOT(g$ = “PRI”) THEN
gt$ = g$

" Store the addresses of the branches of gtop in comset().

comset(1, 1) = 0
CALL SIBLING(1, 2, gtop, comset())

" Evaluate the posteriori probabilities of every node in comset.
" The ﬁoslerlori probabilities of the branches of the nodes in comset
" which are of gate type gt$ are also evaluated.

CALL REPROB1(gt$)

" After returning from REPROB1, comset will contain nodes of gate
" types different from gt$.
" Replace the nodes In evset by their branches.

stot = comset(1, 1) + 1
smem = 2
replc = 0
WHILE smem <= stot
GET 21, comset(1, smem)
IF NOT(g$ = "PRI") THEN
replc = 1
CALL SIBLING(1, smem, comset(l, smem), comset())
END IF
smem = smem + 1
WEND ‘smem

“If there are replacements of nodes in comset, remove any repetition
" of nodes in comset and evaluate their posteriori probabilities.

IF replc = 1 THEN

CALL REMREP(1, comset())
CALL REPROB2

- 383 -

END IF
END IF

' Evaluate the posteriorl probabilities of other events that have
" no relation with gtop.

ka = 1
WHILE ka <= p
IF NOT(donelka) = 1) THEN
GET =1, ka
LSET cpr$ = MKS$(CVS(pr$))
PUT =1, ka
done(ka) = 1
END IF
ka = ka + 1
WEND ‘ka

END SUB

" Subroutine to evaluate conditional probabilities of nodes
" in evset having gate type gt$

SUB REPROB1(gt$) STATIC

reptflg = 1
WHILE reptflg
ka = 2

WHILE ka <= comset(1, 1) + 1
IF NOT(done(comset(1, ka)) = 1) THEN

GET =1, comset(1, ka)

IF gt$ = "AND" THEN

LSET cpr$ = MKS$(1)
ELSE

LSET cpr$ = MKS$(CVS(pr$)/zalrm)
END IF

PUT =1, comset(1, ka)

GET =1, comset(1, ka)
IF (CVI(bg$) > 1) THEN
ctop = comset(1, ka)
zcal = CVS(cpr$)
CALL REPROB3(ctop, zcal)
END IF
done(comset(1, ka)) = 1
END IF
ka = ka + 1
WEND ‘ka

stot = comset(1, 1) + 1
replc = 0
smem = 2
WHILE smem «= stot
GET =1, comset(1, smem)
IF (g$ = gt$) OR (g$ = "DIR") THEN
replc = 1
CALL SIBLING(1, smem, comset(l, smem), comset())
END IF
smem = smem + 1
WEND ‘'smem

IF (replc = 1) THEN
CALL REMREP(1, comset())

- 384

ELSE
reptflg = 0
END IF
WEND ‘reptflg

END SUB

" Subroutine to evaluate conditional probabilities of nodes in
" comset having gate types different from gt$

SUB REPROBZ2 STATIC

reptflg = 1
WHILE regtflg
ka =

WHILE ka <= comset(1, 1) + 1
IF NOT(done(comset(1, ka)) = 1) THEN

indx = 1

si(indx, 1) = 0
s2(indx, 1) = 2
s2(indx, 2) = etop

s2(indx, 3) = comset(1, ka)
CALL PPROB(indx, zpv)

GET =1, comset(1, ka)

LSET cpr$ = MKS$(zpv/zalrm)
PUT =1, comset(1, ka)

GET =1, comset(1, ka)
IF (CVI{bq$) > 1) THEN
ctop = comset(1, ka)
zcal = CVSl(cpr$)
CALL REPROB3(ctop, zcal)
END IF
done(comset(1, ka)) = 1
END IF
ka = ka + 1
WEND ‘ka

stot = comset(1, 1) + 1
replc = 0
smem = 2
WHILE smem <= stot
GET 1, comset(1, smem)
IF NOT(g$ = "PRI”") THEN
replc = 1
CALL SIBLING(1, smem, comset(1, smem), comset())
END IF
smem = smem + 1
WEND ‘smem

IF (replc = 1) THEN
CALL REMREP(1, comset())
ELSE
reFlﬂg =0
END |
WEND ‘reptflg
END SUB

' Subroutine to evaluate conditional probabilities of
" consequences of an event.

SUB REPROB3 (ctop, zcal) STATIC
: Obtain consequence of event.

comset(2, 1) =
CALL PARENT (2, 2, ctop, comset())

- Evaluate conditional probability of each node in comset.
CALL REPROB4(2, zcal)

kb = 2
WHILE kb <= comset(2, 1) + 1
IF (done(comset(2, kb)) = 1) THEN
kb = kb + 1
ELSE
GET =1, comset(2, kb)
IF (CVllbq$) 0) THEN
done(comset(2, kb)) =

kb = kb + 1
ELSE
ctop = comset(2, kb)

zcal = CVS(cpr$)
comset(3, 1) = 0
CALL PARENT(3, 2, ctop, comset())
CALL REPROBA4(3, zcal)
donel(comset(2, kb)) = 1
comset(2, kb) = comset(3, 2)
kc = 3
FOR kd = comset(2, 1)+2 TO comset(2, 1)+comset(3, 1)
comset(2, kd) = comset(3, kc)
ke = ke + 1
NEXT kd
comset(2, 1) = comset(2, 1) + comset(3, 1) - 1
CALL REMREP(2, comset())
END IF
END IF
WEND kb

END SuUB

' Subroutine to evaluate conditional probablllly of nodes in
" row ip of comset.

SUB REPROBA4(ip, zcal) STATIC

kc = 2
WHILE kc <= comset(ip, 1) + 1
IF NOT(done(comset(ip, kc)) = 1) THEN
GET Bl comset(ip, kc)
IF (‘DIR”) OR (LEFT$(g$, 2) = "OR" AND zcal = 1) THEN
iSET cpr$ = MKS$(zcaI?
PUT =1, comset(ip, kc)
ELSE
indx = 1
si(indx, 1) = 0
s2(indx, 1) = 2
= c

s2(indx, 2) omset(ip, kc)

- 386 -

s2(indx, 3) = etop
CALL PPROB(indx, zpv)
GET =1, comset(ip, kc)
LSET cpr$ = MKS$(zpv/zalrm)
PUT =1, comsetl(ip, kc)
END IF
END IF
ke = ke + 1
WEND ‘kc

END SUB

SUB PPROBI(indx, zpv) STATIC
" Priliminary reduction when s1() not empty.
IF NOT(s1(indx, 1) = 0) THEN

" Case P.1 : Evaluation for si() intersection s2() non empty.
; If this Is true, then set si() empty and s2()
as before.

CALL INTERSEC(indx, true)
IF true = 1 THEN
si(indx, 1) = 0

‘ Case P.2 : Evaluation for s1() containing a single node.
' Add the node in s1() to s2() and set s1() empty.

ELSEIF si(indx, 1) = 1 THEN
s2(indx, 1) = s2(indx, 1) + i
FOR ka = s2(indx, 1) + 1 TO 3 STEP -1

s2lindx, ka) = s2(indx, ka-1)

NEXT ka
s2(indx, 2) = silindx, 2)
silindx, 1) = 0

END IF

END IF

" Case 1 : Evaluation for si() empty.
IF silindx, 1) = 0 THEN
" Case 1.1 : PPROB returns zpv = 1 if s2() is empty.

IF s2(indx, 1) = 0 THEN
zpv = 1

" Case 1.2 : Evaluation for s2() containing one node.

ELSEIF s2(indx, 1) = 1 THEN
GET =1, s2(indx, 2)
zpv = CVS(pr$)

" Case 1.3 : Evaluation for case of s2() containing more than

' one node. First set ztemp = 1. Then determine |if
there is a node in s2() which is disjoint from the
other nodes in s2().

- 387

ELSE
ztempl(indx) = 1
andgate(indx) = 1
WHILE andgate(indx)
CALL INDEPT(indx, disjt, indevt)

" Case 1.3.1 : Evaluation for case where a member in s2() is found
' found to be disjoint from the other members in s2().

IF disjt = 1 THEN
GET =1, indevt
ztemp(indx) = ztemp(indx) * CVS(pr$)

" Remove evsetlindx, 2) from s2(). If s2() is not empty, repeat finding
" an s-independent node in s2().

FOR ka = 2 TO s2(indx, 1) + 1
IF s2(indx, ka) = indevt THEN
IF NOT(ka = s2(indx, 1) + 1) THEN
FOR kb = ka TO s2(indx, 1)
s2(indx, kb) = s2(indx, kb+1)
NEXT kb
ka = s2(indx, 1) + 1
END IF
s2(indx, s2(indx, 1)+1) = 0
s2(indx, 1) = s2lindx, 1) - 1
END IF
NEXT ka

" If s2() is equal to 1, get the probability of the node in s2() and
_ multiply by ztemp(indx).

IF s2(indx, 1) = 1 THEN
GET =1, s2(indx, 2)
zpv = ztemplindx) * CVS(pr$)
andgate(indx) = 0

END IF

" Case 1.3.2 : Evaluation for case where there is no node found
' to be disjoint from the other members in s2().

ELSE

" Find all AND gate nodes in s2() and replace the nodes in s2()
" with their branches.

replc = 0
stot = s2(indx, 1) + 1
smem = 2
WHILE smem <«= stot
GET =1, s2(indx, smem)
IF (g$ = "DIR") OR (g$ = "AND") THEN
replc =
CAFLL SIBLING(indx, smem, s2(indx, smem), s2())
END IF

smem = smem + 1
WEND ‘smem

" Case 1.3.2.1 : Evaluation for case when replacements are made.

' Repetition of nodes is removed. Then determine if
there”ls a node disjoint from the rest of the nodes
in s2().

- 388

IF replc = 1 THEN
CALL REMREP(indx, s2())
IF s2(indx, 1) = 1 THEN
GET =1, s2(indx, 2)
zpv = ztemp(indx) * CVS(pr$)
andgate(indx) = 0
END IF

" Case 1.3.2.2 : Evaluation for case of no AND gate found in s2().

! An OR gate node m in s2() is picked and probability

is evaluated via call to PPROB with si() containing

the children of m and s2() containing nodes without m.

ELSE
FOR ka = 2 TO s2(indx, 1)+1
GET #1, s2(indx, ka)
IF LEFT$(g$, 2) = "OR" THEN
ornode = s2(indx, ka)
ka = s2(indx, 1)+1
END IF
NEXT ka
indx = indx + 1
si(indx, 1) = 0
CALL SIBLING(indx, 2, ornode, si())
ka = 2
FOR kb = 2 TO s2(indx-1, 1)+1
IF NOT(s2(indx-1, kb) = ornode) THEN
s2{indx, ka) = s2(indx-1, kb)
ka = ka + 1
END IF
NEXT kb
s2(indx, 1) = s2(indx-1, 1) - 1
CALL PPROB(indx, zp(indx))
indx = indx - 1
zpv = ztemplindx) * zplindx + 1)
andgate(indx) = O
END IF
END IF
WEND ‘andgate(indx)
END IF

* Case 2 : Evaluation for si() non empty. First initialise evset() so
) that it is empty. Then determine if there is a node in si()
which is disjoint from the other nodes of si() as well as s2().

ELSE
evset(indx, 1) = 0
andgate(indx) = 1
WHILE andgate(indx)
CALL INDEPTOR(indx, disjt, indevt)

‘ Case 2.1 : Case where a node in si() Is found to be disjoint
: from other nodes in s1() as well as from all nodes
in s2(). Save the disjoint node in evset().
IF disjt = 1 THEN

evset(indx, 1) = evset(indx, 1) + 1

evset(indx, evset(indx, 1)+1) = indevt

* Remove the disjoint node from si.

FOR ka = 2 TO si(indx, 1) + 1

- 389 -

IF silindx, ka) = indevt THEN
IF NOT(ka = si(indx, 1) + 1) THEN
FOR kb = ka TO si(indx, 1)
silindx, kb) = st(indx, kb+1)
NEXT kb
ka = s1(indx, 1) + 1
END IF
silindx, si(indx, 1)+1) = 0O
si(indx, 1) = silindx, 1) - 1
END IF
NEXT ka

IF s1(indx, 1) = 1 THEN
andgate(indx) = 0
END IF

" Case 2.2 : Evaluation for case of no nodes in si{) disjoint in s1()
' as well as in s2(). Find all OR and DIR nodes in si() and
replace the nodes in s1 with their branches.

ELSE
replc = 0
stot = si(indx, 1) + 1
smem = 2
WHILE smem <= stot
GET =1, si(indx, smem)
IF (LEFT$(g$, 2) = "OR") OR (g$ = "DIR") THEN
replc = 1
CALL SIBLING(indx, smem, sli(indx, smem), si())
END IF
smem = smem + 1
WEND ‘smem

' Case 2.2.1 : Evaluation for replacements made in s1(). Determine if
i there is a node in s1() which is disjoint from the other
nodes in s1() as well as disjoint with all the nodes in s2().

IF replc = 1 THEN
CALL REMREP(indx, si())
IF si(indx, 1) = 1 THEN

andgate(indx) = 0

END IF

ELSE
andgate(indx) = 0

END IF

END IF
WEND ‘andgate(indx)

‘ Case 2.1a : Evaluation for case of disjoint nodes found in si().

IF NOT(evset(indx, 1) = 0) THEN

indx = indx + 1

si(indx, 1) = silindx-1, 1)

FOR ka = 2 TO si(indx, 1) + 1
si(indx, ka) = si(indx-1, ka)

NEXT ka

s2(indx, 1) = s2(indx-1, 1)

FOR ka = 2 TO s2(indx-1, 1) + 1
s2(indx, ka) = s2(indx-1, ka)

NEXT ka

CALL PPROB(indx, zp(indx))

indx = indx - 1

ztemplindx) = zp(indx+1)

39()

indx = indx + 1

s1(indx, 1) = 0

s2(indx, 1) = s2(indx-1, 1)

FOR ka = 2 TO s2(indx, 1) + 1
s2(indx, ka) = s2(indx-1, ka)

NEXT ka

CALL PPROB(indx, zp(indx))

indx = indx - 1

zcaselindx) = zplindx+1)

andfiglindx) = 2
WHILE andflglindx) <= evset(indx, 1) + 1
GET =1, evset(indx, andfig(indx))
zpr = CVS(pr$)
ztemp(indx) = zpr * (zcasel(indx) - ztemp(indx)) + ztemp(indx)
andflglindx) = andflg(indx) + 1
WEND ‘andflg(indx)
zZpy = ztemp(qindx)

' Case 2.2.2 : Evaluation for case of no disjoint nodes found in si()
' even if replacements are made in si().
A node is picked from si{) and saved in orgatelindx).

ELSE
orgatelindx) = si(indx, 2)

indx = indx + 1

si(indx, 1) = 0

FOR ka = 2 TO s2(indx-1, 1)+1
s2(indx, ka) = s2(indx-1, ka)

NEXT ka

s2(indx, 1) = s2(indx-1, 1) + 1

s2(indx, s2(indx, 1)+1) = orgate(indx-1)

CALL PPROB(indx, zp(indx))

indx = indx - 1

ztemp(indx) = zplindx+1)

indx = indx + 1
ka = 2
FOR kb = 2 TO si(indx-1, 1)+1
IF NOT(s1(indx-1, kb) = orgate(indx-1)) THEN
si(indx, ka) = si(indx-1, kb)
ka = ka + 1
END IF
NEXT kb
silindx, 1) = stlindx-1, 1) - 1
FOR ka = 2 TO s2(indx-1, 1)+1
s2(indx, ka) = s2(indx-1, ka)
NEXT ka
s2(indx, 1) = s2(indx-1, 1)
CALL PPROB(indx, zp(indx))
indx = indx - 1
ztemp(indx) = ztemplindx) + zplindx+1)

indx = indx + 1
ka = 2
FOR kb = 2 TO silindx-1, 1)+1
IF NOT(st(indx-1, kb) = orgate(indx-1)) THEN
silindx, ka) = silindx-1, kb)
ka = ka + 1
END IF
NEXT kb

- 391 -

si(indx, 1) = si(indx-1, 1) - 1
FOR ka = 2 TO s2(indx-1, 1)+1
s2(indx, ka) = s2(indx-1, ka)
NEXT ka
s2(indx, 1) = s2lindx-1, 1) + 1
s2(indx, s2(indx, 1)+1) = orgate(indx-1)
CALL PPROB(indx, zp(indx))
indx = indx - 1
zpv = ztemplindx) - zplindx+1)
END IF
END IF
END SUB

SUB REMREP(ndx, set(2)) STATIC

ka = 2
WHILE ka ¢= set{ndx, 1)
kb = ka+1
WHILE kb <= set(ndx, 1)+1
remvd = 0
IF set{ndx, ka) = set{ndx, kb) THEN
FOR kc = kb TO set(ndx, 1)
set(ndx, kc) = set(ndx, kc+1)
NEXT kc
set(ndx, 1) = set(ndx, 1) - 1
remvd = 1
END IF
IF remvd = 0 THEN
kb = kb + 1
END IF
WEND kb
ka = ka + 1
WEND ‘ka

END SUB

SUB INDEPTOR(ndx, disjt, indevt) STATIC

FOR ka = 2 TO si(ndx, 1)+1
GET 82, si(ndx, ka)
kz = CVI(nu$)
disjt = 1
FOR kb = 2 TO si(ndx, 1)+1
IF NOT(kb = ka) THEN
GET =2, si(ndx, kb)
ky = CVi(nu$)
FOR kc =1 TO kz
GET =2, si(ndx, ka)
kx = CVI(pri$(kc))
GET =2, si(ndx, kb)
FOR kd = 1 TO ky
IF kx = CVI(pri$(kd)) THEN
disjt = 0
kd = ky
ke = kz
END IF
NEXT kd

- 392 -

NEXT kc
END IF
IF disjt = 0 THEN kb = si(ndx, 1)+1
NEXT kb
IF disjt = 1 THEN
indevt = s1(ndx, ka)
FOR kb = 2 TO s2(ndx, 1)+1
GET =2, s2(ndx, kb)
ky = CVi(nu$)
FOR kc = 1 TO ky
GET 22, s2(ndx, kb)
kx = CVI(pri$(kc))
GET =22, indevt
FOR kd = 1 TO kz
IF kx = CVI(pri$(kd)) THEN

disjt = 0
kd = kz
ke = k
END IF
NEXT kd
NEXT kc
IF disjt = 0 THEN kb = s2(ndx, 1)+1
NEXT kb
END IF
IF disjt = 1 THEN ka = si(ndx, 1)+1
NEXT ka
END SUB

SUB INTERSEC(ndx, true) STATIC

true = 0
FOR ka = 2 TO s2(ndx, 1)+1
FOR kb = 2 TO st(ndx, 1)+
IF s2(ndx, ka) = si(ndx, kb) THEN
true = 1
kb = st(ndx, 1)+1
ka = s2(ndx, 1)+1
END IF
NEXT kb
NEXT ka
END SUB

SUB SIBLING(ndx, setpos, evadd, set(2)) STATIC

dtemp = evadd
GET =1, dtemp
set(ndx, setpos) = CVli(cau$(1))
IF set(ndx, 1) = 0 THEN
set(ndx, 1) = 1
END IF
repeat = 1
WHILE repeat
GET =1, dtemp
IF CVI(bc$) => 4 THEN
db = 4
ELSE
db = CVi(bc$)

- 393

END IF
FOR dc =1 TO db
IF NOT(CVI(cau$(dc)) = set(ndx, setpos)) THEN
set{ndx, 1) = set(ndx, 1) + 1
set(ndx, set(ndx, 1)+1) = CVi(cau$(dc))
END IF
NEXT dc
IF CVI(bc$) <« 4 THEN
repeat = 0
ELSE
dtemp = CVi(cau$(4))
GET =1, dtemp
IF (LEFT$(e$, 1) = "&") THEN
set{ndx, 1) = set(ndx, 1) - 1
ELSE
repeat = 0
END IF
END IF
WEND ‘repeat
END SUB

SUB PARENT (ndx, setpos, evadd, set(2)) STATIC

dtemp = evadd
GET =1, dtemp
IF NOT(CVI(bq$) = 0) THEN
set(ndx, setpos) = CVi(con$(1))
IF set(ndx, 1) = 0 THEN
set(ndx, 1) = 1
END IF
true = 1
WHILE true
GET =1, dltemp
IF CVI(bg$) => 4 THEN

ka = 4
ELSE

ka = CVI(bg$)
END IF

FOR kb =1 TO ka
IF NOT(CVH{con$(kb)) = set(ndx, setpos)) THEN
set(ndx, 1) = set(ndx, 1) + 1
set(ndx, set(ndx, 1)+1) = CVi(con$(kb))
END IF
NEXT kb
IF CVI(bq$) < 4 THEN
true = 0
ELSE
dtemp = CVi(con$(4))
GET =1, dtemp
IF (LEFT$(e$, 1) = "@") THEN
set(ndx, 1) = set(ndx, 1) - 1
ELSE
true = 0
END IF
END IF
WEND ‘true
END IF
END SUB

- 394 -

SUB INDEPT(indx, disjt, indevt) STATIC

FOR ka = 2 TO s2(indx, 1)+1
GET =22, s2(indx, ka)
kz = CVi(nu$)
disjt = 1
FOR kb = 2 TO s2(indx, 1)+1
IF NOT(kb = ka) THEN
GET 22, s2(indx, kb)
ky = CVi(nu$)
FOR kc = 1 TO kz
GET 22, s2(indx, ka)
kx = CVI(pri$(kc))
GET =2, s2(indx, kb)
FOR kd = 1 TO ky
IF kx = CVI(pri${kd” THEN
disjt = 0
kd = ky
kc = kz
END IF
NEXT kd
NEXT kc
IF disjt = 0 THEN kb = s2(indx, 1) + 1
END IF
NEXT kb
IF disjt = 1 THEN
indevt = s2(indx, ka)
ka = s2(indx, 1)+1
END IF
NEXT ka
END SUB

P o e e e S e ol e e s e il i i i i e e e i i S i, e e] e i i e i S i . W i e S i . o o T e

SUB MEANING (evt$, mean$) STATIC

ka = INSTR(evt$, "(")
IF NOT(ka = 0) THEN
item$ = LEFT$(evt$, ka-1)

' Get item name

IF MID$(item$, 1, 6) = "CICOIL" THEN
send$ = "COOLING COIL IN CONDENSER C1 "
ELSEIF MID$(item$, 1, 6) = "CIVENT" THEN
send$ = "VENT OF CONDENSER C1 *
ELSEIF MID$(item$, 1, 4) = "TRAY" THEN
send$ = item$
ELSEIF MID$(item$, 1, 3) = "FCL" THEN
send$ = "FLOW CONTROL LOOP " + item$
ELSEIF MID$(item$, 1, 3) = "LCL" THEN
sen4d$ = "LEVEL CONTROL LOOP “ + item$
ELSEIF MID$(item$, 1, 3) = "TCL" THEN
sen4d$ = "TEMPERATURE CONTROL LOOP " + item$
ELSEIF MID$(item$, 1, 3) = "RBH" THEN
send$ = "REBOILER HEATER " + item$
ELSEIF MID$(item$, 1, 2) = "TC" THEN
send$ = "TEMPERATURE CONTROLLER " + item$
ELSEIF MID$(item$, 1, 2) = "LC" THEN

sen4$ = "LEVEL CONTROLLER “ + item$
ELSEIF MID$(item$, 1, 2) = "RB" THEN

sen4$ = "REBOILER DRUM " + item$
ELSEIF MID$(item$, 1, 2) = "CV" THEN

send$ = "CONTROL VALVE " + item$
ELSEIF MID$(item$, 1, 2) = "FI" THEN

send$ = "FLOW INDICATOR “ + item$
ELSEIF MID$(item$, 1, 2) = “LI" THEN

send$ = "LEVEL INDICATOR " 1 item$
ELSEIF MID$(item$, 1, 2) = “TI” THEN

send$ = "TEMPERATURE INDICATOR " + item$
ELSEIF MID$(item$, 1, 2) = "PI” TIHEN

send$ = "PRESSURE INDICATOR " + item$
ELSEIF MID$(item$, 1, 2) = "HE" THEN

send$ = "HEAT EXCHANGER " + item$
ELSEIF LEFT$(item$, 1) = “L” THEN

send$ = “LINE “ + item$
ELSEIF LEFT$(item$, 1) = "N THEN

send$ = "NODE " + item$
ELSEIF LEFT$(item$, 1) = V" THEN

send$ = "VALVE " + item$
ELSEIF LEFT$(item$, 1) = "T" THEN

send$ = "TANK " + item$
ELSEIF LEFT$(item$, 1) = “P" THEN

send$ = "PUMP " + item$
ELSEIF LEFT$(item$, 1) = "C" THEN

send$ = "CONDENSER " + item$
ELSEIF LEFT$(item$, 1) = "D” THEN

send$ = "DISTILLATION COLUMN " + item$

send$ = "VESSEL " + item$

kb = INSTR(evi$, ~)")

code$ = MID$(evt$, ka+l, kb-ka-1)

IF NOT((LEN(code$) = 1) OR (LEFT$(code$, 1) = “-")) AND—
(ASC(LEFT$(code$, 1)) < 58) THEN

" Get the Property Word from index code.

index$ = MID$(code$, 1, 1)

IF index$ = "1" THEN
sen2$ = "FLOW"

ELSEIF index$ = “2“ THEN
sen2$ = "TEMPERATURE"

ELSEIF index$ = "3" THEN
sen2$ = "PRESSURE"

ELSEIF index$ = "4" THEN
sen2$ = "LEVEL"

ELSEIF index$ = "5" THEN
sen2$ = "CONCENTRATION"

ELSEIF index$ = "6" THEN
sen2$ = "PURGE"

ELSEIF index$ = "7" THEN
sen2$ = "HEAT TRANSFER"

ELSEIF index$ = "8" THEN
sen2$ = "REACTION"

ELSE
sen2$ = "

END IF

* Get the Guide Word from the index code.

- 396

index$ = MID$(code$, 2, 1)
IF index$ = "1" THEN
seni$ = "NO”
ELSEIF index$ = “2" THEN
seni$ = "LESS than normal”
ELSEIF index$ = "3" THEN
sen1$ = "MORE than normal”
ELSEIF index$ = "4" THEN
seni$ = "AS WELL AS"
ELSEIF index$ = "“5" THEN
seni$ = "FLUCTUATION"
ELSEIF index$ = "6" THEN
seni$ = "REVERSE"
ELSEIF index$ = 7" THEN
seni$ = "OTHER THAN"
ELSE
seni$ = "~
END IF

" Get the Component Word from the index code.

IF LEN(code$) = 3 THEN
index$ = MID$(code$, 3, 1)
IF index$ = "1" THEN
sen3$ = “of TRICHIL.OROETHYLENE"
ELSEIF indexi = "2" THEN
ELSEIF index$ = "2" THEN
sen3$ = "of TETRACHLOROETHYLENE™
ELSEIF index$ = "3" THEN
sen3$ = "of WATER"
ELSEIF index$ = "4" THEN
sen3$ = "of AIR"
ELSEIF index$ = "5 THEN
sen3$ = "of BOTTOMS LIQUID"
ELSEIF index$ = “6" THEN
sen3$ = "of TOP VAPOUR"
ELSE
sen3$ = "
END IF
ELSE
sen3$ = "
END IF
mean$ = sen1$ + " " + sen2% + " " + sen3$ + " in " + send$
ELSE
IF MID$(code$, 1, 1) = "L THEN
seni$ = "LEAKING"
ELSEIF MID$(code$, 1, 1) = "F" THEN
seni$ = "FOULING"

ELSEIF M|D$(code$, 1, 2) = "BO" THEN
sen1$ = "BURN OUT"
ELSEIF MID$(code$, 1, 2) = "OF" THEN

seni$ = "OVERFLOW"
ELSEIF MID$(code$, 1, 2) = "VR™ THEN
senli$ = "VAPOUR RELEASE™
ELSE
IF MID$(item$, 1, 6) = "CICOIL™ THEN
IF MID$(code$, 1, 1) = 0" THEN
sen!$ = "FULLY BLOCKED"

ELSEIF MID$(code$, 1, 1) = "-" THEN
seni$ = "PARTLY BLOCKED"
END IF

ELSEIF MID$(item$, 1, 6) = "CIVENT" THEN
IF MID$(code$, 1, 1) = "0" THEN

- 397 -

senl$ = "BLOCKED"
END IF

ELSEIF M|D${ilem$. 1, 3] = "FCL" THEN
IF MlD$(code$ 1, "0" THEN
seni$ = “"giving N() FLOW"
ELSEIF M|D$[code$ 1, 1) = "-" THEN
senl$ = "giving LESa lhan normal FLOW"
ELSEIF M|D$(code$ I “1" THEN

sen1$ = "giving MORE than normal FLOW"
END IF
ELSEIF M|D$(item$, I, 3) = "LCL" THEN
IF MID${code$ 1, “0” THEN
seni$ = qiwnq NO LEVEL
ELSEIF M|D$(code$ 1) = "-" THEN
senl$ = "giving IE S lhan normal LEVEL"
ELSEIF M|D$lcode$] "1" THEN
seni$ = "giving MORE than normal LEVEL"
END IF
ELSEIF MID$litem$. 1. 3) = "TCL” THEN
IF M|D$(code$ = "0" THEN
seni$ = acls to gwe NO HEAT
ELSEIF MID$(code$, THEN
senl$ ="acts to gwe LESS lhan normal TEMPERATURE"™
ELSEIF MID$(code$, 1, 1) = THEN
seni$="acts to give '‘MORE ﬁlan normal TEMPERATURE"
END IF
ELSEIF MID$(item$, 1, 2) = "FI” THEN
IF MID$(code$, 1, 1) = "0" THEN
seni$ = lndu:ating NO FLOW

ELSEIF MlD$(code$ 1, "1" THEN
senl$ = indlcatlnq MORE than normal FLOW"
ELSEIF MID$(code$ 1, THEN

sen1$ = "indicating LESS than norm.al FLOW™"
END IF
ELSEIF M|D${item$, 1, 2) = "TI™ THEN

IF MID$(code$, 1, “1" THEN
seni$=" mdicating MORE 1han normal TEMPERATURE"
ELSEIF MID$(code$ 1, = THEN

sen1$ = "indicating LESS lhan normal TEMPERATURE"
END IF

ELSEIF M!D${|tem$ = " THEN
IF MID$(code$ = e TIIEN
seni$ = indu:atlng MORE than normal LEVEL"
ELSEIF MID$(code$ 1.1 = THEN
senl$ = indtcatlng LESS than normal LEVEL"
END IF
ELSEIF (MID$(item$, = "TC") OR_—
(MID$(item$, = "LC") THEN
IF MID$(code$, 1, “1" THEN
seni$ = "set po:nl HIGH"
ELSEIF MID$(code$, 1) = "-" THEN
sen1i$ = "set poml "LOwW"
END IF

ELSEIF (MID$(item$, 1, 2)) = "CV" THEN
IF MID$(code$, 1, 1) = "0" THEN
seni$ = "stuck CLOSED"

ELSEIF MID$(code$, 1, 1) = "-" THEN
seni$ = "insufficiently OPEN"
ELSEIF MID%$(code$, 1, 1) = "1" THEN
senl$ = "stuck OPEN"
END IF
ELSEIF MID$(item$, . l) = "L" THEN
IF MID$(code$, 1, = "0" THEN

- 398

sen1$ = "FULLY BLOCKED"

ELSEIF MID$(code$, 1, 1) = "-" THEN
seni$ = "PARTLY BLOCKED"
END IF

ELSEIF MID$(item$, 1, 1) = "P" THEN
IF MID$(code$, 1, 1) = "0" THEN
senl$ = "STOPPED"

ELSEIF MID$(code$, 1, 1) = "-" THEN
sen1$ = "CAVITATING"
ELSEIF MID$(code$, 1, 1) = "1" THEN

seni$ = "“RUNNING”
END IF
ELSEIF MID$(item$, 1, 1) = "V” THEN
IF MID$(code$, 1, 1) = "0" THEN
seni$ = "CLOSED or BLOCKED"
ELSEIF MID$(code$, 1, 1) = "-" THEN
sen1$ = "INSUFFICIENTLY OPEN"
ELSEIF MID$(code$, 1, 1) = "1” THEN
sen1i$ = "OPEN or OPEN TOO MUCH"
END IF
ELSE
senl$ = "~
END IF
END IF
mean$ = send$ + " " + seni$
END IF
ELSE
mean$ = evt$d
END IF
END SUB

- 399

APPENDIX G

CONTENT OF THE FAULT TREE DATA FILE HAZOP.COD

Table G.1 bel

ow shows the content of the file HAZOP.COD which is

produced by the program called TRANSLAT which operates on the file
HAZOP.TXT input by the user. HAZOP.TXT contains the list of cause
and symptom equations obtained from the HAZOP study of the pilot
distillation plant. The a priori and posteriori probabilities are not

shown in the

table.

Nomenclature

ADDR
EVENT
GATE
BC

Gl = iC4
BQ

QI - Q2

: the record number in the data file.
: the field e$ containing the name of each event.

: the field g$ containing the 3 character string which

describes the type of event stored in e$.

: the field bc$ containing the number of branches

connected to the event stored in e$.

: the fields cau$(1) to cau$(4) containing the record

numbers of events which arc causes of the event stored
in e$.

: the field bg$ containing the number of consequences of

the event stored in e$.

: the fields con$(1) to con$(4) coutaining the record

numbers of events which are consequcnces of the event
stored in e$.

Table G.1 : Content of the file HAZOP.COD

ADDR | EVENT GATE [BC |C1 |C2 |C3 |[C4 |BQ [Q! |Q2 |Q3 | Q4
1 L3(11) ORC |5 2 3 5 9 3 33 (34 (35 |0
2 L1(11) ORC 3 204| 205| 206| 0 1 1 0 0 0
3 V16(0) PRI 0 0 0 0 0 1 1 0 0 0
4 P1(0) PRI 0 0 0 0 0 3 5 10 |27 |0
5 LR | AND |2 4 6 0 0 1 1 0 0 0
6 vV6(0) PRI 0 0 0 0 0 1 3 0 0 0
7 L3(0) PRI 0 0 0 0 0 1 1 0 0 0
8 Fii(1) PRI 0 0 0 0 0 2 | 10 |0 0
9 & 2 CON | 2 7 8 0 0 0 0 0 0 0

- 400 -

Table G.1.a :

continuation of table G.1

ADDR | EVENT GATE |BCc |ct |c2 |c3 |ca |BQ| Q1 |Q2 Q3| Q4
10 | L3(12) ORC |12 |11 |4 [12 [15 |3 |36 |34 |37 |0
" L1(12) ORC |3 |207(208|209{0 (1 |10 |o |0 |o
12 | PI(-1) PRI |0 |0 (o |o |o |2 |10 |29 (0o |oO
13 | PHL) PRI |0 |0 [o |o |o |1 |10 |0 [0 |oO
14 | L3(L) PRI |0 [0 |0 |o |o |1 |10 |0 |0 |oO
15 |&3 CON |4 [13 [14 |16 (19 |0 [0 |0 [0 |oO
16 | L3(-1) PRI |0 |o [o |o [o |1 |10 |Oo |0 |oO
17 | vi6(-1) PRI |0 |0 |o [o |o |1 |10 |o |o |o
18 | v5(1) PRI |0 |0 [o |o |o |1 |10 |0 |0 |oO
19 |&4 CON |4 [17 |18 |8 |22 |0 |o |o |o |o
20 | V6(L) PRI |0 |o |o |o |o |1t |10 |o |o |o
21 | V16(L) PRI |0 |o |o |o [o |1 |10 |0 |o |oO
22 | & 5 CON [3 [20 |21 |23 |0 [0 |o |o |o |oO
23 | V5(L) PRI |0 |0 |0 |o [o |1+ |10 |o |0 |0
24 | L3(13) ORC |2 |25 |26 |0 |0 |3 |38 |39 |40 |0
25 | V16(1) PRI |0 |0 |o |o |o [1 |24 |0 |0 |oO
26 | Fii(-1) PRI |0 |0 |o |o [o [1 |24 |0 |0 |O
27 | L3(16) AND |2 |28 [4 |0 |0 |o |o |o |o |o
28 | D1(33) ORC |2 |122]|123|0 |o |5 |27 |70 |86 | 237
29 | L3(144) ORC |2 |12 |31 |0 |o |3 |36 |34 (37 |0
30 | va() PRI |0 |0 |0 |0 |o |3 |31 |49 |53 |0
31 |z 6 AND |2 [30 (32 |0 |0 |1 |29 [0 |0 |oO
32 | T2(41) PRI |0 |0 |0 |o |o [t |31 o |o |o
33 | N1(11) DIR {1 |1 |o |o |o |3 |16 |127 |132]|0
34 | N2(12) ORS |6 |1 |10 |29 |67 [t |167|0 |0 |oO
35 | N3(11) pIR [1 [t |o Jo |o |1 |220(0 |0 |oO
36 | N1(12) ORS |2 |10 |29 o |o |o |o |o [0 |o
37 | N3(12) ORS |3 |10 |29 |50 [0 |1 |228|/0 |0 |0
38 | N1(13) DIR |t |24 |0 |o |o |2 |19 |129|0 |oO
39 | N2(13) ORS |3 |24 |50 [61 [0 |t [170|0 |0 |0
40 | N3(13) ORS |5 |24 |41 |46 |68 |1 |234|0 |0 |0
41 | L3(22) DIR |1 |42 |0 [0 [0 |4 |43 |44 |40 |45
42 | TI(22) PRI |0 |0 |o |o |o |1 |41 |o |0 |oO
43 | N1(22) DIR |1 |41 o |o |o |2 [124|129|0 |O
44 | N2(11) ORS |2 |41 |54 |0 |o |1 [166|0 |0 |oO
A5 | N3(531) ORS |4 |41 |54 |57 |63 |1 [239|0 [0 |oO
46 | L3(521) ORC |2 |47 |49 |0 |0 |2 |34 (40 [0 |O
A7 | L1521 DIR |1 |210(0 |0 |0 |1 |46 |0 [0 |oO
A8 | L2(521) DIR |t |212/0 |0 |o |1 (49 [0 |0 |oO
49 |=n7 AND |2 |48 |30 |0 |0 [1 |46 |0 |0 |oO
50 |L3(531) ORC |2 |51 [53]|0o |o |2 [39 |37 |0 |o
51 | L1531 DIR |1 |2nn|o |o o |1+ |50 [0 [0 |oO
52 | L2(531) DIR |1 |213|o |o |o |1 |53 (0 |0 |oO
53 |=8 AND |2 |52 |30 |0 |0 [t |50 {0 |0 |oO
54 | L8(11) ORC |2 |55 |56 |0 |0 |4 |65 |44 |40 |45
55 | N9(11) pIR |1 [159]l0 |o |o |1 |54 0 |0 |o
56 | L8(0) PRI |0 |0 [0 |0 |o |2 |54 [152]/0 |oO
57 | L8(12) ORC |3 |58 |59 |60 |0 |4 |66 |34 |40 |45
58 | N9(12) pIR |1 [161|0 o o |1 |57 (0o |0 |o
59 | L8(-1) PRI |0 |0 o |o o |1 |57 |0 |0 |oO
60 |L8IL) PRI |0 |0 [o Jo |o |1 |57]o |o |o
61 | L8(13) DIR |1 [62]0o |o |o |2 |69 |39 |0 |oO

401 -

Table G.1.b : continuation of table G.l.a

o
N
Qo
W
o
-

ADDR | EVENT GATE | BC |ct |c2 |c3 |ca |BQ | Q1
62 | N9(13) pIR |1 |163]0 o |o |1 |61

63 | L8(145) DIR |1 |64 [0 |0 |o |1 |45
G4 N9(145) DIR 1 158 |1 0O 0 0 1 63
65 | N5(11) DIR |1 |54 [0 [0 |0 |2 |124
66 | N5(12) DIR |1 |57 o [o |o |1 |1209
67 |& 9 CON |3 |46 |57 |83 |o |0 |o

68 | & 10 CON |2 |54 |57 |0 |o |o |o

69 | N5(13) DIR |1 |61t [0 |o |o |1 [132
70 | L8(33) DIR |1 |28 |0 |o [o |1 |71

71 N9(33) DIR |1 |70 [0 |0 |o |1 [|152
72 | L10(11) ORC |4 |73 |74 |75 |76 |2 |87
73 | L9UID ORC |3 |92 (94 |96 |0 |1 |72
74 Cv2(0) PRI 0 0 (0] 0 0 2 72
75 | L10(0) PRI |0 |o |o |o |o |2 |72
76 | F12(1) PRI |0 |o [o |o |o |2 |72
77 | L10(12) ORC |5 |78 |79 |80 |82 |2 |89
78 | L9(12) ORC |4 |97 |98 |93 |99 |1 |77
79 | cva(-1 PRI |0 [0 |o |o |o |1 |77
80 | L10(-1) PRI [0 |0 [o |o |o |1 |77
81 | L10(L) PRI [0 |o [o |o Jo |1 |77
82 |& 1 CON |2 |81 |76 |0 |o |0 |o

83 | L10(13) ORC |2 |84 |85 |0 |o |2 |90
84 |cva() PRI |0 |0 |o |o |o |1 |83
85 |F12(-1) PRI |0 |0 |o |o |o |1 |83
86 | L10(16) DIR |1 |28 [0 |o |o |2 |[102
87 | N4(11) DIR |1 (72 [o |o |o |2 |16
88 | N2(521) ORS |2 |72 (77 |o |o |1 |[174
89 | N4(12) DIR |1 |77 [0 |o |o |2 |[127
90 | N4(13) DIR |1 |83 |0 |o |o |3 [n9
91 | L10(33) DIR [1 |28 [0 |o o |1 |10
92 [cCi41) ORC |3 |122)17z6|177 |0 |1 |73
93 | P2(0) PRI |0 |0 |o |o |o |3 |94
94 |= 12 AND |2 |93 |95 |o |o |1 |73
95 | v9(0) PRI [0 |0 [0 |o |o |4 |94
96 |L9(0) PRI [0 |o |o |o |o |1 |73
97 |La9(-1 PRI |0 |o (o |o |o |1 |78
98 | L9(L) PRI |0 |o [o |o |o |1 |78
99 | P2(-1 PRI (0 |o [o |o |o |1 |78
100 | L9(13) ORC |2 |101|95 |0 |0 |0 |0

101 | L11(13) ORC |3 |[173|245/86 [0 |1 |[100
102 | L9(16) AND |3 |86 |93 [103|0 |1 [106
103 |= 13 ORC |2 |104]105]|0 |0 [1 |102
104 | L11(0) PRI [0 |0 |o |o |o |3 |103
105 | Ccv3(0) PRI |0 |0 [o |o |o |3 103
106 | N7(16) DIR |1 [102|0 |0 |o |1 [181
107 |= 16 AND |2 |108|109]|0 [0 |t [110
108 | = 14 ORC |2 |75 |74 |0 |0 |1 |107
109 |= 15 ORC |2 |104f105|0 |0 [1 107
110 | L9(33) ORC |3 |[107|91 |95 |0 [0 |oO

m | La(s21) DIR |1 [1n2]o [0 |o |1 |246
12 | N7(521) DIR |1 [174]l0 |o Jo |1t |
113 | D1(41) ORC |3 [14a |15 |6 o |1 |156

102

N

cCOooCCCO—=-00OO0C

o]

OEOOQOOOCOOOOOOOOOOOOOOOOOOOOOOOO
no

o
N
N

cooocooooggzoocooe0R
© ©
ooooococrxocoooooo
oo
COCO 000000000000 C0OO0ON00000000000C000000000C0000C000O00

Table G.1.c

: continuation_of table G.1.b

ADDR | EVENT GATE | BC [C1 |C2 |C3
114 D1(L) PRI 0 0 0 0
s RB1(L) PRI 0 0 0 0
116 u 17 AND | 2 33 (87 |0
117 D1(42) ORC 3 114 | 115 | 118
118 LCL2(-1) ORC 3 142 (143 | 144
119 z 18 AND |2 38 |90 (O
120 | D1(43) ORC 2 119 {121 | O
121 LCL2(1) ORC 3 145|146 | 147
122 | L4(0) PRI 0 0 0 0
123 | C1(33) DIR 1 184 |0 0
124 | TRAY1(22) |ORC 4 43 (90 |65
125 | TCL2(-1) ORC 2 138 1139 (0
126 | TRAY1(23) |[ORC 3 87 (127|128
127 | = 19 AND |2 89 (33 |0
128 | TCL2(1) ORC 2 140 | 141 | O
129 | TRAY10(22) |ORC 6 43 (65 |38
130 | & 20 CON 3 90 |66 |131
131 TCLI(-1) ORC 2 134 | 135 |0
132 | TRAY10(23) |[ORC 4 69 |33 |89
133 [TCL1(1) ORC 2 136 {137 |0
134 | TH(1) PRI 0 0 0 0
135 | TCi(-1) PRI 0 0 0 0
136 | TIH(-1) PRI 0 0 0 0
137 | TC1(1) PRI 0 0 0 0
138 | TI2(1) PRI 0 0 0 0
139 TC2(-1) PRI 0 0 0 0
140 | Ti2(-1) PRI 0 0 0 0
141 TC2(1) PRI 0 0 0 0
142 | LI2(1) PRI 0 0 0 0
143 [LC2(-1) PRI 0 0 0 0
144 [CV4(1) PRI 0 0 0 0
145 | LI2(-1) PRI 0 0 0 0
146 | LC2(1) PRI 0 0 0 0
147 | CV4(-1) PRI 0 0 0 0
148 [L6(11) ORC 2 149 | 150 (O
149 [L5(11) DIR 1 15510 0
150 | L6(0) PRI 0 0 0 0
151 L6(16) DIR 1 152 {0 0
152 | RB1(33) ORC 2 56 |71 |O
153 | N8(11) DIR 1 148 (O 0
154 | L6(33) DIR 1 152 |0 0
155 | L5(0) PRI 0 0 0 0
156 | RB1(41) ORC 2 153|113 |0
157 | RB1(42) DIR 1 117 |0 0
158 | RB1(43) DIR 1 120 |0 0
159 | RB1(71) DIR 1 160 |0 0
160 | RBH(O0) PRI 0 0 0 0
161 RB1(72) DIR 1 162 (0 0
162 | RBH(-1) PRI 0 0 0 0
163 | RB1(73) DIR 1 164 | O 0
164 | RBH(1) PRI 0 0 0 0
165 ORS 2 156 [157 | O

RBH(BO)

103

C4

o

w

OCDOOOOOOOOOOOOOOOQQOOOOOCCOOOOOOO;OO&OOOO&‘OOOOCOOOOO

w
Qo

Q1

Q2

Qo
w

o
~

13
113
113
157
117

120
158
120
28

28

124

126
126

129

132
131
131
133
133
125
125
128
128
118
118
118
121
121
121
153
148
148
234
151
156

149
165
165
64
55
159
58
161
62
163

17
17

wa"'OOCD";‘JCDCD

o

NOCOCNOCCOOOOCOOOOO0OCODOOCCO
w .
-

n
o]

-~

OOOOCOOOOOOOO;OOOO

n

0000 CO0C000000000000000000C00C00OOLOO000OQ0LOQLOWOO00O0O0

OOOOOOOOOOOO@QCOOOOOOOOOC’DOOOOOOOOOOOOOOOOOOOOOOOOOOO

Table G.1.d

: continuation of table G.l.c

ADDR | EVENT GATE | BC | Ct1 |C2
166 | L4(11) ORC |2 |44 |122
167 | L4(12) ORC |3 |34 |168
168 | L4(L) PRI o |0 |o
169 | L4(-1) PRI o (o |o
170 | L4(13) DIR 1 39 [0
171 | N6(11) DIR 1 166 | 0
172 | N6(12) DIR 1 167 | 0
173 | N6(13) DIR 1 170 |0
174 | L4(521) DIR 1 88 |0
175 | L4(33) DIR 1 123 (0
176 | Cc1(71) DIR 1 185 [0
177 | C1(L) PRI o |o |o
178 | C1(42) ORC |4 172 | 179
179 | C1(72) ORC |2 |[186 |187
180 | LCL1(-1) ORC |2 |190 [191
181 | C1(43) ORC |3 182 | 106
182 | CI1COIL(L) |PRI o |0 |0
183 | LCL1(1) ORC |2 192 {193
184 | CIVENT(0) |PRI o |0 |o
185 | L15(11) ORC |4 |194 195
186 | L15(12) ORC |5 198 | 199
187 | CICOIL(F) |PRI o |0 |o
188 | CIVENT(OF [DIR 1 181 |0
189 | CIVENT(VR)|ORS |2 176 | 179
190 | LI PRI o |0 |0
191 [LCI(-1) PRI o (0 |0
192 | LI(-1) PRI o |0 |o
193 | LC1(1) PRI 0 |0 |o
194 | V7(0) PRI o |0 |0
195 | v8(0) PRI o |0 |o
196 | L15(0) PRI o |o |o
197 | CI1COIL(O) |PRI o |0 |o
198 | V7(-1) PRI o (o |o
199 | v8(-1) PRI 0 |0 |o
200 | L15(-1) PRI o |0 |0
201 | L15(L) PRI o |0 |0
202 | CICOIL(-1) |PRI o |0 |o
203 | & 21 CON |2 |201|202
204 | V3(0) PRI o (0 |0
205 | L1(0) PRI o |o |o
206 | T1(41) PRI o |0 (o
207 | V3(-1) PRI o |0 |0
208 | L1(L) PRI o |0 |oO
209 | Li(-1) PRI o |0 |o
210 | T1(521) DIR 1 214 |0
211 | TI(531) DIR 1 215 |0
212 | T2(521) DIR 1 214 |0
213 | T2(531) DIR 1 215 |0
214 | L14(521) ORC (2 |216 |21
215 | L14(531) ORC |2 |218|219
216 | V13(1) PRI o |Jo |0
217 | Vi4(-1) PRI o (0 |0

- 4014

Cc3

0
169

EOO:OOQOOOOOOO
(] ~

I\JaOOQ
=7}

(=]
o

CO000CCOO0O0O0O00OO0O0C0OoCCCOCOLCOOQOQCQOOO

O
o

o
l®)

Q1

o)
n

o
w

o
~

EOCOOOOOOOOOC

MGOOOOOO
~

(=]
w

CO0O00COCO0O0O0oOCOOOO0OQOCO0OoOC DO QOOLCOCOO

171
172
167
167
i3
240
178
101
112

210
21

214
214

QCONQOOOOO

onE
@ O

189

OONNOOOO0OO0O0OOCOOOCO00O0OO00O0O0O0O0OQOOOOCOCO

~

0000000000000 00O000000CO00000OLOOOLOCCOO0OOCOONOOOOOCO

OOOOOOOCOOOOOOOOOOOGOOOOOOOOOOOOOOOOOOOOQOOOOOOOOQOO

Table G.l.e :
ADDR | EVENT GATE | BC | C1i
218 | V13(-1) PRI 0 0
219 V14(1) PRI 0 0
220 | L7(11) ORC 6 35
221 | P3(0) PRI 0 0
222 | n 22 AND 2 221
223 | CV4(0) PRI 0 0
224 | L7(0) PRI 0 0
225 | HE1(0) PRI 0 0
226 & 23 CON 3 224
227 | FI13(1) PRI 0 0
228 | L7(12) ORC 7 37
229 | L7(-1) PRI 0 0
230 | L7(L) PRI 0 0
231 HE1(-1) PRI 0 0
232 | & 24 CON 4 230
233 | HE1(L) PRI 0 0
234 | L7(13) ORC 6 40
235 | vi2(0) PRI 0 0
236 | & 25 CON 3 151
237 e 26 0 0
238 | FI3(-1) PRI 0 0
239 | L7(531) DIR 1 45
240 | L11(11) ORC 4 172
241 | L11(12) ORC 4 172
242 [L11(-1) PRI 0 0
243 | L11(L) PRI 0 0
244 | CV3(-1) PRI 0 0
245 | CVv3(1) PRI 0 0
246 | L11{(521) DIR 1 in

c2

0

0
222
0
95
)

)

i
225
0
147
0

0

0
231
0
235
0
28
0

0

0
171
242

occoccCcc

continuation of table G.1.d

Cc3

0

0
223
0

0

0

0

0
227
0
229
0

0

0
233
0
144
0
238
0

0

0
104
43
()

0

()

0

e
-

3]
o]

w
no

nN
~

w
o]

ccCcooNnNCNOoCCCoCNCC e CCCoOnNCC

105
244

cCcocCcc

B

Q1

Q
n

Qo
W

Q
-~

215
215
0
222
220
220
220
220
0
220
0
228
228
228
0
228
0
234
0

a9t
234
0

0

0
2A41
241
241
101

ocoocccoco |
N
@
00000 CO0000CO0C0000000Ccoc0ooO O

OCOOCOOOOSOOOOOOOOONOO
-

CCOCOCOO0OOCOCO0o0O0OCOoO00OCcCOCoOOOCoO

