Vapour-liquid equilibrium studies at atmospheric to moderate pressures

Abstract

A study of vapour-liquid equilibria is presented together with current developments. The theory of vapour-liquid equilibria is discussed. Both experimental and prediction methods for obtaining vapour-liquid equilibria data are critically reviewed. The development of a new family of equilibrium stills to measure experimental VLE data from sub-atmosphere to 35 bar pressure is described. Existing experimental techniques are reviewed, to highlight the needs for these new apparati and their major attributes. Details are provided of how apparatus may be further improved and how computer control may be implemented. To provide a rigorous test of the apparatus the stills have been commissioned using acetic acid-water mixture at one atmosphere pressure. A Barker-type consistency test computer program, which allows for association in both phases has been applied to the data generated and clearly shows that the stills produce data of a very high quality. Two high quality data sets, for the mixture acetone-chloroform, have been generated at one atmosphere and 64.3oC. These data are used to investigate the ability of the new novel technique, based on molecular parameters, to predict VLE data for highly polar mixtures. Eight, vapour-liquid equilibrium data sets have been produced for the cyclohexane-ethanol mixture at one atmosphere, 2, 4, 6, 8 and 11 bar, 90.9oC and 132.8oC. These data sets have been tested for thermodynamic consistency using a Barker-type fitting package and shown to be of high quality. The data have been used to investigate the dependence of UNIQUAC parameters with temperature. The data have in addition been used to compare directly the performance of the predictive methods - Original UNIFAC, a modified version of UNIFAC, and the new novel technique, based on molecular parameters developed from generalised London's potential (GLP) theory.

Divisions: College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry
Additional Information: Department: Chemical Engineering and Applied Chemistry If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: vapour-liquid equilibrium studies,atmospheric,moderate,pressures
Last Modified: 08 Dec 2023 08:30
Date Deposited: 08 Dec 2010 08:52
Completed Date: 1997
Authors: Russell, Paul A.

Download

Export / Share Citation


Statistics

Additional statistics for this record