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SUMMARY

A study of vapour-liquid equilibria is presented together with current developments.
The theory of vapour-liquid equilibria is discussed. Both experimental and prediction
methods for obtaining vapour-liquid equilibria data are critically reviewed.

The development of a new family of equilibrium stills to measure experimental VLE
data from sub-atmosphere to 35 bar pressure is described. Existing experimental
techniques are reviewed, to highlight the needs for these new apparati and their major
attributes. Details are provided of how apparatus may be further improved and how
computer control may be implemented.

To provide a rigorous test of the apparatus the stills have been commissioned using
acetic acid-water mixture at one atmosphere pressure. A Barker-type consistency test
computer program, which allows for association in both phases has been applied to the
data generated and clearly shows that the stills produce data of a very high quality.

Two high quality data sets, for the mixture acetone-chloroform, have been generated at
one atmosphere and 64.3°C. These data are used to investigate the ability of the new
novel technique, based on molecular parameters, to predict VLE data for highly polar
mixtures.

Eight vapour-liquid equilibrium data sets have been produced for the mixture
cyclohexane-ethanol mixture at one atmosphere, 2, 4, 6, 8 and 11 bar, 90.9°C and
132.8°C. These data sets have been tested for thermodynamic consistency using a
Barker-type fitting package and shown to be of high quality. The data have been used
to investigate the dependence of UNIQUAC parameters with temperature. The data
have in addition been used to compare directly the performance of the predictive
methods, Original UNIFAC, a modified version of UNIFAC and the new novel

technique, based on molecular parameters developed from generalised London's
potential (GLP) theory.

Keywords: Equilibrium stills, Experimental, Vapour-liquid Equilibrium, Acetic
Acid-Water, Cyclohexane-Ethanol, Chloroform-Acetone
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A.6.17 Consistency test data, cyclohexane-ethanol data at 6 bar
using UNIQUAC 2-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine
equation for ethanol vapour pressure.

A.6.18 Consistency test data, cyclohexane-ethanol data at 6 bar
using NRTL 3-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine
equation for ethanol vapour pressure.

A.6.19 Consistency test data, cyclohexane-ethanol data at 6 bar
using Margules 2-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine

equation for ethanol vapour pressure.
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A.6.20 Consistency test data, cyclohexane-ethanol data at 6 bar
using Van Larr 2-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine
equation for ethanol vapour pressure.

A.6.21 Consistency test data, cyclohexane-ethanol data at 8 bar using
Wilson 2-parameter equation, new 3-parameter Antoine equation
for cyclohexane vapour pressure and 6-parameter Antoine equation
for ethanol vapour pressure.

A.6.22 Consistency test data, cyclohexane-ethanol data at 8 bar
using UNIQUAC 2-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine
equation for ethanol vapour pressure.

A.6.23 Consistency test data, cyclohexane-ethanol data at 8 bar
using NRTL 3-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine
equation for ethanol vapour pressure.

A.6.24 Consistency test data, cyclohexane-ethanol data at 8 bar
using Margules 2-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine
equation for ethanol vapour pressure.

A.6.25 Consistency test data, cyclohexane-ethanol data at 8 bar
using Van Larr 2-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine
equation for ethanol vapour pressure.

A.6.26 Consistency test data, cyclohexane-ethanol data at 11 bar using
Wilson 2-parameter equation, new 3-parameter Antoine equation
for cyclohexane vapour pressure and 6-parameter Antoine equation
for ethanol vapour pressure.

A.6.27 Consistency test data, cyclohexane-ethanol data at 11 bar
using UNIQUAC 2-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine

equation for ethanol vapour pressure.
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A.6.28 Consistency test data, cyclohexane-ethanol data at 11 bar
using NRTL 3-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine
equation for ethanol vapour pressure.

A.6.29 Consistency test data, cyclohexane-ethanol data at 11 bar
using Margules 2-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine
equation for ethanol vapour pressure.

A.6.30 Consistency test data, cyclohexane-ethanol data at 11 bar
using Van Larr 2-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine
equation for ethanol vapour pressure.

A.6.31 Consistency test data, cyclohexane-ethanol data at 90.9°C using
Wilson 2-parameter equation, new 3-parameter Antoine equation
for cyclohexane vapour pressure and 6-parameter Antoine equation
for ethanol vapour pressure.

A.6.32 Consistency test data, cyclohexane-ethanol data at 90.9°C
using UNIQUAC 2-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine
equation for ethanol vapour pressure.

A.6.33 Consistency test data, cyclohexane-ethanol data at 90.9°C
using NRTL 3-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine
equation for ethanol vapour pressure.

A.6.34 Consistency test data, cyclohexane-ethanol data at 90.9°C
using Margules 2-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine
equation for ethanol vapour pressure.

A.6.35 Consistency test data, cyclohexane-ethanol data at 90.9°C
using Van Larr 2-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine

equation for ethanol vapour pressure.
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A.6.36 Consistency test data, cyclohexane-ethanol data at 138.2°C using
Wilson 2-parameter equation, new 3-parameter Antoine equation
for cyclohexane vapour pressure and 6-parameter Antoine equation
for ethanol vapour pressure.

A.6.37 Consistency test data, cyclohexane-ethanol data at 138.2°C
using UNIQUAC 2-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine
equation for ethanol vapour pressure.

A.6.38 Consistency test data, cyclohexane-ethanol data at 138.2°C
using NRTL 3-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine
equation for ethanol vapour pressure.

A.6.39 Consistency test data, cyclohexane-ethanol data at 138.2°C
using Margules 2-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine
equation for ethanol vapour pressure,

A.6.40 Consistency test data, cyclohexane-ethanol data at 138.2°C
using Van Larr 2-parameter equation, new 3-parameter Antoine
equation for cyclohexane vapour pressure and 6-parameter Antoine
equation for ethanol vapour pressure.

A.7.1 Liquid-phase activity coefficients for ethanol-cyclohexane
mixture at 1.01325 bar.

A.7.2 Liquid-phase activity coefficients for ethanol-cyclohexane
mixture at 2 bar.

A.7.3 Liquid-phase activity coefficients for ethanol-cyclohexane
mixture at 4 bar.

A.7.4 Liquid-phase activity coefficients for ethanol-cyclohexane
mixture at 6 bar.

A7.5 Liquid-phase activity coefficients for ethanol-cyclohexane
mixture at 8 bar.

A.7.6 Liquid-phase activity coefficients for ethanol-cyclohexane

mixture at 11 bar.
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Chapter 1: Introduction.

Distillation is a mature technology which forms a massive proportion of the unit
operations employed in the oil refining and chemicals businesses, indeed Fair (1987)
suggested that "If the mixture is amenable to separation by distillation then that is the
method most likely to be economically attractive". Exceptions to this rule exist but the
widespread use of distillation confirms the truth of this statement. "Leaner and harder"
designs (Rush, 1980) are required to meet the requirements of today's
energy-conscious society. Even small incremental savings in energy requirements for
distillation represent large cuts in energy requirements when applied across the full

spectrum of distillation applications.

Design of any distillation equipment is dependent on the availability of vapour-liquid
equilibrium (VLE) data. To achieve the tighter design criteria required for
contemporary design data of a very high quality are required. Many data collections
such as the vast selection held in the Dortmund Data Bank are available but a large

proportion of the information is likely to be of dubious quality or not at the desired

conditions.

Vapour-liquid equilibrium data may be obtained either experimentally or predicted
using one of the many methods extant. In order to predict data many methods (see
below) require some experimental data for determination of model parameters and to
assess performance and limits of applicability of the individual prediction method. In
final design it is still considered unwise to design solely on predicted data and essential
to have available experimental data of high quality. Therefore a niche market still exists
for the experimental determination of vapour-liquid equilibria to support predictive

methods and provide final design data where none are available.

This project began with a review of existing experimental techniques from which a
need was identified for a new family of equilibrium stills to measure experimentally
VLE data from sub-atmosphere to 35 bar pressure, the practical limits of distillation
apparatus outside the cryogenic region. The initial scope of the project was to design

apparatus to accomplish this and commission the said apparatus to confirm its
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performance. The commissioned apparati were then to be used to produce data for an

investigation into the temperature dependence of UNIQUAC parameters.

It was decided to base the new equipment on the successful design of Raal et al.
(1972) which has been shown to produce high accuracy VLE data. Two versions of
the apparatus were required to meet the pressure specification, one for vacuum to one
atmosphere pressure and one for moderate pressure work from one atmosphere to 35
bar. Design of these apparati was to proceed in parallel with any design improvements

being incorporated in both versions of the equipment.

In commissioning the stills it was decided to use acetic acid-water at one atmosphere
pressure as the test mixture. This mixture was chosen to provide a rigorous test of the
apparatus to allow a comparative study of data produced using these stills with the
best literature data. A Barker-type consistency test computer program developed by
Jenkins and Gibson-Robinson (1977) which incorporates association in both phases

and has been shown to model this mixture well was available and used to test the new

data.

During the apparatus development phase of this project parallel research developing
the AGAPE data prediction methods identified a need for data of a high accuracy for a
polar mixture to test the AGAPE model. It was decided to use the new apparatus to
measure this data. Two high quality data sets, for the mixture acetone-chloroform,
were generated at 1 atmosphere and 64.3°C to meet this requirement. An investigation
into the use of a fit on a single data point using the AGAPEFIT method to predict both

isothermal and isobaric data sets was made using these data.

The investigation of the temperature dependence of UNIQUAC parameters require a
series of data sets at a range of pressures/temperatures. The mixture
cyclohexane/ethanol was chosen because the components of the mixture, when
expressed as terms for group contribution prediction methods, are limited to only a few
groups, thus the mixture is suitable for examining the temperature dependence of such

models. In addition the mixture is strongly non-ideal exhibiting an azeotrope, accurate
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VLE data exists below one atmosphere and there is an historic demand for data for

flow boiling research.

A wide range of vapour-liquid equilibrium data sets were produced for the mixture
cyclohexane-ethanol mixture over a range of pressures up to 11 bar and at two
temperatures. These data sets were then to be subjected to an advanced test for

thermodynamic consistency.

Such a set of data makes possible the further testing of data predictive methods. This
has been done for a number of advanced predictive methods, the various UNIFAC
methods, and a novel approach derived from molecular considerations, the AGAPEFIT
technique. Now if this was successful it would validate using the vast literature
collections of azeotrope data as the source for parameter fitting. In particular the

single-point version of AGAPEFIT could be tested using the azeotropic point.
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Chapter 2: Theoretical Background.

2.1 Introduction.

The first and second laws of thermodynamics are the fundamental relationships used to
derive further expressions to relate the concentrations of a given component in each
phase of an equilibrium vapour-liquid mixture. These expressions are used to correlate
and to consistency-test experimental data, as well as extrapolating data to new
conditions. They also provide a basis for both theoretical and semi-empirical prediction

methods for vapour-liquid equilibrium data from a minimum of information.

2.2 Criteria for equilibrium.

A combined expression of the first and second laws of thermodynamics gives

dU=TdS - PdV 2.1)
The definition of the Gibbs energy is:

G=H-TS 2.2)
Differentiation and substitution into equation 1 gives:

dG = VdP - SdT (23)
For a system of variable composition we may express G generally as:

G=G @, T, ncconnenes ) (2.4)

On partial differentiation we get:

dG = dT(%) +dP [Q—G) > (QQ) dn; (2.5)

Pn; oP ani T.Paji.;
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By inspection of equations (2.3) and (2.5), we see that:

(E) == ; (6@1}) L (2.6a & 2.6b)

We now define p;, the chemical potential of the i'th species by:

wi= (%) @7)

T,P,ni
Therefore, for a system of variable composition we obtain:
dG = VdP - SdT +Z pidn; (2.8)

If we consider two phases A and B, which represent two systems in contact at thermal
and mechanical equilibrium (P, = P, and T, = T;) and let 8n;, moles of component i
transfer from A to B, then for phase A and phase B we get:

dGa = pi*(=|8n;]) (29

dGp = p(+[3n)) (2.10)
respectively. Overall we have:

dG=dG, +dG; =0 (2.11)

A B _

pi -8n;]) + p (+[dn;)) = 0 (2.12)
Rearranging, we have:

8oyl (? - )= 0 2.13)
|8n;| has a finite value, hence the result:

THE Tty (2.14)
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is obtained.

To be of practical use, the chemical potential must be transformed from its abstract
form into one dependent on pressure, temperature and phase concentrations. The
problem is set out well by Prausnitz (1981) in diagram form as in Figure 2.1. Equation
(2.14) is represented by Step 2. Steps{ 1 and 2 present little or no problem due to the
work of Gibbs (1861) who first defined the chemical potential. The real problem arises
in step 3 where the transformation from abstract terms into real world mathematical

functions is made.

ABSTRACT WORLD OF MATHEMATICS AND

PURE MATHEMATICS.
Step 2
4
Projection of physical Transla-tion of abstract
Stepl | problem into abstract step3 results into terms of
+ terms. physical significance.
L /
REAL
PROBLEM WORLD ANSWER

Figure 2.1 The problem to be solved.

Lewis (1901) defined fugacity as:

dup; = RTdInf; (2.15)
where f; is the fugacity of the i"® component. On integration the expression

u; = RTInf, +6; (2.16)

is obtained. where 0; is a constant dependent only on temperature. At equilibrium the
temperature is uniform throughout all phases of a system hence the result:

fi=fB (2.17)
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is obtained. Equation (2.17) is another way of expressing the criteria for equilibria; it is
practically more useful than equation (2.14). The fugacity can be thought of as a

thermodynamic pressure which has been corrected for certain non-idealities.

2.3 The concept of Activity.

The activity was defined by Lewis (1907) as the ratio of the fugacity of the constituent
in the given state to the fugacity of this constituent at the same temperature in some

standard state:

a;= fF: (2.18)

where a, denotes the activity of the i* constituent and f° the fugacity in the standard

state at the same temperature.

On combining equations (2.18) and (2.16) it follows that the activity is a measure of

the difference of the chemical potentials in the given and standard states.

f
i — 1= RTlng (2.19)

The numerical value of the activity depends among other things on the choice of
standard state, since if f’ is changed, a,” also changes according to equation (2.18). It
is therefore necessary to consider which standard state is suitable for the solution of a
given problem. For solutions of non-electrolytes, we choose as the standard state that
of the pure constituent at the temperature and pressure of the system. Thus the activity

of the pure substance is always equal to unity.

@)= =1 (2.20)

|

The activity coefficient y; is defined as the ratio of the activity to the mole fraction of
the i® constituent:
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a-
Vi g (221)

It can be shown that the activity coefficient for a component in an ideal solution is
equal to unity and thus the activity coefficient can be regarded as a correction factor

for non-idealities in real solutions.

24 The Phase-Equilibrium relationship.

There are two basic methods of representing the equilibrium relationship, both derived

from the criteria for equilibrium,
fiA - f? (2.17)

The first method of expressing the equilibrium relationship uses fugacities calculated

from the pressure-volume-temperature (PVT) data through:

1{%} - pj (% = %} dp 2.22)

For use with equations of state explicit in volume, the equivalent relationship due to
Beattie (1949);

£ 1 % (6P) RT
ln[PJ == i { ) dv - InZ (2.23)

can be used for both phases.

The second method uses an equation of state only, for the vapour phase. A fugacity
coefficient ¢; is defined to relate the vapour phase fugacity to the mole fraction y, and
the total pressure P, hence:

f.
bi= y_—‘P (2.24)
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is obtained, and Beattie's equation is then represented by:

In; = Elf i [(%Pi) - F;—T}dv nZ (2.25)

Equations (2.18) and (2.21) can be combined to give the results:
fi = vixif} (2.26)

where f°; is the standard state fugacity, hence from equations (2.17), (2.24) and (2.26)

we have:
vixif] = diyiP (2.27)

Equation (2.27) is a key equation for the calculation of vapour-liquid equilibria.

For liquids at low pressures, it is usual to use an alternative approach. Equation (2.19)

is replaced by,

Hi — 1 =RTIna; (2.28)

where g, is the activity of component i, and ;" is the chemical potential for pure liquid.
The actual experimental data can be reduced to give the activity coefficients and these

can then be expressed as functions of concentrations. Using this alternative approach:

and fi=f : (2.29)
but fi'=yixif! : (2.30)
and £ = ¢y;P ; (2.31)
therefore vixifi" = diyiP (2.32)

But the standard states for the two phases are not the same and so the value of f; has
to be established with respect to the standard of the vapour phase. We choose the

vapour standard state to be the one more commonly used, i.e. that at which the
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fugacity of the pure component is one atmosphere. We can relate f; L (pureiat T and P
of mixture) to £V (fV = 1.0) in two steps.

Writing the relationship for pure saturated vapour i in equilibrium with pure saturated

liquid i at the temperature of the mixture, we have:

f"(T,p, ) (T )=¢i(T,pi-‘”‘)p?“‘ (2.33)

vixa:b;(T,pf‘“) p“‘:(:—Tz)) E ¢i[T,p?‘“) yiP (2.34)
Now

RTInf; = VdP (2.35)
Hence,

RTdInf" = vI"dP (2.36)

fiam _ 1 oL
In ff(z:t) = ﬁpfﬁj vidP (2.37)

vi’, the specific volume of the pure liquid i is often regarded as being independent of
pressure, hence,

vixiti)i(T,P?at) exp(%(P'P?l)J = dirpyiP (2.38)

Note that since Prausnitz et al. (1980) uses a standard state of zero pressure for the

liquid-phase, the exponential term becomes
LL)
exp( i RT

This term is often neglected (but never by Prausnitz) since for pressures below about
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ten atmospheres it is negligible.

Equation (2.38) can be simplified. At pressures close to one atmosphere (and perhaps
upto five atmospheres), the fugacity coefficients cancel out and, neglecting the

pressure term, we have:
vixipi™* = y;P (2.39)

If we define the relative volatility ratio for two components, 1 j, in a mixture by,

L Yi%i
then equation (2.39) for both i and j gives:
vip™
O = - 2.41
e =

The relative volatility is not as strong a function of concentration as the equilibrium

ratio. Similarly, the equilibrium ratio can be expressed rigorously as:

i mfa‘exp[;—i‘(P-p?“)]

Ki=2i=
L ¢iP

(2.42)

Expressing the equilibrium ratio in this way brings out the possibility of predicting the
equilibrium data on right hand side only ¢; and y; are functions of composition. Note
that for the equation-of-state approach the equilibrium ratio is given by:

K; = ‘;—z (2.43)

2.5 The Gibbs-Duhem Equation.

The Gibbs-Duhem equation is developed from a fundamental equation in terms of U

for a system of variable composition:
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dU = TdS - PdV +3 pidn; (2.44)

Integrating this from a state of zero mass to one of finite mass at constant composition

gives:

U=TS-PV +Z pidn; (2.45)

Differentiating equation (2.45) gives a general expression for dU comparable with

equation (2.44):

dU = TdS + SdT - PdV - VdP + 3 pidn; + 2nidyi (2.46)

and on comparison with equation (2.44) we get:

SdT - VAP + Xnidp; =0 (2.47)

Equation (2.47) is the Gibbs-Duhem equation, sometimes used in its restricted form:

2nidpi =0 (2.48)

Great care must be exercised when using the restricted form due to the fact that the
two omitted terms are related to the heat and volume change on mixing, which are not
always negligible. Two further useful thermodynamic relationships which are used to
evaluate the two left hand terms of equation (2.47) are:

a(ﬁ

“a—?— S | (2.49)
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and

(%) =Vi (2.50)

T, M

where H; and ¥; are the partial molar enthalpy and partial molar volume of component
i in the mixture.

2.6 Models for the Vapour-Phase.

The vapour phase is represented by two types of models, the indirect and the direct

models.

2.6.1 The Indirect Model

The indirect model already encountered in the definition of fugacity:
du; = RTdInfi(dT = 0) (2.15)
is in its integrated form

i = RTInf; +0; (2.16)
On defining a standard state for the vapour phase this becomes:

f
i - 1f = RTIncg (2.19)

where fjand p; are the fugacity and chemical potential of the reference state, usually
defined as one standard atmosphere.

3
Further we have the limit P—‘ —10asP—0 (2.51)

Equation (2.19) is usually written as:

Wi - py = RTInf; (2.52)
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The indirect models are of direct use in transforming the abstract chemical potential of
the vapour phase into the more meaningful fugacity of the vapour phase. In the case of

a single ideal gas, equation (2.52) becomes:
Hi = p; +RTInP (2.53)

2.6.2 The Direct Models

The direct vapour phase models are the equations of state which are used in the
calculation of vapour phase fugacity coefficients. The first of these is the ideal gas law
(PV =nRT) whose only use is as a starting point. It is valid for most compounds upto
one bar pressure and higher pressures for small non-associating molecules. At even
low to moderate pressures of 1 to 10 bar vapour phase fugacity coefficients can
deviate significantly from unity, especially if the substances involved are polar. The
liquid phase nonideality normally dominates the equilibrium relationship but the vapour

phase nonideality is not always insignificant and must be accounted for.

One approach for the representation of the vapour phase behaviour is the empirical
cubic equation of state. This can be represented in the molar volume form by the

general equation

p=RT __O(V-m)

v-b (v-8v+g) 234)

where the quantities b, ®, §, and n are equation-of-state parameters, each of which may
depend on temperature and composition.

The earliest of these cubic equations-of-state is due to Van der Waals who introduced
two constants into the ideal gas law to allow for the attractive forces between
molecules and the volume of the molecules themselves.

RT

P=ts ‘% (2.55)
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The most used equation of this type is due to Redlich and Kwong, it is:

_ RT a
v-b T%y(v+b)

(2.56)

where a and b may be expressed as functions of the critical properties. The results from
this equation show a great improvement over the Van der Waals equation although it
has its limitations. Consequently many workers have attempted to improve the
equation. The improvements include making the constants a and b functions of
temperature, relaxing the nature of the proportionality constants, which relate the
constants a and b to the critical properties and then fitting the equation to available
data. These modifications have been successful and have produced very good fits to

experimental PVT data (e.g. Prausnitz, 1969).

An alternative approach is that of the Virial equation which exists in two forms-

The volume form is:

_Pv_,. B C D
RT -1V e R (2.57)
The pressure form is:
Z=1+BP+CP2+DP?+.. (2.58)

where Z is the compressibility factor. B, C and D are the second, third and fourth virial

coefficients respectively and are, for pure components, each functions of temperature

only.

The physical significance of second virial coefficient B is that it takes account of
deviation from ideality resulting from interactions involving two molecules. The third
virial coefficient C deals with three molecules effect and so on. Little information is
available for the third and higher viral coefficients, thus the virial equation is often

truncated after the second viral coefficient thus
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Z=1+ % (2.59)
The virial coefficients are obtained by either fitting the equation to experimental data
or by using a correlation of the corresponding-states type. It is better to use
experimental data to give the virial coefficients and a compilation of second viral
coefficients for some substances has been produced by Dymond and Smith (1969).
Good volumetric data may not always be available and thus correlations employing

corresponding states relationships are used.

One frequently used, for pure non-polar gases, is that of Pitzer and Curl (1955, 1957).

PsBj;

R, =15 + 0§ (T) (2.60)

where @ is the acentric factor of the i component defined as :

s

ps
©; = —long—"— 1.000 (2.61)

<

and f°,(T) , f, (T,) are given by:

0.330 0.1385 0.0121
fa(T;) =0.1445 - = - - = ‘
B( r) T. TE TE (2 62)

Ty T2 T T2

For polar compounds several other correlations have been proposed. The most used of
these is the one proposed by Hayden and O'Connell (1975). This method uses only the
critical properties and molecular parameters, all of which may be estimated from the
molecular structure to calculate the second viral coefficients. The method is based on
the assumption that the viral coefficient is based on the summation of several

contributions due to different kinds of intermolecular forces

Btotai = Bﬁ"ce + Bmdﬂstahlc + Bbounds + Bchem (2.64)
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B,.. represents the molar volume; the contribution B + By .a arises from the

free metastable

potential energy from more or less strongly bounded pairs of molecules and B, is
due to associating substances. B__ ..+ B, . are common terms for all types of

B

mixtures. By is comprised of two terms B, ., and B is a correction term

polar > “polar

for the affects of polarity on the critical properties using the device of angle averaging,
see Cook and Rowlinson (1953). B, .. accounts for association contributions as a
separate term and is correlated as a equilibrium constant. This is likely to be the
weakest link in the correlation and by fitting this parameter to experimental data is

likely to yield the most significant improvements over the generalised equation.

Haydon and O'Connell (1975) concluded that this method is as good as any other for
simple substances and is a signficant improvement for complex systems. This method
appears to offer the most reliable framework for mixtures where no data are available.
A summary of this method is given by Fredenslund et al. (1977) together with a

computer program for its implementation.
Virial coefficients in a mixture are calculated using the relationship:

Bux = E Z yiyiBij (2.65)
i

Beattie (1949) developed an expression which can be used to obtain the fugacity

coefficients.

Ind; = % I [(g%) e IE,—T]dv -InZ (2.66)

This equation needs the substitution of a suitable equation of state to be of practical

use, for example using the truncated virial equation we have;
2
Ind; = i3 Ei}yiBij -InZ (2.67)
It should be noted that the truncated viral equation of state is inappropriate for use

with strongly interacting mixtures containing carboxylic acids and at high pressures
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where large errors may occur.

2.7 The Liquid-Phase Models

The liquid phase can be represented in two ways. The first way treats the liquid phase
in the same manner as the vapour phase and calculates the fugacity of the liquid phase
directly by substitution of an equation of state into equation (2.22). This method has
the advantage of not having to use a standard state, however, it has seen little use at
low to moderate pressures due to the inadequacy of the earlier equations of state to
perform suitably over a range of densities. In the light of this we need to discuss an
alternative approach to vapour-liquid equilibrium which involves a relationship
between the excess Gibbs function (or free energy) and the activity coefficient. In this,
the liquid phase is represented by defining an activity coefficient as used in calculating

liquid phase fugacities:

fi = yixif] (2.68)

where f] is the fugacity of the standard state. The value of the activity coefficient
depends on the composition, pressure and temperature of the liquid solution and also

on the standard state chosen. The choice of standard state will determine the

normalisation of the activity coefficient. For condensable components which can exist
as pure liquids at the temperature of the solution, the normalisation y; — 1 as x; = 1
is used, whereas for non~condensable components, the normalisation
Yi—> 1asx; =0, x, — 1 is the most convenient (see above).

As previously stated, the activity coefficient is a variable which is used to account for
all nonidealities of the liquid phase for each component. The activity coefficient can be
related to another function which expresses the non-ideality of a solution, the excess
Gibbs energy G*.

GMIXTURE = ZnipiREAL = Zniuf + Zn;RTlnxi + RTZ_n;Im/i (2.69)

But for an ideal mixture the Gibbs function is clearly the first two terms in the

expression on the right hand side, so
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GE = Gaaxrure-Giirore =RT2nilny; (2.70)

Dividing by the total number of moles we get:

g® =RT2x;lny; @.71)

For a binary mixture this becomes:

gE =RT(x; Iny, + len’}’z) (2.72)

Prausnitz (1969) has shown that any individual activity coefficient y; is related to the
molar excess Gibbs energy by:

- E
RTlny; = [O“af ) @2.73)

T.PniGsj)

where n, is the number of moles of the i"* component and n, is the total number of

moles.

Many equations have been proposed to express g* as a function of composition. The
form of the equation has usually been based on some simple theory of the nature of
liquids and of liquid mixtures; often just an assumption about the energy required to
replace one molecule of the solvent by one molecule of solute. There have been two

lines of approach to this. It is noted that,
gF = hE — TsE (2.74)

The first approach is to assume that the non-ideality lies entirely in the enthalpy term,
i.e. s* = 0 and no volume change occurs on mixing. This is the approach of the theory

of regular solutions.

gt = hE (2.75)

The second approach is to assume that the non-ideality is due entirely to the entropy of
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mixing, i.e. h* =0 and
gt =-TsE (2.76)

This is the athermal solution approach. In both cases, the only justification for the use

of any equation is that:
(a) it represents the experimental data well
(b) it is of use by virtue of its accuracy and generality, in the correlation

(and to a lesser extent the prediction) of vapour-liquid equilibrium data.

2.7.1 Liquid-phase models based on the regular solution approach.

The Margules equation.

The classical approach to development of this type of model has been to express the

Gibbs free energy of a binary mixture as a power series i.e.:

E

% = (Azix1 +Ax2)X1X3 - (BarXi + BiaXa)X{x;..... 1)

This equation is the generalised form of the well known Margules equation. It can be
used to give the following expressions for activity coefficients, here reduced to its most

common form of 2 parameter, three suffix Margules equation :

In(y1) = x3[A1 +2x1(A21 - A12)] = x32A21 - Ap) + 2x1(A 12 - Azy) (2.78)
In(y2) = x3[A21 +2%2(A12 - A21)] = x5(2A12 - Az1) +2x3(A21 - A)  (2.79)

This equation can be extended to higher order equations to more accurately model less

ideal systems.

The Van Laar equation.

The work of Van Laar also used this type of expansion and was a particular landmark,

as it was the first non-ideal solution model. The non-ideality of the solution expressed
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as the excess internal energy, U", is calculated by assuming a thermodynamic cycle in
which two liquids are expanded isothermally at low pressure and then mixed ideally.
The mixture is then cooled isobarically. Van Laar calculated the energy change during
each step, assuming that the volumetric properties were given by the Van der Waals

equation of state.

He obtained the well known Van Laar equations:

logy: = ﬁ—, (2.80)
[1 +éﬁﬁ]
Ag X2
logy, = —22 (2.81)
[I + ﬁ&]
Ap*1

The constants A, and A,, are functions of the Van der Waals constants, R the gas

constant and absolute temperature.

Agreement between experimental activity coefficients and those calculated from
equations (2.68) and (2.69) is poor due to the dependence of the Van Laar equation on
the Van der Waals equation. Reasonable results have been obtained on considering A

and B as adjustable parameters and evaluating them by fitting to experimental data
(e.g. O'Donnell, 1980).

With symmetrical systems for which A,, = A,, = A, both the Margules and Van Laar

equations further simplify to the common form:
logy; = AxZ , logy, = Ax? (2.82)

The main disadvantage of the activity coefficient models mentioned so far is that they
are difficult to extend to multi-component mixtures and that there is no attempt to

account for variations in temperature and pressure.

Their extension to ternary and higher order mixtures requires the evaluation of ternary
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and higher order interaction parameters and so they become cumbersome and tedious.
This disadvantage encountered in the regular solution approach was overcome by

Scatchard in 1949 and Hildebrand in 1950.

The Hildebrand solubility parameter approach is based on a simple theory of liquid
mixtures. Basically, the parameter employed, the solubility parameter, is related to the
energy required to take a molecule from an ideal gas state to the liquid state. The
parameters are combined in a way which models crudely the interactions between any

molecule and the cloud of average molecules around it.

RTIny; = v,z3[8; - 8,]° (2.83)
RTIny, = szf [61 - 82]2 (2.84)

Here & is the solubility parameter, and is given by:

5= (Avi) (2.85)

i.e. the square root of an energy density, which for temperatures below the critical is

given by:
AE; = AH! -RT (2.86)
where E, is the energy required to vaporise one mole of i to infinite volume.

The solubility parameters &, and 8, are temperature dependent but the difference
(61 —82) is nearly independent of temperature and the equations hold good for

moderate temperature ranges:

1 1
AE;\2 AE; )\ ?
5=(R)5=(52) (2.87)

3 is the volume average solubility parameter for the liquid mixture and is given by:

8= 2z:5; | (2.88)

48



z, , z,and z are the volume fractions of component 1, component 2 and component i in

the mixture, where z, is given by:

XiVi

2i= gt (2.89)

assuming that no volume change occur on mixing.

The problem of extension to multi-component mixtures is also overcome because the

only constants required are the solubility parameters for each component of a mixture.

2.7.2 Liquid phase models using local composition expressions

The limited ability of the classical models to represent multicomponent mixtures has
led to the development of molecular-based models. The most popular of these newer

models are based on the concept of local composition.

The Wilson equation.

Wilson (1964) produced the first of these local composition models. He used the
athermal theory for liquids, developed independently by Flory (1942) and Huggins
(1942) and modified it with his local composition concept. The local composition
concept arises due to the knowledge that molecules in a mixture do not arrange
themselves randomly, but partially segregate due to the effect of intermolecular forces.
Thus the composition at a point in the mixture will not be equal to the overall mole

fraction. The local mole fraction x,, is related to the overall mole fraction by the

relationship:

X1z _ xzexp(—?\.u/RT)
X1 xyexp(—A11/RT)

(2.90)

Also, the local mole fraction x,, is related to the overall mole fraction by the

relationship:
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i{ﬂ _ Xze}(p(l.u/RT)
X22 ~ x,exp(A11/RT)

(2.91)

The exponential terms are Boltzman factors and the A’s are proportional to the 1-1
and 1-2 interaction energies.

Wilson converted his expressions for local mole fractions into expressions for local

volume fractions, substituting this into the Flory-Huggins expression and

differentiating, he obtained:

A
In =ln(Zx-A--J+1- Niflik 2.92
o T N ;inAij (2:92)
i

and for a binary mixture

Anp = Yexp( 1z -Run)) (2.93)

Ay =¥ (-(?le = 122))

= —exp RT (2.94)

V2

where the (A12 — A11) and (A2 — As2)are the adjustable parameters, usually obtained by
a fit to experimental data.

Equation (2.92) has been proved to produce good representation for the behaviour of
many mixtures and its extension to multi-component mixtures is relatively simple due
to the fact that only binary parameters are needed. However, the Wilson equation does
not produce a good representation of mixtures which produce internal extrema in the
activity coefficients or which exhibit partial miscibility. Wilson (1964) tried to
overcome the latter of these problems by the introduction of a third parameter but he

encountered difficulties. One good feature of the Wilson equation is that the adjustable

parameters (Aj2 —Ay;) and (A2 —Az;) are only weakly temperature dependent and
thus can be extrapolated over a wide temperature range.

In general this equation gives a better fit than the Van Laar or Margules equations and

can handle a wide range of mixtures than either of these.
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The NRTL equation.

The derivation of the Wilson equation assumes a random distribution of molecules
around a central molecule. In a real liquid, this can hardly be true since differences in
molecular size and shape, besides any specific interactions will create some order in the
liquid. The Non-Random Two Liquid (NRTL) equation of Renon and Prausnitz
(1968) was developed to address these considerations, by combining the local
composition concept with Scott's two-liquid theory. This equation, besides two binary
energy interaction parameters, contains a shape factor which expresses the

non-randomness element.

Theoretically, this shape factor can only take on a limited range of values, but in
practice for many mixtures, a good representation of their behaviour can only be

obtained when the third parameter is allowed to take on any value.

In its binary form, the expression for g is:

15‘;‘ x1X2(xlTilgzéz] +x:-ll-2}((};lcziu\ (2.95)
where

T2 = gT , T2l = ?ﬁ (2.96)

G2 = exp(—a12T12) , G21 = exp(—at12721) (2.97)
with

G = (gu - 822) (2.98)

Ga1 = (gzi - gn) (2.99)

and oj; is the binary adjustable parameter.
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The activity coefficient forms are:

Z
Iny) =X (_ Gu ) +[ 1261 H (2.100)

T
5 %1 + %261/ (x2 +x1G12)*

i 2
R I | @101

Ti2
: \x2 +%1G12/ (x1 +x2Ga1)’

Note that g; have a similar significance to A; in the Wilson equation, i.e. a Gibbs

energy parameter, characteristic of the i-j interactions.

The adjustable parameters of the NRTL equations are (g;, - £,). (&, - &) and ot12. If
a2 is set to zero, then the equations reduce to the form of the two-suffix Margules

equations, and the mixture is completely random. Renon and Prausnitz indicate that
from the reduction of the experimental data for a large number of binary mixtures, a

varies between 0.20 and 0.47 and thus for mixtures where little experimental data are
available, the value of o can be set to a value obtained for similar mixtures.

One advantage that the NRTL equations have over the Wilson equation, is that they
are capable of producing good data fits both for miscible and partially miscible
systems. The parameters (g,, - g,,) and (g,, - g,,) are highly temperature dependent.

Asselineau and Renon (1970) have assumed linear relationships for the parameters,

arriving at a six-parameter NRTL equation:

g21 - 811 =C; +D(T-273.15) (2.102)
g12 - g22 = C2 + D2(T-273.15) (2.103)
oz = o’ +oT(T-273.15) (2.104)

The C-parameters represent the value of the NRTL parameters at 273 K and the

D-parameters express their dependence upon temperature, where units of T are Kelvin.

52



A nine-parameter equation has also been proposed by Nagata (1973) which assumes a

quadratic temperature dependence of the parameters.

Bruin and Prausnitz (1971) modified the NRTL equations to introduce the local
volume fractions rather than the local mole fraction. This improved the fitting of

aqueous mixtures but very little else.

The UNIQUAC equation.

Abrams and Prausnitz (1975) developed Guggenheim's quasi-chemical analysis and
included the local area fraction concept to produce the UNIQUAC (Unified
Quasi-Chemical) equation. It is similar to the Wilson and NRTL equations in that it is
based on the local composition concept. With only two interaction parameters for each

binary it can represent both vapour-liquid and liquid-liquid equilibria.
The expression for the activity coefficients contains two parts, a combinatorial part
which takes into account differences in the size and shape of the molecules and a
residual part, which account for energetic interactions:

Iny; = Iny? +Hny} (2.105)

where is the combinatorial part and the residual part.

The combinatorial part is given by:

c_ .0k, z, O O
In’ = Ing—+ Slngt + b -zt szjlj (2.106)
where
I =§(rk 5 qk) -(r-1),2=10 (2.107)

Bxand ¢xare volume and surface fractions respectively, r, and q, are measures of Van
der Waals group volumes and surface areas respectively and are determined from
values given by Bondi (1968)
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the residual contribution is given by:

JZ(gjtij)
InyR=|1-1 (Ze‘n)— 2.108
ny n j iTij zk:(ek":jk) ( )
where
T = exp[%] (2.109)

The adjustable parameters are obtained by fitting to experimental data.

Although the UNIQUAC equation has been used extensively for representing
liquid-liquid equilibrium data, it shows little or no improvement over the Wilson
equation for miscible systems. Maurer and Prausnitz (1975) modified the UNIQUAC
equation by the introduction of a third parameter. However, little improvement was
obtained by the use of a three parameter equation. Maurer and Prauznitz have
commented that "although UNIQUAC is a useful two-parameter equation for the
excess Gibbs energy, it cannot claim as much theoretical foundation as was originally

hoped".

2.7.3 Other liquid-phase models.

A further general expression for representing the excess Gibbs energy as a function of
composition, which does not rely on assumptions of regular or athermal solutions, was

proposed by Redlich and Kister (1948) who produced a series expansion in

composition:
gt = xlx;[A + B(x1 - X2) + C(x1 - x2)* + D(x; - x:)3.....:| (2.110)

The constants A, B, C, D, etc., are all temperature dependent and are obtained by

fitting of the equation to experimental data. Chao (1959) modified the Redlich-Kister

equation to obtain the relationship:
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I°g(%) =a+b(xs - X1) + ¢(6x1X2 - 1) + d(x2 - x1)(1 - 8x1X2) +...(2.111)

The determination of the constants is difficult due to an indeterminate condition. Ochi
and Lu (1977) further modified the equation of Chao to facilitate the evaluation of
these constants. Klaus and Van Ness (1967) proposed that G* could be represented as
a function of composition using orthogonal functions. Christiansen and Fredenslund
(1975) reviewed this problem and used the method of orthogonal collocation largely as

an aid in thermodynamic consistency testing.

2.74 Comparisons of the liquid phase activity coefficient models

In the equations which have been discussed the number of adjustable constants per
binary is typically two or three. Use of equations with a large number of parameters
can only be justified if the experimental data are numerous and of very high quality for
a single temperature. If the binary mixture is only moderately non-ideal, then all
equations using about two binary parameters represent the data well. The earlier
equations (Margules, Van Laar) are mathematically more tractable than the later
equations (Wilson, NRTL, UNIQUAC).

For strongly non-ideal behaviour in binary mixtures such as alcohol-hydrocarbon
mixtures, the Wilson equation remains probably the most useful. This stems from the
fact that it has only two adjustable parameters for each binary, and is simpler
mathematically than the UNIQUAC equation. The earlier equations will probably not
represent the data well, particularly for mixtures having low alcohol concentrations.

The Wilson equation performs well at these concentrations.

Since the NRTL and UNIQUAC equations are applicable to both vapour-liquid and
liquid- liquid equilibria, mutual solubility data can be used to determine the values of
their parameters (this is not the case with the Wilson equation). While the UNIQUAC

equation is mathematically more complete than the NRTL, it is more advantageous due

to the following:

55



(1) It has only two, rather than three, adjustable parameters, and they can be

determined uniquely from mutual solubility data,

(2) It has a better theoretical background and so its parameters ought to be less

temperature-dependent, and

(3)  The major concentration variable is a surface fraction rather than mole fraction,
so it can be used for solutions containing small or large molecules including

polymers.

Counsell and Hicks (1976) used the data on water and ethanol mixture obtained by
Larkins and Pemberton (1976) to test the equations of Redlich-Kister, Van Laar,

Wilson, NRTL and UNIQUAC. The temperature-dependent forms of the equations

were also tested together using a fixed and variable o parameter in the NRTL
equation. The NRTL equation with a variable oo parameter was discovered to produce

the best fits, although the UNIQUAC equation was found superior to models
representing g” instead of g*/RT.

2.8 Associating systems.

It is well known that mixtures involving carboxylic acids cannot be modelled
satisfactorily, using the conventional approaches already discussed. This is due to the
association of the acid molecules in both phases. The most modelled systems of this

type involve acetic acid and discussion here will be limited to this type of mixture.

It is known that acetic acid mixtures form not only dimers but higher order polymers in
the vapour phase. It has been shown by Prausnitz et al. (1973) that considering only
the dimerisation permits adequate modelling of the vapour phase. It is stated by

Freedman (1953) that in the liquid phase only dimers are considered to exist.

The majority of workers have tended to only account for vapour phase association and

have used the activity coefficients to account for the non-idealities from association in
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the liquid phase. This approach has been adopted because the assumption can be made
for the vapour phase that the association constant for dimerisation can be considered
independent of composition and equal to the association constant for the pure
associating substance. Prausnitz et al. (1980) discuss the use of "chemical” theory to
represent the vapour phase association. In the liquid phase these assumptions are not
valid, because Prigogine and Defay (1950) have shown by spectroscopic analysis that

association is a function of composition .

The classical method for representing association in both phases is the analytic method
which works in terms of the concentrations of the unreacted substances only, i.e. a
mixture of acetic acid and water is regarded as just that, when in fact, there are at least
three species present: acetic acid monomer, acetic acid dimer, and water. The earliest
form of this approach is due to Marek and Standart (1954). They used an equilibrium
constant defined by :

(2.112)

,q.
I
LW

- where x, and x, are the mole fractions of the dimer and monomer for the liquid phase.

For the vapour phase they used :

(2.113)

~
Il
6o 8 ey

where p, and p, are the partial pressures of the dimer and monomer respectively to
make use of these equilibrium constants the relationship between the stoichiometric

mole fractions and the true mole fractions are required. These are

_Nit2y, o x+2x

ya 1+y, 204 1+x;

(2.114)

obtained by writing down the definitions of the true mole fractions in terms of the

moles present and rearranging. (similar relations exist for the non-associating

substance)
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Marek and Standart (1954) wrote down the phase equilibrium relationship for the
monomer for the pure associating substance and so deduced values of x, and y, in the
pure substance. These then gave expressions for the vapour pressure of the monomer
in the pure substance. By now writing down the phase equilibrium for the monomer in

the mixture, they deduced the final relationship in stoichiometric mole fractions. This is

PyaZada =paxalava (2.115)

Here P is the total pressure, ¢ 4 is the vapour phase fugacity coefficient (often assumed
to be equal to 1) and Z, is the vapour phase correction factor given by

1+ JU +4KAp}
Za

_ (2.116)
1+ J[1+4kxs (2 - xa)]

When this method was applied to experimental data the then absence of information on
k led Marek and Standart (1954) to set 'y =1 and permit y, to represent all the
non-ideality of the liquid phase. The success of this method was limited, even where

values of k were available because it used an equilibrium constant based on mole
fractions rather than a truly concentration-independent thermodynamic equilibrium

constant.

This method was modified by Jenkins and Gibson-Robinson (1977) to relate the mole
fraction equilibrium 'constant' to the thermodynamic equilibrium constant. The ratio of
the correction factors required is concentration-dependent hence the mole fraction
equilibrium 'constant' becomes concentration-dependent. To derive the required ratio,
they obtained expressions for the true mole fractions for the dimer both in the pure

acetic acid and in the mixture. That for the dimer in the vapour phase mixture is

4KPy, +1 - 2KPy? - J(l +8KPy, -4pri)

y2 = (2.117)

Z(Kny\ +4KP - 4KPyA)

with a similar one for the liquid phase. The parallel relationships for the pure substance

give an expression for the vapour pressure of the dimer and this combined with the
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vapour-liquid equilibrium relationship for the dimer, gives additional correction factors

based on the dimer of

' [(4KP +1/y ,- 2KPyA) —J(]/yf\ +8KPly , - 4KP) :|(2KAp?j

Z (2.118)
2(pr1 + 4KP - 4KPyA) [2Kapst +1-/@kx+1) |
and
[(41( + 1/xa - 2kx ) —\/(U}(?\ + 8k/x 4 - 4k) :I(ﬂ(/\)
Sy =" (2.119)

2k + 4k - dkxa [ 2Kka +1 - J@RAFT) |

The thermodynamic equilibrium constant is related to that based on mole fractions by

2A

~
Il
S
-

ka (2.120)

-~
—

A

If the overall vapour-liquid equilibrium constant relationship based on the dimer is
divided by that based on the monomer, the following relationship between the activity

coefficients is obtained.

1 _ZAQABA _¥aA

= 2.121
AT ZxbaSs B ( )
and this leads to
k=kaB.ya (2.122)

B is a function of k through the definition of correction factors o and §'a so
successive approximation is used. While analytical in form, the values of K, and k,

are known and given by Ritter and Simons(1945), Freedman (1953) and Barton and
Hsu (1972).
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This approach gives considerable improvement in the representation of the
vapour-liquid equilibrium in acetic acid mixtures as can be seen in figure (2.2), which
gives the data of Meehan (1963) at 50°C for the acetic acid - toluene mixture. The
comparison is between the Marek and Standart model with only vapour phase
correction, the same model with a liquid-phase association constant equal to that for

the pure matenial (i.e. k =k,) and this recent model. The Jenkins and Gibson-Robinson

(1977) model is seen to be superior.
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Figure 2.2 Deviation Plots for data of Meehan at 50°C for acetic acid/toluene system
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29 Consistency tests.

291 Introduction.

All experimental VLE data of necessity contain errors, which can be categorised as
either random or systematic. The extent of random errors can be assessed by the use
of an initial screening using an y - x against x plot where all data should lie on a
smooth curve. Systematic errors in the data can only be assessed through a
thermodynamic consistency test normally based on the Gibbs - Duhem equation. If the
data can be shown to obey the Gibbs - Duhem equation then it may be regarded as

thermodynamically consistent. The Gibbs - Duhem equation as previously described is:

SdT - VdP + Xnidy; =0 (2.123)

For the general application of consistency tests, Van Ness (1959) expanded this to the

form:
Sxidinf; + (k- h*)/RT? ) dT - (VRT)dP = 0 (2.124)

and from this a general equation for the coexistence of liquid and vapour for binary

mixtures was deduced by Ljunglin and Van Ness (1962):

V -
AdP + BdT = (yl- xl)dln[%) + (y;,ly’:‘ ] dy, (2.125)
2

Other equations have been proposed by Tao (1969) and Lee et al. (1969), but the

equations presented above have proved to be the most frequently used.
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Consistency tests can be grouped into the following four types:

1. Area tests.
2. Slope tests.
3. Statistical tests.

4. Barker-type tests.
291  Area tests.

Area consistency tests are based on an integral form of the Gibbs-Duhem relationship

in its simplest form, derived by Herington (1947) and Redlich and Kister (1948).
1 1
E[Iny—z. dx=0 (2.126)

The curve of the line In (y; —72) versus x crosses the line In(y, —y2) = 0. For the data
to be considered consistent the areas above and below this line must be equal. Many

variations of this test have been proposed: Herington (1951), Broughton and Brearly
(1955) and McDermot and Ellis (1965). The use of integration in all these methods
leads to the main drawback of this method, i.e. errors may cancel out, thus area tests
may only indicate gross error. In performing the area test on real data, the integral in
equation (2.110) will not come out to be exactly equal to zero, thus a criterion must be
stated so that the result of the integration can be compared with it and a judgement can
then be made as to whether a set of data is consistent or not. It is usually agreed that a

set of data is considered consistent if it obeys the relationship:

0.02 ) (AREA ABOVE X-AXIS - AREA BELOW X-AXIS ) (2.127)

AREA ABOVE X-AXIS + AREA BELOW X-AXIS

although the value on the left hand side of equation (2.127) will depend on how

non-ideal the mixture is. If it is very non-ideal, the value can be raised and vice versa.
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2.92  Slope tests.

The slope method was proposed to provide a more stringent method of consistency
testing. According to Prausnitz (1969), if a set of data was to pass the slope test, then

it will automatically pass the area test, although the converse is not necessarily true.

For a binary mixture at moderate pressures, the Gibbs-Duhem equation can be written

as.

. diny; _ X diny,

2.128
dX1 dXQ ( )

Plots of Iny;versus x, and Iny, versus x, are prepared and the slopes measured at
regular intervals and substituted into equation (2.128). If the relationship is obeyed the

data are consistent. The problem here is that in practice, the slopes are hard to measure
to any degree of accuracy and thus the method has not seen much use, although it
provides a quick test to see if the data are consistent. Van Ness (1964) and Van Ness

and Mrazek (1959) have developed a method which uses a value Q defined as:

Q=0 = 2xilny; (2.129)

RT %

and is plotted against x. The slopes of these plots are not so steep and thus the slopes

are more easily evaluated.

Techo (1963) produced a further extension to the slope test and used orthogonal
polynomials to represent certain functions, but the curves produced were liable to
develop extraneous inflection points which would result in false indications of

consistency and inconsistency, thus the method is judged to be unreliable.

293 Statistical tests

As previously noted experimental data are associated with two types of error. The

problem is distinguishing whether a particular error in the data is due to random or
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systematic sources. An error analysis on the data will indicate uncertainty arising from
random errors, whereas a consistency test will indicate the magnitude of the sum of
both systematic and random errors. Rarely are both an error analysis and consistency
testing carried out together. This fact was noticed by Ulrichson and Stevenson (1972),
who used a local area test of the Stevenson and Sater type (1966), where the
Gibbs-Duhem equation is integrated from a given data point a to the adjacent data
point b. The test due to Stevenson and Sater is:

J' Ah

f(x) =2 x;dlny; + adT - j AVa 4p (2.130)

Ulrichson and Stevenson improved this method by considering that although for
consistent data f (x) = 0, in reality, this will never happen and some means for
determining acceptable bounds should be proposed. They did this by using the

trapezoidal rule in the integration and then applying the propagation of error formulae.

Using the trapezoidal rule we have:

flab) Z"'“ X Xib § 1y, - Iy + [Ah“‘dT j"""mdp 2.131)

The propagation of error formulae are then applied and confidence limits are set up, if
datg. points occur outside the confidence limits then it is most probably that large
systematic errors are present in the data. If all data fall within the confidence limits,
then there is a high probability that only random errors in the data exist, although how

accurate the data actually are depends on where the confidence limits are set.

Ulrichson and Stevenson concluded that an error analysis provides valuable additional

information as well as improving the consistency tests. The additional information is as

follows:

1. It provides a quantitative meaning to the consistency test rather than

just a comparison with the null value.
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2, It provides a means for determining whether the data are adequately
represented by a liquid-phase activity coefficient model and may avoid
misrepresentation of good data and excessively complex representation
of poor data.

3. It provides a means for assessing the importance of non-ideal vapour
phase behaviour and the heat and /or volume change of mixing.

4 It illustrates that the consistency test does not effectively detect
random measurement errors in the liquid composition, nor in the

vapour composition near an azeotrope.

This work casts doubts as to the value of previous consistency tests and Ulrichson and
Stevenson proposed that the words consistent and inconsistent should no longer be
applied to experimental data due to the fact that only exact solutions to the
Gibbs-Duhem equation may be considered consistent. They further stated that data
should either be said to satisfy or to not satisfy the Gibbs-Duhem equation, within
certain experimental uncertainty. Data which do not satisfy the Gibbs-Duhem equation

will then have excessive random error, or systematic error present, or both.

A similar procedure called the maximum likelihood procedure (Box, 1970) was used
by Sutton and MacGregor (1977) to study 50 data sets, they concluded that this
approach proved superior to previous methods. This was also the conclusion in the

work of Anderson et al. (1975) and Fabries and Renon (1975).

In the maximum-likelihood analysis (see, for example, Prausnitz et al,, 1980), it is
assumed that all the measured data are subject to random errors. If each experiment
were replicated many times, the average value derived from all the replicated
experimental points would, in the limit, approach some true value. Usually the
distribution of a measured variable about its true value is approximated by the normal
distribution, characterised by an associated variance. If there is any coupling between
the measurement method (e.g. measurements of overlapping peaks on a
chromatograph, then there are also associated covariances between these measured
variables. These variances and covariances must be known or estimated, although
covariances are almost always assumed to be negligible. The variances are ideally
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obtained from replicated experiments, but they may be estimated from experience
associated with a particular type of experimental apparatus. It is customary to assume

that the random errors in different experiments are uncorrelated.

For each experiment, the true values of the measured variables are related by one or
more constraints. Because the number of data points exceeds the number of

parameters to be estimated, all constraint equations are not exactly satisfied for all

experimental measurements.

Exact agreement between theory and experiment is not achieved due to random and
systematic errors in the data and to 'lack of fit' of the model used to the data. Optimum
parameters and true values corresponding to the experimental measurements must be

found by satisfaction of an appropriate statistical criterion.

If this criterion is based on the maximum-likelihood principle, it leads to those
parameter values that make the experimental observations appear most likely when
taken as a whole. The likelihood function is defined as the joint probability of the
observed values of the variables for any set of true values of the variables, model
parameter, and error variances. The best estimates of the model parameters and of the
true values of the measured variables are those which maximise this likelihood function

with a normal distribution assumed for the experimental errors.

The maximum-likelihood method is applicable to any type of data for which a model
can be postulated and for which there are known random measurement errors in the
variables. P-V-T data, enthalpy data, solid-liquid adsorption data, etc., can all be
reduced by this method. The advantages indicated here for vapour-liquid equilibrium

data apply also to other data.

In conclusion Jenkins and Gibson-Robinson (1978) used experimental data from a
modified Cathala still to examine the consistency tests of Ulrichson and Stevenson
(1972), of Samuels et al. (1972), of Van Ness et al. (1973), and of Wan and Prausnitz
(1973) and Christiansen and Fredenslund (1975). They concluded that for consistency

tests based on statistical analysis to be of use, forty to fifty data points per binary
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mixture must be used if any reasonable assessment of the data was to be obtained.
They also expressed the view that a small data set of high precision is preferable to a
larger set of lower precision, parameters deduced from a larger set may not describe

the true behaviour of the system.

2.9.4 Barker-type tests

It is well known that when obtaining x, y, P and T data for a mixture, only three out of
the four variables are needed for data reduction. Van Ness et al. (1973), building on
the approach of Barker (1953), proposed that the fourth variable may be compared
with calculated variables obtained from the reduced data. This provided a very

stringent test of thermodynamic consistency.

The method of Barker (1953) is used to enable the value of the redundant fourth
variable to be calculated from the reduced data. The most general approach was
developed by Abbot and Van Ness (1975) who used Barker's method to reduce P, x, T

data and used y in the consistency test. Calculated y (exp) - y (calc) and P (exp) - P

(calc) data are plotted versus x and a consistent set of data is obtained when Ay and
AP values are small and randomly distributed around the x axis. Abbot and Van Ness

(1975) used a 5-parameter Margules equation and a modified version of the Margules
equation to represent the liquid-phase behaviour and data could be erroneously
declared as inconsistent due to misrepresentation of the liquid phase activity
coefficients by the chosen model. This disadvantage has been overcome by
Christiansen and Fredenslund (1975) who avoided the use of liquid phase activity
coefficient models and used orthogonal collocation to solve for G, and hence obtained
activity coefficients to predict y values. The resultant y (exp) - y (calc) versus x data

were used as a screening test.

The original Barker method has been used to test the thermodynamic consistency of
experimental VLE data for acetic acid mixtures where the occurrence of dimerisation
introduces a specific interaction in both phases. This has been shown (see Jenkins and

Gibson-Robinson, (1978)) to be unwise in mixtures where association occurs, unless a

suitable association model was to be included.
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2.9.5 Consistency tests. Some conclusions.

It is reasonable to say that no one consistency test method will give a definitive
measure of the consistency of experimental data sets. It is therefore necessary for a
detailed study of data consistency to adopt a systematic study of the data using a
combination of the above consistency test methods. Gess, Danner and Nagvekar

(1991) have recently suggested the following systematic approach to consistency tests:

1) A data set should consist of between 8 and 30 data points spanning the

whole composition range.

2) Accurate vapour pressure data for both pure components must be available

at the equilibrium conditions.

3) The data should be preliminarily scanned using a y versus y-x plot to identify

and eliminate any obviously erroneous data points.

4) The tests used by the DECEMA group, i.e. an area test followed by a
numerical method for calculation of the vapour-phase compositions using a
Legendre polynomial to yield a value Ay =y,.... = ¥

data must be > 0.01 averaged across the full data set, are the first stage of

which for consistent

the consistency test method.

5) As a second stage a Barker-type consistency test is applied using a
4-parameter Margules equation and the Hayden and O'Connell method to
calculate the fugacity coefficients. Only the x-P-T data are used in the

regression to calculate y composition values for each data point. Consistent
data sets must meet the criteria Ay =y, -y
full data set.

<0.01 averaged across the

cale
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6) A graphical examination of the calculated Ay is made. Consistent data
should show a random distribution about the x axis. If the deviations

observed show a bias but are very small the data may also be considered

consistent.

This method of Gess et al. (1991) represents a rigorous test for any experimental data.
A similar approach is adopted throughout this study when assessing data for

consistency.
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Chapter 3: Prediction of vapour-liquid equilibrium.

Data for multicomponent mixtures are often not available particularly for mixtures
used in new processes. Extensive data bases of mainly binary experimentally
determined mixtures exist, e.g. the Dortmund data base, but it is unlikely that all data
for binaries for a particular multicomponent mixture are available. Determination of the
missing binary mixtures by experimentation at early stages in the design process would
be very expensive and time consuming. To overcome these deficiencies a reliable,

rational, accurate and flexible prediction method is required.
Prediction of experimental data are required for three main purposes:

1) Screening of possible extractive agents for extractive distillation. Infinite
dilution activity coef‘ﬁcier}t models, either solubility parameter or group
contribution methods, are used to rank prospective agents before further

development of the more promising options.

2) Preliminary process design. A group-contribution method can be used to
generate activity coefficients and K-values. The general distillation line
may follow the correct trend but there may be significant errors in
calculated tops and bottoms compositions. These are adequate for initial
design but final design requires better VLE data or trial distillation studies.
Care should be taken when using the above methods to determine data

above atmospheric pressure as most model parameters are temperature

dependent.

3) Final design. Prediction methods should only be used at this stage as a last
resort and correlating equations should only be used to extrapolate to
multicomponent data from all the available binaries composed from the

separate components.
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It is proposed to provide only a general overview of the prediction techniques available
for vapour-liquid equilibrium estimation and to describe in detail only those methods
which are used in this work. The prediction of vapour liquid equilibrium falls into three
main categories which will be discussed in turn followed by a novel technique working
from molecular properties developed at Aston University. The techniques discussed

here are :

1) The solubility parameter approach.

2) Group Contribution approach (ASOG, UNIFAC).

3) Generalised equations-of-state approach.

4) AGAPE (A General Approach To Phase Equilibria).

3.1 The solubility parameter approach.

Many prediction methods using the solubility parameter are extant in the literature. The
simplest method in this group was proposed by Hilderbrand (1959) to predict infinite
dilution activity coefficients for regular solutions and has been widely used for
hydrocarbon mixtures. Subsequent workers proposed alternative terms for predicting
infinite dilution activity coefficients, i.e. Weimer and Prausnitz (1965), Helpinstill and
Van Winkle (1967) and Weile and Bagley (1968). Null and Palmer (1969) combined

the work of these previous authors by suggesting that the various contributions derived
by these authors to Iny® were additive, i.e.

Iny? = (InyY); + (Iny7); + (Any?) .- G.1)

Null (1970) gives details of how the parameters I, II, IIL... etc can be determined and
how additional parameters can be added as they are devised. Null also states that this

method is only suitable for screening purposes and for calculating the distribution of

minor components in a separation process.
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32 Group contribution approach.

Any compound can be regarded as an aggregate of a small number of functional
groups, CH,, CH,, OH etc. If the functional groups properties are known or can be
derived, they can be used to calculate some of the physical properties of the parent
molecule. A logical extension of this idea is to calculate the phase properties of
mixtures from the functional groups of the constituent molecules in the test mixture.
This has the significant advantage that a large number of mixtures can be handled from
a small number of functional groups. Thus the group contribution approach has

become a popular option for prediction of phase equilibrium.

Two principal methods, denoted here as ASOG and UNIFAC, have been developed

using this methodology, both being similar in principle but differing in detail.

3.2.1 The ASOG method.

The analytical solution of groups (ASOG) method was developed by Wilson and Deal
(1962) from earlier work by Redlich et al. (1959) and Derr et al. (1959). The basis of

this method is to assume that the activity coefficient of component i consists of two

components:

1) A configuration (entropic) contribution due to molecular size differences.

2) A group interaction contribution due to differences in intermolecular forces.

The configuration term is obtained from the athermal Flory-Huggins equation and the
group interaction contribution from the Wilson equation, applied to functional groups.
A detailed description of the ASOG method is presented by Kojima and Tochiga
(1979). They also present listings of a substantial number of group parameters derived

from experimental data. As this method is not used here no further details will be

given.
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3.2.2 The UNIFAC method.

UNIFAC in common with ASOG utilised the summation of two contribution terms,
one due to size differences, the other due to molecular interactions, to obtain the
activity coefficients of a mixture. The UNIFAC method is less arbitrary than the ASOG
method. It uses the UNIQUAC equation which integrally uses a combinatorial term in
part due to differences in molecular size and shape and a residual part due to molecular
interactions. In addition functional group sizes and interaction surface areas are

introduced from independently obtained pure component molecular structure data.

The UNIQUAC equations for activity coefficients of a molecular component i are:
Iny; = Inyf” + Iy} (2.106)

(superscripts : C- combinatorial, R- Residual)

where

Iny{ = ]ni—: + %q% +1; - % 2 ixil; (2.107)

Xi

and

Bj‘l?ij

" S, 2.109
b2 Okt ( )

Iny; = qi (1 - InX; Bjt; - X

In the UNIQUAC equation, the two adjustable parameters t; and t; must be
evaluated from experimental phase-equilibrium data. No ternary (or higher) parameters

are required for systems containing three or more components. Pure component
parameters r, and q, are, respectively, measures of molecular Van der Waals volumes

and molecular surface areas.

In the UNIFAC method the combinatorial part of the UNIQUAC activity cocfficients
is used directly. Only pure-component properties enter into this equation. Parameters ;

and q; are calculated as the sum of the group volume and area parameters R, and Q,
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r; = Zxv Ry and i = Zyvd Qx (3.2)
where v,®, always an integer, is the number of groups of type k in molecule i. Group
parameters R, and Q, are obtained from the Van der Waals group volume and surface
areas v, and A, , given by Bondi (1968);

R,=V,,/15.17 and Q, = A,/ 2.5 * 10° (3.3)

The normalisation factors 15.17 and 2.5 * 10’ are determined by the volume and

external surface area of a CH, unit in polyethylene.

The residual part of the activity coefficient is replaced by the solution-of-groups

concept. We write
InyR = Zkvk(]nl"k " 1nr§j)) (3.4)

where I' is the group residual activity coefficient and FE) is the residual activity
coefficient of group k in a reference solution containing only molecules of type 1.

Inl'x = Qk[l - 1n[zk} @m‘ymd - (@mwmk/ 2 @,.\anﬂ (3.5)

Yom = exp(-agm / T) (3.6)
Om = QuXm /2,QuXn (3.7
Z ijXj
Xm~™ J—'—"— "
Z 5 g (3.8)
j n

a,, = group interaction parameter for the interaction between groups m and n. This

parameter must be evaluated from experimental data.

The original UNIFAC model was proposed by Fredenslund et al. (1975) considering
18 functional groups and was revised by Fredenslund et al. (1977 a & b) by derivation
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of new interaction parameters from the experimental data held in the Dortmund Data
Base. The ready availability of computer programs has made this method the premier
group contribution method with many updated lists of functional groups being
published. The method has spawned a number of modified models aimed at addressing
the limitations of the original model and increasing its range of applicability. A review

and critical discussion of these developments is given by Zain (1992).

It is proposed to discuss only two of these modifications in detail, those by Larsen et
al. (1987) and Gmehling and Weidlich (1987). Both of these methods aimed to
overcome the temperature dependence limitation of the original model. They both

addressed the problem in a similar way by making the group interaction parameters

temperature dependent.

3.2.3. Modified UNIFAC equation of Larsen et al. (1987).

The Modified UNIFAC equation of Larsen et al. (1987) introduced two modifications

intended in part to improve the temperature dependence of the model :

1) The combinatorial term has been slightly modified using the Kikic et al

(1980) combinatorial term .
2) The group interactions have been made temperature dependent.

The change made to the combinatorial term involved dropping the
Staverman-Guggenheim correction to the Flory-Huggins combinatorial. Donohue et al.

(1975) modified the Flory-Huggins combinatorial term to the form:

P;
Xiril

O W
~ XjT;
|

(3.9

where the exponent p, varies with the type of molecule. Kikic et al. (1980) set p, = 2/3

by comparison with experimental data for a large number of aliphatic hydrocarbon
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mixtures. This was shown to describe the VLE mixtures of alkanes much better than
the Staverman-Guggenheim combinatorial especially where the difference in molecular

sizes is large. The combinatorial term used in Modified UNIFAC becomes:

iy =n (&) +1- & (3.10)

With the modified volume fractions following Kikic et al. (1980) we have

2/3
Xil;
0; = 3.11
]

The residual term has been modified to use three coefficients to describe the

temperature dependence of the interaction parameters

aji = a;i,1 + ajiz2 t a3 (T ln:l,;_,—u +T -To) (3.12)
where T, is a reference temperature (= 298.15 K)

a;;,> &, and a;, are temperature coefficients.
Information about G* as well as the first two temperature derivatives of G* are

required, to establish all the three temperature coefficients. To achieve this, one of the

following two approaches may be used:

1) The availability of G® information at three different temperatures is enough.

One should use very accurate and reliable vapour-liquid equilibrium data.

2) The six adjustable parameters required for one binary group combination,
can be based on vapour-liquid equilibrium and H* data measured at different
temperatures. The first second and third coefficients of the temperature
function are related to G*, H* and Cp® respectively. The term containing a,,,

can be dropped if H* values are only known at one temperature.

76



The outcomes of this new model were:

1) The Modified UNIFAC model gave slightly better vapour-liquid equilibrium
predictions than UNIFAC.

2) It gave better qualitative vapour-liquid equilibrium predictions than
UNIFAC.

3) It predicted much better activity coefficients (at infinite dilution ) of alcohols

in various solvents than with UNIFAC.

3.2.4. Modified UNIFAC equation of Gmehling et al. (1987).

Gmebhling et al. (1987) adopted a similar approach to Larsen et al. (1987) in their form
of the modified UNIFAC method. The new modified (Oldenburg) UNIFAC method
was established through the use of®

1) Modification of the temperature-independent combinatorial part similar to
that of Kikic et al. (1980). The (Oldenburg) UNIFAC method uses r’*

derived empirically from experimental data, in place of Kikic's r*>.

2) The temperature-dependent interaction parameters to describe the residual

part of the activity coefficient are given by the quadratic equation:

The parameters a_, b, c,, were fitted from experimental data

3) An extended database which included (VLE, H, y*, LLE) for fitting the
group parameters.

4) Slightly modified values for the Van der Waals volumes and surface areas

were used. These were again derived empirically from experimental data.
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This new version of the UNIFAC correlation was used for predicting the behaviour of
systems including alkanes, alkenes, aromatics alcohols and ketones. They state very
good VLE predictions and infinite-dilution activity coefficients were obtained for 16
different alkane-alcohol mixtures. The range of applicability of this method was

increased by Gmehling et al. (1993) to 45 main groups using phase equilibrium data
(VLE, H®, y*, LLE) stored in the Dortmund Data Bank. In conclusion to their review
of this method Gmehling et al. (1993) concluded that their modified (Oldenburg)

UNIFAC method allows better predictions of the real behaviour of non-electrolyte

systems than do other group contribution techniques.

A note of caution should be made at this point, the values of the calculated
temperature dependent interaction parameters are only as good as the experimental
data from which they are derived. Therefore the predictions of the (Oldenburg)
UNIFAC method are not always the best available for every system. This has been
highlighted by Schmeltzer et al. (1996) who showed the (Oldenburg) UNIFAC method

gave poor results for calculations involving Cyclohexane.

33 Generalised equations-of-state approach.

Multi-component  forms of the generalised equations-of-state, e.g.
Soave-Redlich-Kwong are of interest for the prediction of VLE data, as they contain
only terms expressing binary interactions. Success with this approach depends on
modelling the binary interaction parameters for each binary mixture involved in the
general multi-component mixture of interest. A knowledge of a minimum of

information regarding each binary is required to allow the interaction parameters to be
deduced.

This predictive method is useful when for final design:

1) Data parameters are not available for all the binaries involved in a

multicomponent mixture.
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2) The two components of the mixture of interest to be separated are minor
constituents but an exact specification has to be met as to their concentration

level in any or all takeoff streams.

A review of calculating VLE data from equations of state is given by Reid et al.

(1986). Generally speaking equations of state can be used to :

1) Represent the vapour phase though this is not predictive in nature.

2) Provide the principal method for modelling VLE data at high pressures.

3) Predict data for hydrocarbon mixtures by application of cubic

equations-of-state and empirical quadratic mixing rules.
The prediction of VLE data for mixtures of polar compounds requires equations of
state applied with specialist mixing rules (e.g.the Vidal (1978) Non Quadratic Mixing

Rules).

3.4  AGAPE (A General Approach To Phase Equilibria).

This is a recent novel approach to predicting phase equilibria based on fundamental
molecular considerations. The method uses a "whole molecule approach" in contrast to

the Group contribution approach and uses only two dissimilar statistical

thermodynamic parameters.

A full description of the AGAPE model exists elsewhere, e.g. Homer et al.
(1991,1992). Only an over view of the main steps is given here. The AGAPE model is
based on the same two fluid lattice theory employed by Prausnitz and Maurer (1978)
and Prausnitz (1986) to derive the UNIQUAC model. The AGAPE model was initially
developed for use with a generalised London's potential (GLP), an explicit form of

intermolecular potential allowing for the first time proper utilisation of the concept of

local composition (Wilson, 1964).
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The Wilson concept of local composition assumes that the energetics of bulk liquids
can be represented through a shell model. The model is based on the concept of a
single molecule of type 1 surrounded by a spherical co-ordination shell of other
molecules (see Figure 3.1). When a second molecule species is introduced a local
composition is achieved  (see Figure 3.1) which is not necessarily the same as the

bulk mixture.

PURE STATE MIXTURE

B —

Figure 3.1 Representation of change in composition of the first solvation shell of
molecule 1 when 1 molecule of type 2 is assumed to replace two molecules of 1.

The Wilson's concept is inadequate because the overall mass balance is not satisfied.
Homer et al. (1991) introduced a model similar to that of Wilson but this time used a
mass balance of the bulk system with the usual Boltzmann-type energy distributions
based on the intermolecular pair potentials. From the summation of the radial
molecular pair potentials in all solvation shells in the mixture an equation for the excess

energy of mixing can be derived as:

U° = INAIAUs (41 - 2) + %24Uz (ma - 2)] (.14)
where
AUy = @y, - ©vilvs (3.15)
AUz, = @y, - P1pvalvy (3.16)
D3, -Gy (3.17)
6 =zx{1 + (vz)(g/v;xl)exp[-[ Pz -® Jm]} (3.18)
11
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my = Z/{1 + (v1X1/vax2)exp[-(®12 — ©2)/kT]} (3.19)

®,y, 32 and @y, are the relevant molecular pair potentials. v,, v, are the volume

parameters (molecular volumes or Van der Waals Volumes) which are normally
expressed as ratios. z is the coordination number which for organic molecules of
similar size is normally constant (see Homer and Mohammedi, 1987). The normal
value of z is 11 though this can change, e.g. for water z has a value of 4. Here t, is the
number of whole molecular contacts of a molecule of type 1 with other molecules of
type 1, while m, is the number of whole molecular contacts of a molecule of type 2
with other molecules of type 2. Note that m, and t, are the number of 1-2 type contacts

for each type of molecule.

Integration of equation 3.14 gives the Helmholtz energy at constant volume and
temperature. The constant of integration can be determined by use of Gugginheim
(1952) energy terms for athermal non-ideal monomer/r-mer lattice model. From
Hildebrand and Scott (1977) for low to moderate pressures the Helmholtz energy can
be substituted for the excess Gibbs free energy G* . Homer et al. (1991) deduced,
using standard thermodynamic procedures, expressions for the activity coefficients and
by using the assumption of ideal vapour behavio.ur, for total pressure and composition.

These equations are listed below:

G" _ z z +rx
=—=x) InT—- +x2 ln—; - —Z-qlen— —(x1 + xzq)ln# +

E{X],AUH

AU
RT1 b, In[z; + zsexp(-b,/T)] + Xzb—zzzln[m +zlexp(-bng)]}(3.20)

= 1r1—+22(1--1-)+-2-(1 ‘3"+g‘l 1)

+ R2 {5 2 infzs + 21 exp(-ba/T)

AUz, " 1 1
bs 2 z, + z exp(-b;/T)
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AU 11 exp(—b 1/ T)
N 1 3.21
b, Z'r[zl + zaexp(-b/T) } (3.21)
_ X1 _ X2
where 0, = X1 +0x, and 0, = Xz X,
(0]
P=xiyP®  y=X0PL (3.22 & 3.23)

P

Here z,, z, are the volume fractions of components 1 and 2, r is the molar volume ratio

v, /v, and q the relative contact areas (surface areas of the two molecules ). The pair
potentials @, and ®»; can be calculated from the latent heat of vaporisation for the
pure components (see Homer et al. 1991) leaving only two dissimilar statistical
thermodynamic parameters, r and @2, to be determined.

The two dissimilar statistical thermodynamic parameters, r and @, can be determined
by one of two procedures. The first is based on determining the value of r from a pure
component data while the value of ®,2is calculated using GLP theory (see 3.4.1)
method. The second procedure involves a single point fitting process using appropriate

experimental data (see 3.4.2).

Advantages of the AGAPE approach are:

1) In its pure predictive mode (with GLP) it requires only pure component

atomic and molecular parameters.

2) It is applicable to species that do not contain any of the functional groups of

the group contribution methods, i.e. inert atoms and small molecules.

3) It can distinguish between molecular isomers including those distinguished

by cis/trans configurations

4) In the one point fitting mode it requires only estimates of two uncorrelated
parameters that have a physical meaning. These parameters could be

obtained from any appropriate source and allow application of this method

to a wider range of compounds.
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5) This model could be extended to other phenomena such as LLE, viscosity
and solubility.

3.4.1 Implementation of AGAPE model using the generalised London potential.

A full description of the GLP theory is given by Mohammedi (1987). The GLP enables

the calculation of dispersion forces between polyatomic molecules. It accounts for all
electron centres whether they are bonded atoms, m-bonded electrons or single
electrons. GLP implicitly accomodates the dependence of interaction energies on

molecular size shape and motion and only pure component data are required to
calculate both like and unlike potentials. The net GLP potential between two freely

rotating molecules is given by:
Dy = -}R‘Eil Ej:winFij(ai(m2>j + aj(mz)i) (3.24)

where w is the number of structurally equivalent atoms, i or j and o and (m?) are,

respectively the polarisability and mean-square electric dipole moment of the
interacting bonded species that can be deduced from an inert gas approximation. F;

are factors which depend on molecular structure and can be calculated from given
analytical expressions. This equation is used to calculate the value of @, directly. The
parameter r determines the relative number of whole molecular contacts in the

coordinate shell structure. This is taken to be the the ratio v, /v, where v, and v, are

taken to be the Van der Waals molecular volumes.

This method is subject to several limitations due to the means of determining ®15.
These are:

1) Highly polar or hydrogen-bonded molecules cannot be represented because

the dispersive forces cease to dominate the mixture.

2) It may not be used for pressures above 6 atmospheres due to the assumption

of ideal gas phase behaviour. This limit has been adopted given that most of
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the work performed using this method has employed small non-associating

molecules.

3) The fundamental assumptions exclude long chain molecules greater than C; .

3.4.1 Implimentation of the AGAPE model using a one point-fitting technique
(AGAPEFIT)).

The one point-fitting method has been developed to overcome the limitations of the
original GLP technique. A full discussion of this method is given together with sample

results by McCoubrey et al. (1993). They used two techniques; the first uses the Gibbs
free energy at the equimolar composition to calculate the value of ®);, the value of r
being fixed by the ratio of Van der Waals volumes. The second technique

simultaneously fits the values of Gibbs free energy and excess enthalpy at the
equimolar composition to give both the values of r and ®y,. The values of r and @
were then used to correlate and predict VLE and enthalpy data.

Twenty five mixtures were initially examined at low to moderate pressures.
Satisfactory results were obtained for small molecules, cryogenic mixtures, polar and

large molecules (e.g. alcohols and methylethylketone).

While properties used in the fitting procedure were Gibbs free energy and excess

enthalpy it is possible to substitute alternatives (i.e. vapour phase compositions,

activity coefficients or pressures).
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Chapter 4: Review of Experimental Methods for Vapour-Liquid Equilibria

4.1 Introduction

Experimental methods to measure vapour-liquid equilibrium data were first developed
in the early 1900s as a foundation for a theoretical treatment of non-ideality. More
detailed extensive work was not conducted until reliable data became a necessity for
industrial design. Much of this early work is limited to comparatively few mixtures and
later workers by application of consistency tests have shown much of the data to be
unreliable. As a result many improved techniques have evolved and the important ones

are reviewed in this chapter.

In recent years many attempts have been made to predict vapour-liquid equilibrium
data accurately using various proposed models of phase behaviour. It is still not
possible to achieve this using pure component property data alone for all mixtures and
conditions. An accurate prediction of phase equilibrium data must therefore, at some
stage, use experimental data for the evaluation of parameters in the appropriate
models. Data sets of high accuracy are required for performance evaluation of
individual models for particular mixtures, since no individual model can claim to

represent all mixtures well.

Experimental data can be obtained in many different ways, and can take the form of
vapour and liquid phase compositions pressure and temperature and sometimes heats
of mixing. The most frequent forms of experimental data presented in the literature
are either liquid and vapour phase compositions together with the equilibrium
temperatures at the isobaric mixture pressure, or liquid and vapour phase
compositions together with the equilibrium pressures at the isothermal mixture
temperature, although recently total pressure methods have introduced the
presentation of isothermal pressures and liquid-phase compositions as experimental

data sets, the vapour compositions being found through the Gibbs-Duhem

relationship.
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The design and construction of equilibrium stills can be a source of various errors. So
far, it has not been possible to construct a still which would yield thermodynamically
completely consistent data for all mixtures. Since the errors which arise are to a
certain extent dependent on the nature of the mixture concerned (relative volatility,
heat of vaporisation, etc.) they need not have the same importance in all mixtures.
This has led to the design of different types of apparatus, suitable for different types

of mixture, which can be classified into the following groups:

(1) Differential distillation methods
(i)  Circulation methods

(iif)  Static methods

(iv)  Total pressure methods

(v)  Flow methods

(vi)  Other methods

This discussion will include the most important and recent developments in
determining vapour-liquid equilibrium data. More general reviews of the methods are
available in Abbott (1986), Marsh (1978) and Malanowski (1982a&b). A review of
older methods maybe found in Hala et al. (1967).

4,2 Differential Distillation Methods

Differential distillation methods are the oldest method of direct determination of
vapour-liquid equilibrium data. Its main virtue was simplicity but marked
disadvantages have now rendered it obsolete. This technique involved distillation of
a large quantity of the mixture under consideration to produce a very small sample of
condensate for analysis, since the composition of the liquid phase must remain
constant. Large errors could also arise by condensation of vapour on the cold walls of

the distillation flask at the beginning of the experiment.
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43 Circulation Methods

The circulation method has been widely used for experimental data determination at
medium and low pressures. Many different designs of circulation stills exist but all
are based on the same principles of operation. A liquid mixture is charged to a
boiling flask, boiled and the vapour produced is condensed into a separate receiver,
Once the vapour condensate receiver is full the condensate is allowed to overflow
back to the boiling flask. As circulation continues the vapour sample becomes
enriched in the more volatile component until a steady state is attained. Either all the
thermodynamic parameters (temperature, pressure, liquid and vapour compositions)
are then measured simultaneously or only those sufficient for the determination of the

equilibrium conditions.

Malanowski (1982a), proposed the following criteria which should be fulfilled by a
properly designed recirculating still:

(1)  The still should have a simple form.
(2)  Small amounts of materials should be required.

(3) Facilities should be incorporated allowing accurate measurement of

pressure and temperature,

(4) A short time should be required to achieve steady state after any

change of equilibrium parameters.

(5) Neither partial condensation of vapour or overheating should occur on

the surface of temperature-measuring sensor.

(6) No liquid drops should form in the vapour stream leaving the

equilibrium chamber.
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Recirculated vapour or its condensate should be perfectly mixed with

the liquid phase to prevent secondary evaporation.

There should be no fluctuations in the recirculated stream's flow or

composition.

No pockets should allow accumulation of material outside the

recirculation pathways.

It should be possible to introduce and withdraw samples without the

interruption of steady state boiling.

The types of circulation apparatus can be segregated by number and thermodynamic

condition of the recirculated streams, into the following groups:

(A)
(B)

©

Vapour circulation methods;

Condensation recirculation methods;

(i) Liquid condensate recirculation;

(il)  Revaporised condensate recirculation;

Recirculation of liquid phase and vapour condensate.

4.3.1 Vapour circulation methods.

The vapour recirculation method, proposed initially by Inglis (1906) was an attempt

to overcome uncertainty in attaining the steady state in flow methods. Figure 4.1

illustrates the mode of operation of this type of apparatus. A pump P, recirculates

vapour though the stationary liquid via a heat exchange system (thermostat) until

steady state is reached. Then pressure temperature and phase compositions are

measured.
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Figure 4.1 Principle of operation of vapour recirculation still. E equilibrium chamber
chamber; K, liquid phase container, P, pressure gauge, P, vapour pump, T
thermometer,T,,T,, constant temperature baths, Vg vapour stream, Z, liquid phase (L)
sampling valve; Z, vapour phase (V) sampling valve; sampling valve; Z, valve for
still degassing.

This technique appears simple but numerous complications can be encountered in
practical applications. In order to attain steady state operation the total volume of the
system pressure and temperature must remain constant or the quantities and hence
compositions of the phases will vary. However, pressure fluctuations are present in
the system caused by pumping of the vapour stream through the liquid though these
can be reduced by improved pump design. If the vapour velocity is reduced it has the
dual benefit of decreasing pressure differences in the cell due to hydrostatic head and
liquid entrainment in the vapour stream. The change of vapour phase composition due
to this small pres_sure difference is generally not significant, although the error
introduced may be large in the critical region when the vapour is very compressible.
In order to minimise liquid entrainment, special separators can be placed in the
vapour space of the still. Any condensation of vapour during recirculation must also
be prevented. This may be accomplished by placing only the equilibrium chamber in
the constant-temperature bath and maintaining the rest of the system at a temperature
higher than the vapour dew-point. Isobaric conditions must be maintained during
sampling, since vapour samples are removed without condensation, the quantity of

sample removed may be too small for accurate analysis unless the operating pressure

is high.
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Owing to the above limitations, exact equilibrium conditions cannot be achieved by
vapour phase circulation methods; however, influence of pressure and composition
fluctuations can be neglected when the still is operated at pressures above 0.5 MPa.
For pressures in the range 1 - 50 MPa, vapour phase recirculation methods are
considered to be among the most accurate for obtaining vapour-liquid equilibrium
data and are widely used especially at cryogenic temperatures. Numerous papers on
the development and applications of the vapour phase recirculation method have been
published since the method was first proposed. The most recent review was published

by Eubank et al. (1980).

4.3.2 Condensate Recirculation Methods

Condensate recirculation methods differ from the vapour circulation method by
utilising the hydrostatic head of the condensate in place of the vapour pump to
provide the required pressure differential to facilitate the vapour circulation. Two
operational modes can be used. In the first, the vapour condensate re-enters the
equilibrium chamber as liquid; in the second, the condensate is revaporised in a heater
and re-enters the chamber as vapour. The principle of operation of all stills employing
circulation of the vapour phase condensate is illustrated in Figure 4.2. The liquid
sample in the equilibrium chamber E is boiling. Heat is delivered continuously by the
heater q,. Vapour is condensed in the cooler q, and returns to the equilibrium
chamber via the condensate container K,. The valve Z, is used for removing inert
gases (air) from the still in the early stage of operation. The steady state is achieved
after about 30 minutes, when the liquid and vapour in the chamber E are of
equilibrium composition. The composition of the vapour is identical to that of the
condensate in the container K,. The time necessary to achieve the steady state

depends on the volume of condensate in the container K,.

After the steady state has been achieved, boiling is stopped at once, for example by
increasing the pressure in the stabilising system M, to prevent non-equilibrium
distillation in the container K,. Samples of liquid and vapour condensate are
withdrawn for analysis from vessels K, and K, through valves Z, and Z, respectively.

After withdrawal of the samples, the still can be refilled and the process repeated.
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Figure 4.2 Principle of operation of the vapour condensate circulation method; dotted

lines indicate the alternative pathway of the condensate when it enters the equilibrium

chamber as vapour. K, vapour condensate receiver; M to pressure system; q, heater of
boiling liquid; g, vapour condenser; g, heater to flash vapourise condensate.

The main drawbacks of this type of apparatus are:
(1)  There is partial condensation of vapour after stopping the apparatus;
(2)  Accurate determination of the equilibrium temperature is not possible;

(3)  Itisdifficult to obtain uniform composition in vessel K.

4.3.2.1 Condensation recirculation methods; - Liquid condensate recirculation.

The first truly successful design using this mode of operation was proposed by Othmer
(1928) (see figure 4.3). This still type was used extensively between 1930 and 1940
and was the subject of over 150 modifications. The aim of these many modifications
was to remove the weaknesses of the original still (see the main drawbacks of
condensate recirculation methods) but none of the attempts were truly successful. The
chief factor which was never satisfactorily addressed was how to measure the boiling
temperature accurately. A large amount of experimental data produced using a version
of this still exists, mainly at atmospheric pressure, but has been shown to be of low

reliability by the application of consistency tests.
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.Figure 4.3 Othmer (1928) still; A = boiling vessel; B = receiver; K, K, sampling
cocks; K, = vent cock; T = thermometer; CH = cooler; P = vapour tube; O = inlet; C =

drop counter; M = to manostat.
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Figure 4.4 Othmer (1946) moderate pressure still.

Othmer (1946) developed a moderate pressure version of the 1928 still (see figure
4.4) for use up to 14 bar in response to a demand for moderate pressure data but this
again was subject to the same operational problems as the atmospheric still. In
addition to which, natural circulation at higher pressures is less efficient and an "all"

stainless steel apparatus would prevent observation of the still in operation.
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4.3.2.2 Condensate recirculation stills: Revaporised condensate recirculation methods.

Jones et al. (1943) developed a still which vaporises the condensate before returning it
to the still equilibrium chamber. This still produced data of very high accuracy and has
been the subject of over 60 publications aimed at improving and simplifying its

operation.

Aston University

lustration removed for copyright restrictions

Figure 4.5 Jones, Shoenborn and Colburn (1943) Still: F, Tube for pressure
equalisation for sample withdrawal; G, capillary for smoothing flow of condensate to
vaporiser; qs, q, heaters for overheating vapour streams; R, tube for bubbling vapour

stream through residue chamber K; Z,, valve for maintaining vacuum during

withdrawal of samples.
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The Jones Still (1943) is shown in figure 4.5. It consists of a heated residue-chamber
K, and overhead condenser g, leading to a condensate chamber K, and a flash vaporiser
q;- The condensate flows under its own hydrostaﬁc pressure through a three-way
stopcock Z, and a capillary into the vaporiser q,, which is a heated tube connecting K,
and Z,. The liquid level in K, remains constant. The capillafy G is present to smooth
the flow into K, and to prevent fluctuations in the vaporisation rate. The temperature in
q, is maintained slightly above the equilibrium temperature. The vapour generated
enters K, almost at its base via a tube R which directs the vapour stream upwards
through the liquid and against the thermometer well. This ensures agitation of the
residue liquid and allows measurement of temperature. The residue chamber K|, is
heated. The heater q, compensates for heat losses so that the quantity of vapour leaving
K, is the same as that entering. The vapour flowing from K, to the condenser q, is
slightly superheated in the heater q, in order to prevent condensation and refluxing of
the condensate. The condensate flowing from g, to K, is recycled and when steady-state
conditions have been obtained liquid and vapour samples are withdrawn from the
residue (K,) and condensate (K,) chambers. The stopcock Z, allows vacuum to be

maintained and the liquid to be sucked back during sample withdrawal.

Proper operation of this type of still is difficult to achieve. The chief difficulty
encountered with this equipment is the balancing of the heat losses from the residue
chamber K. Careful supervision is required in controlling the heat input into this still
making it tedious to operate and requiring several hours to achieve equilibrium.
Bubbling of the vapour through the liquid leads to pressure drop within the still which
diminishes the accuracy of the pressure and temperature determinations. Thus these

methods involving recirculation of the vaporised condensate have become less popular

among experimental thermodynamicists.

4.3.3 Liquid-phase and vapour condensate recirculation methods.

The first stills using this principle were developed to measure boiling points. Cottrell
(1919) developed a still, using an athermal lift pump (Cottrell pump) to throw a

mixture of vapour and liquid on to a temperature sensor to allow very accurate
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measurement of boiling points. This apparatus was further developed by Swietoslawski
(1924), (see figure 4.6) and is considered to be the most accurate for the determination

of boiling points in the pressure range 5-200 kPa (Leslie and Kuehner, 1968).

Aston University

Hlustration removed for copyright restrictions

Figure 4.6 Swietoslawski ebulliometer (1924). A, heated bulb providing thermal lift of
Cottrell pump; B, equilibrium chamber; C, tube preventing heat losses; D, condenser; I,
Cottrell pump tube; II, condensate and liquid down stream tube; a-a liquid level.

The next natural progression from the Swietoslawski ebulliometer (1924) was

development to allow simultaneous determination of pressure temperature and

96



composition of both phases. The first circulating still, which had the capability for
withdrawal of liquid and condensate samples after temporary cessation of circulation by
pressure increase, was proposed by Lee (1931), figure 4.7. Gillespie (1946) introduced
two important modifications to the Lee still, i.e. the separator for the liquid and
condensate streams and the facilities for withdrawing samples without interruption of
boiling (figure 4.8). This still has the basic arrangement of the Swietoslawski
ebulliometer, and gained high popularity after it was found by Coulson et al. (1948) to
be greatly superior to stills with vapour condensate circulation (Othmer, 1943) and

even to those modified with an additional Cottrell pump (Scatchard et al. 1938).

The Gillespie apparatus is subject to one serious error, namely that the liquid samples
are withdrawn from the boiling flask and do not correspond to the liquid which is in true

equilibrium with the vapour leaving the separator. Since this error can become quite
| large with certain mixtures having particularly large relative volatility, the original
Gillespie still was modified. Simple modifications were proposed by Fowler and Norris
(1955) additional modifications were made by Otsuki and Williams (1953). They mainly
differ in the special collector placed in the return liquid line from the separator. A sample
withdrawn here represents a liquid that is in true equilibrium with the vapour leaving the

chamber.

Brown (1952) modified the Gillespie still as show in figure 4.9. The electrically
controlled valves are very useful as they permit the withdrawal of samples of liquid and
condensate without causing interuption of the circulation. This arrangement also
eliminates the error arising for the partial evaporation of the condensate after connecting
the instrument with the external atmosphere and simultaneously prevents the
contamination of the contents of the receivers with liquid flowing down the walls after
stopping the still. The smaller cooler C, serves to cool the residual liquid returning from
the droplet separator before its mixing with the condensate stream from the receiver.
This completely eliminates the possibility of non-equilibrium vaporisation in the distilling
chamber. This instrument gives very precise results even with mixtures having a high
relative volatility.Its most important drawbacks are the very long time, up to four hours,
necessary to achieve steady-state operation, and the large charge size required (200
cm’).
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Figure 4.7 Lee (1931) recirculation still; C condenser; E equilibrium chamber; H, Heater
providing thermal lift to Cottrell pump; M to pressure system; S, liquid phase receiver;
T temperature sensor; W Cottrell pump; Z, vapour condensate sampling valve,

Aston University
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Figure 4.8 Gillespie still (1946); A, mixer for vapour and condensate streams; C,,
vapour condenser; C, cooler; K drop counter; R, separator for liquid and vapour phases
E equilibrium chamber; H, Heater providing thermal lift to Cottrell pump; M to
pressure system; S, liquid phase receiver; T temperature sensor; W Cottrell pump; Z,
vapour condensate sampling valve.
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Figure 4.9 Brown still (1952); C,, vapour condenser; C, cooler;C, Liquid cooler; K

drop counter; R, separator for liquid and vapour phases; H, Heater providing thermal

lift to Cottrell pump; M to pressure system; S, liquid phase receiver; T temperature
sensor; W Cottrell pump; Z, vapour condensate sampling valve.

Ellis (1952) derived another apparatus from the still of Lee (1931) which has provided
good results, as a result mainly of its simplicity and is shown in figure 4.10. The
heterogeneous mixture flows through the glass spiral of several turns which functions
as the Cottrell pump and spurts on the thermometer well. The still is charged with about
250 ml of the mixture and equilibrium is reached after operating for one hour. The
attainment of equilibrium was judged by the constancy of the thermometer readings and

when the distillation rate is such that 40-70 drops per minute of condensate fell from
the finger condenser.
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Figure 4.10 Ellis still (1952): C,, vapour condenser; C, cooler; R, separator for liquid
and vapour phases; H, Heater providing thermal lift to Cottrell pump; M to pressure
system; S, condensate receiver; T, temperature sensor; W Cottrell pump;Z, vapour

condensate sampling valve; Z, liquid sampling valve;V, drain valve.
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This still has the same disadvantages as the Brown still, but owing to its simplicity is
much easier to operate. Ellis tested his still with four types of mixtures formed by
close-boiling or wide-boiling components. In both cases, mixtures close to ideality and
strongly non-ideal were tested. The resulting data were compared with those measured
by Othmer (1943) and Fenske et al. (1947), and were found to correlate more

favourably with the Gibbs-Duhem equation than was the case for the data from other

stills.

An interesting apparatus suitable even for mixtures of very high relative volatility was
proposed by Dvorak and Boublik (1963) and is shown in figure 4.11. They emphasised

the importance of thorough stirring, in both the liquid and the condensate receivers.

Aston University
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Figure 4.11 Dvorak and Boublik (1963) still; C,, vapour condenser; C, cooler; K drop
counter; R, separator for liquid and vapour phases E equilibrium cham‘ber; H, Heater
providing thermal lift to Cottrell pump; M to pressure system; S, liquid phase receiver:
T temperature sensor; W Cottrell pump; Z, vapour condensate sampling valve.
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One of the most advanced stills in this group was proposed by Raal, Code and Best
(1972) and is featured in figure 4.12. The still contains the excellent mixing
characteristics of the Jones Colburn still (1943) and utilises a novel adaptation of the
Cottrell pump to provide accurate temperature measurement and ensure adiabatic
operation of the equilibrium chamber. As can be seen in figure 4.12, the Cottrell pump is
the annulus between the inner equilibrium chamber and the outer chamber, where a
mixture of liquid and vapour is propelled over the thermocouple well. The vapour-liquid
mixture in the annulus maintains the inner equilibrium chamber at the boiling
temperature. The liquid sample, collected in the inner equilibrium chamber, is produced
by condensation of some of the vapour and comes to equilibrium with the vapour
bubbling through it. The Raal et al. (1972) design had been shown capable of producing
remarkably accurate vapour-liquid equilibrium data for highly non-ideal

alcohol-hydrocarbon mixtures.
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Figure 4.12 Raal, Code and Best still
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Raal and Brouckaert (1992) proposed a recirculating equilibrium still for the
determination of vapour-liquid equilibrium data for mixtures with partial liquid
miscibility. The design shown in figure 4.13 differed only in detail from the Raal, Code
and Best still. Capillary tubes were introduced in the condensate return line and in the
liquid return line from the vapour-liquid disengagement chamber as shown. Rapid and
effective stirring, particularly important in regions of partial liquid miscibility, was
introduced in the condensate and boiling chambers. A split downcomer in the

condensate receiver has subsequently been adopted for partially miscible mixtures.

Aston University
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Figure 4.13 Raal and Brouckaert (1992)
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Jenkins and O'Donnell (1980) developed a modified version (Mark I) of the Raal et al
(1972) still. This still was designed to run at pressures of 1 atmosphere or less. This still
is described in full in chapter 5. The main differences between this still and the one

proposed by Raal, Code and Best are:

@) The heater has been separated from the main body of the still and replaced
by quartz sheathed imersion heater, which prevents thermal stresses being

set up in the still and hence breakage,

2) An agitated mixing chamber was inserted to provide a well-mixed feed to
the heater.
3) The thermocouple well has a glass spiral on its outer wall and this gives a

longer contact time and an accurate measurement of temperature.

4 The greaseless ball and cap joints used in the structure relieve any stress

set up on heating.

This still has been used successfully to obtain vapour-liquid equilibrium data on a number

of binary mixtures.

Rogalski and coworkers (1977, 1980) returned to the Sweitoslawski ebulliometer as a
starting point for their new equilibruim still apparatus shown in figure 4.14. The
mixture boils in an electrically heated container H, . Powdered glass is sintered on the
inside walls of this container, providing an activated surface to obtain steady boiling.
The vapour generated provides gas lift via a Cottrell pump in the tube W, and the
continuous stream, consisting of vapour and overheated liquid, is delivered into the
equilibrium chamber E. This stream hits a thermometer well T. The expansion caused
by the impact results in the equilibrium temperature being established on the outside
wall of the thermometer well. In order to minimise heat losses, the equilibrium chamber
is placed inside a vacuum jacket J. The liquid and vapour streams separate in the

equilibrium chamber E. The vapour stream leaves E through a large-bore tube leading

to a condenser, when it is totally condensed. This large-bore tube is heated using the

104



Aston University

ustration removed for copyright restrictions

Figure 4.14 Rogalski (1977) Glass ebulliometer for atmospheric and sub-atmospheric
use.
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Figure 4.15 Malanowski (1993) moderate pressure ebulliometer. 1= equilibruim
chamber; 2 = condenser; 3 = drop counter; 4 = vapour sampling valve; 5 = liquid
sampling valve; 6 = mixing device; 7 = cottrell pump; 8 = feed valve; 9 = thermometer
pocket; 10 pressure connection.
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heater H, above the equilibrium temperature, to prevent partial condensation and
refluxing, which may affect the composition of the condensate leaving the condenser
C,. The condensate then flows through a drop counter (flow meter) K and condensate
container S, to the mixing chamber A, where it is mixed with the liquid flowing from
the equilibrium chamber E via the liquid container S,. Perfect mixing is very
important for minimisation of boiling-temperature fluctuations. Each still is equipped
with two mixing devices, A and B. The mixed stream of uniform composition

re-enters the Cottrell pump H, where it is partly evaporated.

Malanowski et al. (1993) went on to develop a moderate pressure version of this
apparatus for use at pressures upto 3 MPa. The still is shown in figure 4.15. The new
still is of all stainless steel construction with the exception of the drop counter which
is made from thick walled glass tube. The accuracy of measurements with this
apparatus have been shown to be 0.01 X and 0.1 kPa for pure substances and for close
boiling mixtures. For wide boiling mixtures, > 20 K the accuracy drops to 0.02 K
and 0.3 kPa. The stability of the apparatus drops as the relative volatility of the

mixture increases.

4.4 Static Methods

In static methods of direct experimental determination of vapour-liquid equilibrium
data, the vapour and liquid phases of a mixture are maintained in contact within an
evacuated chamber which is immersed in a thermostatically-controlled water bath. The
two phases are vigorously agitated and sampled for analysis. Agitation is provided by
either stirrers or shaking of the entire cell or use of pistons to move the cell or a
combination of the above techniques. The method sounds simple but removing even a
small sample for analysis affects the equilibrium. The problem of sampling has been
reduced by only removing very small samples for analysis by chromatographic
methods. Various approaches have been adopted to minimise the sample volumes,

these are:
1) Capillary lines. See Wichterle and Wagner (1987).
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2) Fast acting pneumatic or electromagnetic valves. See Figurier et al.
(1980).

3) Detachable microcells. See Legret (1981).

Another disadvantage is the extensive and careful degassing of the components

required.

Static methods can be segragated into two categories:

1) Constant volume cells.

2) Variable volume cells.

4.4.1 Constant volume static cells.

Variations of constant volume static cells have been proposed by Robinson (1978,
1979), Renon and Richon (1983), Melpolder (1986), Nakayama et al. (1987), Figurier
et al. (1980) and Legret (1981)

An example of a static still is the apparatus of Wichterle and Hala (1963). They used a
constant volume static method to carry out semimicro determination of vapour-liquid
equilibrium data in multi-component mixtures at isothermal conditions. Their method
was based on the sampling of very small volumes of the vapour phase which were then
analysed by gas chromatography; the method makes possible the determination of
equilibrium data on a small liquid mixture using only 2 ml per data value. The quantity
of substance in the sample is proportional to the peak area; it is therefore possible to
calculate the relative volatility from the chromatograms directly by comparing the
ratios of the peak areas of the components in the two phases. It is not necessary to
reach the equilibrium partial pressures because it is sufficient to measure the
concentration ratios of the components in order to determine the relative volatility.
Very small vapour samples make it possible to obtain a large set of analytical data

while leaving the concentrations in the liquid phase unchanged. A moderate pressure
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version of this apparatus was proposed by Wichterle et al. (1974) which was capable

of measuring two-phase mixtures up to 45 atmospheres.

442 Varable volume static cells.

Typically this type of apparatus uses movement of a piston to change the volume of the
cell to increase or decrease the pressure. This type of apparatus is increasingly being
designed with windows to allow observation of the cell contents which eliminates the
possibility of missing the formation of multiple phases. Variations of this type of
apparatus have been proposed by Robinson et al. (1985), Thodos et al. (1978), Huang
et al. (1985), and Li et al. (1981).

Figure 4.16 Ashcroft, Shearn and Williams high pressure equilibrium cell. B = End
caps; C = pistons; D = window assemblies; E = Glass capillary; F = toughened glass
windows; G = piston indicating rod; H = sampling valve
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An example worthy of special consideration is the apparatus of Ashcroft, Shearn and
Williams (1983) designed to operate up to 690 bar pressure. The static cell design for
this apparatus is shown in figure 4.16. The static cell is mounted in a thermostat air
bath with temperature control to 0.1°C. Pressure is applied to the cell by mercury in
the lower section and by a steel piston actuated by hydraulic oil in the upper section.
Dual action pumping of these two fluids allows the cell contents to be raised and
lowered without pressure change. Visual observation of the phase boundaries, by
means of a mirror and optical system, was made through the window assembly, D, and
the glass capillary tube E, through which the system could be moved back and forth. A
measuring rod, G, equipped with a vernier scale is used for the accurate location of

the piston, thus allowing accurate determination of phase volumes simultaneously with
VLE determinations. Sampling uses a micro sampling valve connected on line to a Pye
204 chromatograph. By manipulation of the position of the cell contents samples of
each phase can be withdrawn for analysis. The cell is bought to equilibrium by

mechanically rocking the still for 3 hours between each data point determination.

4.5 Total pressure methods.

The Total Pressure approach, sometimes abbreviated to P-T-x method, eliminates the
need to separate the vapour and liquid phases and their analysis, in favour of the direct
determination of the temperature, pressure and liquid-phase composition. The essential
feature of this method is the measurement of the total pressure of the mixture as a
function of composition at constant temperature. The vapour-phase composition is
obtained by calculation from the observed saturated vapour pressure, as a function of
liquid phase composition. The P-T-x method has eamed its popularity for
vapour-liquid equilibrium measurements as a fast and efficient method, although only

suitable for binary systems.

Total pressure measurements can be performed in two types of apparatus ebulliometers
discussed in section 4.3.3 and static cells. Static cells have proved particularly useful at
low pressures, since no boiling takes place in static cells the method eliminates the
bumping and unsteady state boiling frequently incurred at low pressures. The main

draw back of this method is that a suitable theoretical model is required to obtain the
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vapour phase compositions which limits its applicability in strongly associating

systems.

Static equilibrium cells dedicated to determination of P-T-x data have been proposed
by Ljunglin and Van Ness (1962), Gibbs and Van Ness (1972), Jenkins and Smith
(1975), Ronc and Ratcliffe (1976), Young et al. (1977) and Mentzer, Greenkorn and
Chao (1982).

Gmehling and Kolbe (1985) proposed the static apparatus shown in figure 4.17 for the
determination of data in the pressure range 1- 10 bar to produce four isothermal data
sets for the mixture ethanol-water. The cell works by precise metered feeds of the pure
components to the cell via manually operated piston injectors. The cell (figure 4.18) is
immersed in a thermostatted bath and pressure measurement is made by a differential
pressure transducer. The cell itself comprises a glass body with stainless steel top, the
valves are built directly in to the lid to keep the vapour volume small and to avoid dead
spaces. A magnetically driven stirrer is mounted in the cell and secured to the cell lid.
The cell is agitated and takes 10 to 30 minutes to reach temperature equilibrium per

data point.

Gmehling and Rarey (1993) developed a differential version of this static still to work
up to 72 bar with a maximum differential pressure of 1 bar. The apparatus uses two
cells one, working on pure component, only to measure the differential pressure
between the mixture and reference cells. The apparatus has been automated, reducing
operator contact time to 3 hours for a typical 4-day run on one mixture to produce 60
data points. A key factor in automation of this apparatus has been the design of a high
precision injection pump which can be remotely controlled. The apparatus has been
specifically designed to measure activity coefficients at infinite dilution, gas solubilities
and thermal compressibilities of liquids. The apparatus has further been developed as a

commercial apparatus by the Mitsubishi Corporation of Japan.
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4.6  Flow methods.

Dynamic flow stills have been specifically designed for use with systems of limited
miscibility in the liquid phase, reacting mixtures or mixtures where prolonged exposure
to the equilibrium conditions may cause degradation of the mixture components.
These stills offer the option of rapid equilibrium determinations but consequently suffer

a loss in accuracy.

These apparatus generally work by feeding a constant stream of vapour or liquid or
both to the equilibrium chamber where the equilibrium temperature is measured,
separation of the phases and sampling to determine the vapour and liquid

compositions.

The first still using this method was developed by Colburn et al. (1943). A steady
stream of mixed vapour, of known composition is bubbled continuously through the
liquid sample contained in an adiabatic chamber. The liquid sample is formed from an
initial heel and by partial condensation of the vapour. Equilibrium is judged to have

been reached when the liquid sample volume and measured temperature remain

constant.

One of the most successful flow stills was first proposed by Cathala (1950) and has
been subject to modification by many people (see Marek (1955, 1956), Mamers
(1965), Davies (1971) and Gibson-Robinson (1977)). The original Cathala still took
vapour and preheated liquid, mixed them together in a contacting chamber and then
passed the mixture up in to the adiabatic equilibrium chamber, where the equilibrium
temperature was measured using a copper-constantan thermocouple. Equilibrium was

achieved after 10 to 20 minutes when the recorded temperature changes were less than
+0.05°C.

Cathala (1960) himself developed a modified version of the flow still (see figure 4.19).
In this case the mixer-contactor, the equiiibrium chamber, the de-entrainer and the

vaporiser were constructed as a single unit. The liquid level in the vaporiser was
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controlled and a magnetic stirrer was included to promote regular boiling whilst an air
bleed was used to facilitate low pressure work.. Finally the mixer contacter and the
equilibrium chamber were lagged and thermocouples used to measure temperatures to

an accuracy of +0.05°C.

Alternative variations of dynamic flow cells have been proposed by Yesavage et al.
(1986), Cruz and Renon (1979), Wang and Chao (1990), Hutchensen et al. (1990)
and Thies and Paulaitis (1984).

Aston University

llustration removed for copyright restrictions

Figure 4.19 Cathala Flow Still (1960)
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4.7 Other methods.

These methods are normally based on variations of variable volume equilibrium cells
and are generally referred to as bubble point-dew point methods. The basic mode of
operation is to hold the temperature and composition constant and develop a P-V
isotherm. Breaks in the P-V isotherm correspond to the molar volumes of the
coexisting phases, thus indicating the bubble and dew points. Construction of the
bubble point-dew point curves across the composition range permit the x-y

compositions to be determined at constant pressure, see figure 4.20.

Figure 4.20 Principles of operation of dew point-bubble point method. I = Phase
diagram showing change of state of sample in piston assembly, II1. From the liquid
composition x through the bubble point A and dew point C in to vapour of the same
composition (y=x). II is the corresponding compression chart showing determination
liquid volume V, and vapour volume V,, at the bubble point A and dew point C.

This diagram clearly shows that the bubble point is easy to determine by virtue of the
sharp transition but the dew point is much more difficult. This method is also
unsuitable for multi-component mixtures. For these reasons this method has not been

widely used recently but it does have the major advantage that analysis of phase

compositions is not required.
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The experimental methods using the bubble point-dew point technique are reviewed
for low pressures by Feller and McDonald (1950) and Malanowski (1982b). For
pressures above 10 MPa the methods have been reviewed by Schneider (1975), Young
(1978) and Eubank et al. (1980). An example of apparatus used for this type of
measurement is the variable volume cell of Ashcroft et al. (1983), see section 4.5.1. Its

use for bubble point measurement is described in detail by Ashcroft et al. (1994).
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Chapter 5: Development, design and operation of a family of equilibrium stills to

work at low to moderate pressures up to 35 Bar.

5.1 Basic design of borosilicate glass equilibrium still.

All the stills are based on the still developed by O' Donnell (1980) from the earlier
very successful still of Raal, Code and Best (1972) (see Chapter 4). The basic design
of the borosilicate glass equilibrium chamber is common to all versions of the
apparatus and is shown as a diagrammatic cross-section in Figure 5.1. A
vapour-liquid mixture is fed into the outer annulus which is 3 mm wide and has a
glass spiral wound onto the inner surface to act as a guide for the vapour-liquid

mixture. The success of this design is due to the design of this annulus which fulfils

two purposes :
1. The spiral wound jacket forms a Cottrell pump which is effectively 0.5
m long giving a long residence time for the mixture to reach
equilibrium.
2, The outer annulus acts as a vapour jacket holding the contents of the

equilibrium still within 0.1 °C of the equilibrium boiling point.

The vapour-liquid mixture is then forced down the central thermometer pocket which
is also wound with a glass spiral which increases the liquid residence time in the
thermometer pocket to enable better measurement of the boiling point. The liquid is
separated in the vapour-disengaging cup from the vapour and returned to the reboiler
for recirculation. The liquid level is controlled in the vapour disengaging cup to
provide a liquid seal to prevent condensation of vapour in a region not at the
equilibrium temperature. From the disengaging cup the vapour is forced though six 2
mm diameter radially spaced holes into the middle annulus. The liquid sample is
produced by partial condensation of the vapour in this annulus as the vapour bubbles
though the condensing liquid sample. By producing the liquid sample in this manner
the formation of the liquid sample is independent of the recirculating fluid and hence

more likely to form a representative sample. The vapour after passing though the
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liquid sample leaves the equilibrium chamber, is condensed and returned to the

reboiler.
KEY . VAPOUR OUT
—p VAPOUR LIQUID =" TO CONDENSER
MIXTURE
e VAPOUR
.......-..b L[QU[D

L W L W A

P WY . WY . W . WY

/'\\ VAPOUR- LIQUID

v MIXTURE FEED

LIQUID SAMPLE
OUTLET LIQUID RETURN

TO REBOILER

Figure 5.1 Basic design of borosilicate glass equilibrium still

5.2 Design of Russell, O'Donnell and Jenkins low pressure apparatus.

This still is a direct modification of the still developed by O' Donnell (1980) designed
to incorporate improvements to overcome operational inadequacies noted from
operation of the original apparatus. The O' Donnell apparatus is shown in figure 5.2.
It is important to note at this point that the O'Donnell apparatus equilibrium chamber
did not possess the glass spiral wound on the inside of the vapour jacket but the

equilibrium chamber is otherwise identical to that shown in figure 5.1.
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Figure 5.2 Diagrammatic arrangement of the O'Donnell and Jenkins
low pressure still Mark 1

The Mark III version of the atmospheric still reboiler differs from the earlier version

of the still in that the orientation of the reboiler has been changed to align the hot rod

vertically. Mounting the reboiler vertically improves the performance of the

thermosyphon which results in smoother boiling characteristics. The magnetic stirrer

at the inlet to the reboiler fulfils two functions, it mixes the returning streams to give

a homogeneous mixture to feed to the reboiler and imparts a minor pumping action to

the liquid returning to the reboiler. Both of these actions help to smooth out the

boiling pattern in the reboiler. The still can now be run satisfactorily under vacuum

down to a pressure of 30 mmHg. Below this pressure the reboiler behaviour becomes

erratic due to insufficient nucleation sites on the hot rod surface.
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Figure 5.3 Diagrammatic arrangement of the Russell, O'Donnell and Jenkins
low pressure still Mark I1I.

The vapour loop of the Mark IIT still has been modified as shown in figure 5.3. The
vapour line leaving the equilibrium chamber is heated by electric tracing to 1°C above
the equilibrium boiling point of the mixture. The tracing prevents partial
condensation of vapour before the condenser which may contaminate the liquid
sample. In addition a weir has been placed in the vapour line as a physical barrier to
prevent any condensed vapour returning to the equilibrium still. A 1 mm hole has
been placed in the top of the down leg into the vapour sample chamber. This hole

balances pressure in the vapour sample chamber with that in the condenser to allow

the vapour sample to overflow.
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The liquid line from the central cup of the still to the reboiler has been modified to
incorporate a weir. The weir controls the liquid level in the central cup and prevents
the still from flooding. The weir chamber is sealed with a PTFE/silicone rubber
septum which allows a sample of the liquid stream to be taken whilst the still is

running as a check on the final liquid sample.

The equilibrium chamber is lagged with 1 cm thick ceramic fibre rope above the
central cup. This permits the observation of the critical portion of the still internals
and prevents excessive heat loss from the top of the equilibrium chamber where heat
losses may affect the equilibrium temperature measured. Operating instructions are

given in Appendix 12

5.3  The Zain and Jenkins moderate pressure still.

The equilibrium cell is essentially the same as that shown in figure 5.1. As the
equilibrium cell has to be contained in a steel pressure bomb (vessel), mounting the
cell in the bomb would be made easier if all of the connections to and from the
equilibrium cell passed through the bottom flange of the pressure vessel. Thus the still
has been modified as shown in figure 5.4, The connection lines from the equilibrium
chamber are different lengths to stagger the Rotolex joints to permit the clips securing
the joints to fit inside the confined spaces of the pressure vessel without fouling the

walls or each other.

Figure 5.5 shows a diagrammatic representation of the Zain and Jenkins still. The
flange at the base of the pressure bomb is made of 316 stainless steel. This has four
holes through which connection to the still is made. Each hole has a bored-through
NPT to Swagelok connector in it. The appropriate line passes through each and then
is connected (for the liquid/vapour feed, the vapour and liquid offtake lines) to Cajon
glass-metal flexible connectors via standard Swagelok couplings. Each glass portion
ends in a Rotolex cup which makes the connection with the appropriate ball joint on

the equilibrium cell. Thus the glass cell is supported solely from the bottom flange.
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Figure 5.4 Zain-Jenkins borosilicate glass equilibrium
still for moderate pressures
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The top flange of the pressure bomb is again made of 316 stainless steel. This flange
has five holes to make it possible to connect the pressure bomb to the controlled
pressure source and four thermocouples. Three of these measure the temperature
profile in the pressure bomb. The fourth, central thermocouple measures the boiling

temperature in the equilibrium cell.

It is essential to be able to observe the operation of the equilibrium still to ensure that
it is operating correctly. To do this two windows are provided at the sides of the
pressure bomb, but since these must not run at the temperature of the equilibrium cell
itself, they are at the ends of the side arms, with further internal dividing glasses,
close to the inner ends of the arms, reducing heat transfer by convection into the side
arms. The bomb contents are viewed by placing a source of light in front of a window
at one side of the pressure bomb, and looking at the equilibrium cell through the

window at the other side of the pressure bomb.

Natural convection to provide circulation through the still is not used. Instead, a small
graphite gear pump capable of working at pressures up to 35 bar is used to feed the
reboiler. This pump is supplied with low voltage DC power from a constant current
power source to give a steady flow. The reboiler is annular in construction and made
of 316 stainless steel. The central tube contains a cartridge heater of a nominal 210
wattage. The reboiler is lagged using a mat heater, insulated and then sprayed with

chrome aluminium spray paint.

If the only heat source were the reboiler, the still would never come to equilibrium
because of the high thermal capacity of the pressure bomb. So three Hedin electrical
mat heaters each of a nominal 310 wattage are provided along the vertical length of
the pressure bomb. These electrical heaters are suitable for continuous operation at
any surface temperature up to 200°C. Their energy outputs are controlled separately
through the use of three Variacs. The heaters are lagged using Contronic Corporation
mouldable wet felts (mats) and then sprayed with chrome aluminium spray paint.
This insulation material provides a lightweight resilient and highly efficient thermal
insulation, As noted earlier, three chromel-alumel thermocouples measure the

temperature profile up the pressure bomb; and the heaters outputs are adjusted to
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maintain a nearly constant temperature profile, a degree or so above the equilibrium
temperature measured in the equilibrium cell. The vapour line is also heated along its
length to prevent condensation and the consequent high pressure drop in the line to
the condenser. This is achieved by wrapping the vapour line around with a
silicone-rubber encapsulated heating tape of a nominal 250 wattage. The heating tape

is lagged using woven ceramic rope over-wrapped with woven ceramic self-adhesive

tape.

The condenser is a cold finger inside a Jergusen transparent gauge, and a smaller
Jergusen transparent gauge below it acts as a condensate receiver and reservoir. These
gauges are made of 316 stainless steel, with tempered glass sight glasses on both sides
to permit the passage of light with an unobstructed view of practically the entire
contents. The larger gauge is 184.2 mm long and the visible glass length is 146 mm,
while the smaller gauge is 133.5 mm long and the visible glass length i1s 95.3 mm.
From the condensate receiver and reservoir, the condensed vapour goes to a sampling
loop before joining the liquid recycle from the overflow device. They then together

flow to the circulating gear pump. This sampling loop is made of:

(1) The sampling chamber which is made of 316 stainless steel,
(i)  five Whitey valves,
(1i1)  1/8 " O.D 316 stainless steel tube from the condensate receiver to the

circulating gear pump.

The final liquid sample is withdrawn through a 316 stainless steel capillary which
runs up into the liquid sample chamber in the equilibrium cell. The sample is
withdrawn through a small bore tube immersed in an ice bath into a sampling device.
The vapour sample (as condensate) is trapped inside its sampling chamber and is then

removed from the still for analysis.

The guard condenser prevents any escape of vapour into the pressure system from the
liquid overflow from the equilibrium cell, The level control device is a 316 stainless

steel T-piece used to provide a simple weir-type overflow. It is arranged so that the

free liquid surface in the vapour-liquid separating cup in the equilibrium cell is at a
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suitable height, i.e. neither falling below the constant temperature zone in the
equilibrium cell nor overflowing into the central volume of the equilibrium cell,

where it could contaminate the liquid sample in the equilibrium cell.

54 The Russell-Jenkins moderate pressure equilibrium still.

The Russell-Jenkins moderate pressure equilibrium still is a direct descendant of the
Zain-Jenkins apparatus modified to eliminate the short comings of this earlier
design. The main modification has been to the vapour flow circuit which was found
in the Zain-Jenkins apparatus to restrict vapour flow around the circuit preventing the
still from reaching equilibrium. This has involved the modifications to the glass still
shown in Figure 5.6 and the increase in diameter of the vapour transfer line from 1/4"
0.D. to 3/8" O.D. It was thought that the measured temperature of the boiling
mixture was being affected by excessive heat loss from the top of the glass still. This
has been dealt with by lagging the top half of the glass still with ceramic tape 1/4"
thick. To remove the temperature gradient causing the heat losses the top flange of

the pressure vessel has also been lagged with ceramic wool blanket 1" thick.

The glass to metal Cajon flexible connectors used to support the glass still have
shown to be too fragile for this duty when exposed to corrosive liquids, exhibiting a
tendency to fail at the glass to metal interface. The glass Rotolex joints have been
replaced with 316 stainless steel cups made to the same dimensions as the original

glass cups and jointed to the flexible connectors by standard Swagelok straight

connectors.

The liquid circulation loop has been modified as shown in figure 5.7 to permit
mixing of the vapour sample in the vapour sample vessel and the vapour condensate
reservoir. A second small graphite gear pump has been installed to circulate the
vapour condensate from the vapour condensate reservoir through the vapour sample
chamber and return it to the condensate reservoir. The pump is capable of recycling
the reservoir contents 15 times a minute ensuring that the sample is well mixed. The

vapour condensate takeoff from the vapour condensate reservoir has been designed to

avoid any dead space and is shown in detail in Figure 5.8. Two additional Hoke 1/4"
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ball valves have been added to the vapour condensate sample system to enable quick
isolation of the sample. They also act as a safety measure providing double isolation
of the equilibrium still from the sample vessel and give positive indication of when

the sample bomb is isolated.
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Figure 5.6 Russell-Jenkins borosilicate glass equilibrium
still for moderate pressures .
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A new charging system for the feed has been incorporated to allow charging of feed

mixture to the apparatus during normal operation (see figure 5.7)

Operating instructions for the Russell-Jenkins moderate pressure still are given in

Appendix 13.

5.4.1 Temperature measurement.

Temperature measurement on the Zain-Jenkins apparatus was achieved using a series
of four chromel-alumel thermocouples, three thermocouples to measure the
temperature profile up the pressure bomb and the remaining one to measure the
boiling point of the liquid mixture. This mode of temperature measurement was

found to be unstable when used over a prolonged time period.

The Russell Jenkins apparatus has replaced the thermocouples with 100Q2 Platinum
resistance thermometers (PRT). The temperature profile thermocouples have been

replaced with three, three-wire PRT's which are connected to 1/4" Panel mounted
Omega CN760000 temperature controllers with a control action precision of 0.2°C.
These controllers supply power directly to the three Hedin mat heaters, via solid state
relays, maintaining the temperature along the pressure vessel within 0.2°C of the
boiling point. The boiling temperature in the equilibrium cell is measured by a central
Four-wire PRT calibrated to 0.002 K against a Guildline 9540 platinum resistance
thermometer with a discrimination of 0.001 K. This in turn has been calibrated

against an NPL design type 5650F inductively coupled double ratio bridge, (with a
precision of +0.0001 K) using a platinum resistance thermometer No 221426
calibrated at the National Physical Laboratory to IPHS68. The calibration graph for

the central PRT is given in Appendix 1 together with the temperature correction

graph used for the Guildline 9540 platinum resistance thermometer.

The four-wire PRT is connected to two temperature measurement devices via a gold
wafer switch. It is connected to a Omega DP41 RTD MDSS digital temperature
indicator with a resolution of 0.01° C which is used for constant monitoring of the
boiling point as equilibrium is established. For very accurate measurement of the

temperature once equilibrium is established it is connected to the NPL design type
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5650F inductively coupled double ratio bridge, (with a precision of +0.0001 K).
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Figure 5.8 Detailed drawing of the design of the vapour condensate takeoff from the

vapour condensate receiver.

Finally the vapour transfer line heating tape was observed to have over heated on the
Zain-Jenkins still. This was replaced with a Cole Palmer insulated ceramic rope
heater and lagged with ceramic tape to 1/4" thick. Three chromel-alumel
thermocouples were equally spaced along the vapour transfer line on top of this layer
of insulation. A further layer of ceramic wool, 1" thick was applied over this and
covered with aluminium foil. The thermocouples were monitored using a Comark

temperature indicator and power input was regulated to give an even temperature

along the vapour line equal to the boiling point of the mixture.
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5.4.2 Pressure control and measurement

The pressure control system is represented diagrammatically in figure 5.9. The
pressure was controlled by a Druck digital pressure indicator/controller (DPI 500)
accurate to 0.01 bar. For operating pressures below 3.5 bar, the pressure was
measured by a Druck digital pressure indicator (DPI 140) to an accuracy of two parts
in 10000 of a bar using a vibrating cylinder sensor with accuracy of 0.015% of full
scale. For operating pressures above 3.5 and up to 35 bar (g), the pressure was

controlled to match an on-line air-operated Budenburg dead weight tester also
accurate to +0.01 bar. This was used to check the pressure every 15 minutes as the
Druck digital pressure indicator/controller (DPI 500) drifts slightly with prolonged

use.

The pressure system was connected to four points on the equilibrium still, at the top
flange of the pressure bomb, to the finger condenser, to the guard condenser and to
the top of the feed vessel. The connections between the pressure bomb and the
condenser were 3/8 " O.D tubing as against 1/8 " O.D. tubing to ensure that the bomb
pressure and that supplied to the glass equilibrium cell were never appreciably
different. 1/8 " O.D. was used for the rest of the pressure system to restrict the
flowrate of the pressurising gas. A vapour trap of 3A molecular sieve in 1/2 "0.D.
tube has been installed prior to the pressure indicators to prevent contamination of the
pressure gauges. Two 1/4" pressure relief valves have been installed in the system,
one prior to the DPI 500 pressure controller and one directly on to the top flange of

the pressure bomb to protect the system from over pressure.,
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Chapter 6: Discussion of results for acetic acid-water mixture.

6.1 Introduction

Acetic acid-water mixtures have been used traditionally to test new designs of
equilibrium stills. This is primarily due for two reasons; (i) the pure components are
cheap, readily available and easily purified, (i) analysis by titration can be made as
sensitive as necessary to provide x and y values with very small errors arising from the
analytical method. Over fifty sets of equilibrium data exist in the literature for this

mixture at one atmosphere pressure but no two data sets agree.

Jenkins and Gibson-Robinson (1979) identified the best five data sets available in the
literature from those listed by Sebastini and Laquanti (1967). In addition to these data
sets O'Donnell (1980) produced using version 1 of the low pressure apparatus a
number of isothermal and isobaric data sets at and below one atmosphere pressure.
The data of O'Donnell (1980) were shown to be of good thermodynamic consistency
using a Barker-type consistency test, developed for associating systems by Jenkins and
Gibson-Robinson (1977). Thus determination of data at one atmosphere on both

apparatus described here would demonstrate both their absolute and relative

performances.

6.2  Materials,

Glacial acetic acid was purified by repeated thawing and freezing, the supernatant fluid
being discarded in each cycle. The purified acetic acid was stored in 500 ml bottles
over 3A molecular sieve to maintain dehydration. The water was deionised then double

distilled freshly in 500 ml batches to prevent degradation with time

6.3 Analysis.

Density measurement is used as an analytical method for determination of the

composition of the liquid and vapour phase samples. For this purpose calibration
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mixtures of acetic acid and water were prepared by successive weighing. Their
densities were determined at 25°C using an Anton Paar densimeter (DMA 60) with
two DMA 602 cells (with a potential precision of better than 1 in 10°. The
temperature of the densimeter measuring cells was controlled to + 0.01 K using a
heater/controller (Heto Birkerod Denmark). The density measurements were made in
comparative mode with a reference fluid of pure water in one densimeter cell. This
method was adopted due to greater stability of measurement in comparison to absolute

density measurements at a set temperature.

6.4 Results.

Fifteen data points were produced using the low pressure apparatus and thirteen data
points were produced using the moderate pressure still. These data sets were initially
screened using a (x-y) versus x plot and compared directly with the data set produced
on the original low pressure still of O'Donnell (1980) (Figure 6.1). From this plot it
can be seen all three data sets agree well. At low acetic acid concentrations there is
some deviation between the new data sets and the O'Donnell data set, though the two

new sets appear to agree with each other in this region.

This discrepancy is put into perspective when these data sets are compared with the
other five data sets identified by Jenkins and Gibson Robinson (1979) (figure 6.2). It
can be seen the new data sets show good agreement with the data of Brown and Ewald
(1950) and Garner, Ellis and Pearce (1954). Jenkins and Gibson-Robinson (1979) had
previously found the work of Brown and Ewald to be the most consistent. The
discrepancy at low acetic acid concentrations is explained by a single high value data

point in the O'Donnell data set.
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6.5  The application of consistency tests to the experimental vapour-liquid

equilibrium data for acetic acid-water mixtures.

The experimental data sets have been tested using the Barker type consistency test
developed by Jenkins and Gibson Robinson (1979). The programs used for performing
the consistency tests are detailed by O'Donnell (1980).

The experimental y-values are the data usually most prone to errors and thus in this
procedure they are not used in the data-fit. A comparison between the experimental
and calculated y-values form the consistency test. For a completely consistent set of
data, a simultaneous plot of (P, - P_,) and (v-Y.,.) Vs x should both show random
distribution with about the expected error. Any systematic deviation indicates either a

non-random source of error or failure of the liquid phase model to represent the data.

The saturated vapour pressures for the pure components were calculated using either
the 3 parameter Antoine equation, the 6 parameter extended Antoine equation, or the 4
parameter Harlacher equation. No parameter values could be found for the extended
Antoine equation for Acetic Acid. Combinations of these equations were tested to see
which equation gave the best fit. No benefit was derived from using the Harlacher
equation and the best results were obtained using the 3 parameter Antoine equation to
represent acetic acid and the 6 parameter extended Antoine equation to represent the

water saturated vapour pressures.

The vapour phase non-ideality was modelled by use of the fugacity coefficient derived
from the correlation of Prausnitz et al. (1967). For acetic acid mixtures this is
combined with correction factors accounting for the formation of dimers as developed
by Marek and Standart (1954).

Liquid-phase association is accounted for by a model using a concentration-dependent
K, as developed by Jenkins and Gibson-Robinson (1979). They state that it is
insufficient to use liquid-phase activity coefficient models on acetic acid mixtures,

without accounting for acetic acid association. The model they proposed has been
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tested on many acetic acid systems by themselves and O'Donnell (1980). It has been
shown to give better fitting than models which do not account for association in the

liquid-phase.

The integrated forms of the Gibbs-Duhem Equation (activity coefficient models) used
were the two-parameter Wilson equation, the three-parameter NRTL equation and a
four-parameter version of the Redlich-Kister equation which has been found to
correlate acetic acid mixtures well. Each activity coefficient model was run both with
and without the acetic acid liquid-phase association model. This was done to ascertain

what effect use of the association model has on the data fit.

The results for these consistency tests are recorded in Appendix 4 for the new data sets
and that of the O'Donnell data at one atmosphere pressure. The best fits were
achieved using the three-parameter NRTL equation with association in both phases.
The use of the Redlich-Kister equation shows no significant differences for fit from the
fit achieved using the 3-parameter NRTL equation. The results of the consistency tests
without the use of the association model in both phases are very poor. These tests
show an increase by a factor of 10 of the values of Vg p-Ycarc- This confirms that it is
essential to account for association in both phases and that the approach adopted by

Jenkins and Gibson-Robinson (1979) works very well.

The data for the reduction procedure using the 3-parameter NRTL equation has been
used to produce the deviation plots figures (6.3 and 6.4). These plots also contain data
from the best two literature data sets i.e. Brown and Ewald (1950) and Garner Ellis

and Pearce (1954) using the same consistency test parameters.

The dP sets show that all the data sets exhibit sinusoidal trends of similar magnitude.
The O'Donnell and Garner and Ellis sets appear to give the smallest deviations. The
new data set on the moderate pressure apparatus shows a single data point at the end

of the composition range which is obviously in error.
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The dy (100) deviation plots show very good agreement between the two new data
sets and the data of O'Donnell. These data sets appear to give much better data fits on
the y values than do the data of Garner and Ellis and Brown and Ewald which again
exhibit sinusoidal patterns with much more scatter.

Thus it appears that the new data and the data of O'Donnell are the most consistent. It

also demonstrates that all versions of the still produce data of a similar high quality.
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Chapter 7: Discussion of results for acetone-chloroform mixture.

7.1 Introduction

This mixture has been chosen for study because though well documented in literature
sources very little of the reference material appears to agree or demonstrate high
thermodynamic consistency. This inconsistency of experimental data is due in part to

the presence of stabilisers in the chloroform used to determine the experimental data.

The mixture is a suitable choice for investigating the ability of the AGAPE phase
equilibria prediction method to determine vapour-liquid equilibrium data for highly
polar mixtures. The normal approach to the prediction of equilibrium values using the
London potential to determine the molecular parameters is unsuitable because the
London potential cannot predict the strong forces which exist between the molecules.
The aim therefore is to test the prediction program using a single experimental data
point as the source for the molecular parameters and fitting these parameters to the

rest of the composition range.

For many mixtures good data are available for the azeotrope composition, from which
it is possible to generate trend curves for the variation of azeotrope composition
pressure and temperature. These curves can be used to provide single composition data
points required from the AGAPEFIT method at any temperature and pressure. This

therefore could be a valuable tool to predict vapour-liquid equilibria data given a

minimum of experimental data.

In order to assess this technique for predicting vapour-liquid equilibrium data two
experimental data sets are required for the mixture acetone-chloroform. These data
sets are required to intersect at one point. This is so that the molecular properties of

the intercept point can be used to predict the data for the two test conditions.
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7.2  Materials and analysis.

The test materials used were Romil Super Purity acetone assaying at 99.9% minimum,
with much of the remaining impurity being water and Fison Scientific's chloroform
HPLC grade assaying at 99.98% chloroform with 100 ppm stabiliser, Both
components were stored as 500 ml lots over 3A molecular sieve to complete

dehydration.

The liquid and vapour samples were analysed using an automatic refractometer
accurate to 4 decimal places when repeatedly standardised with HPLC grade water

between measurements.

73 Acetone-chloroform Mixture at 1 atmosphere (absolute).

The one atmosphere pressure data set was obtained using the low pressure apparatus
Mark III

Twenty two data points were measured using the Mark III low pressure apparatus.
The data were prescreened using the y-x vs x plot (figure 7.1) and t versus x plot
(figure 7.2). No points were discarded since the screening plots did not indicate

strongly that any should be.

Barker-type tests using the Principle of Maximum Likelithood (Prausnitz et al. 1980),
were used to test both data sets. For this four different forms of the integrated
Gibbs-Duhem equation were used, viz. Margules, Wilson, NRTL and UNIQUAC.
The results of these consistency tests are given in tables Appendix 5. The best fit for
the data was given by the two-parameter UNIQUAC equation which gave R.M.S.
deviations of 1.41 mmHg for pressure, 0.09°C for temperature, 0.003 acetone liquid
composition and 0.0027 acetone vapour composition. These R.M.S.deviations are

better than the best of those given in the literature.

142



0.10

0.08

0.06

0.04

0.02

0.00

y-x ( mol fraction )

-0.02

-0.04

-0.06
0.00 0.20 0.40 0.60 0.80 1.00
x ( mol fraction acetone )

Figure 7.1 Plot of (y-x) against x for acetone-chloroform at 1 atmosphere.
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Figure 7.2 Plot of temperature against x for acetone-chloroform at 1

atmosphere.

While some twelve data sets for one atmosphere exist in the literature, no two agree.
Figure 7.3 compares this data with the best of the literature data sets. The set of data

for this work appears to represent a distinct improvement.
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Figure 7.3 Plot of (y-x) against x for acetone-chloroform at 1 atmosphere,
including data of earlier workers

7.4  Acetone - Chloroform Mixture at 64.3°C.

The isothermal data set at 64.3°C was obtained using the moderate pressure apparatus.
A Churchill refrigeration unit was installed on the condenser circuit of the moderate
pressure apparatus. A 10 % anti-freeze solution was used in the condenser circuit and

the coolant circuit was run at 0°C. This was done to provide sufficient driving force to

ensure total condensation of the vapour in the vapour condenser.

Twenty data points were measured using the moderate pressure apparatus. The data

were prescreened using the y-x vs x plot (figure 7.4) and t versus x plot (figure 7.5).

No points were discarded since the screening plots did not indicate strongly that any
should be.
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Figure 7.5 Plot of pressure against x for acetone-chloroform at 64.3° C.

The results of the Barker-type consistency tests are given in Appendix 5. The best fit
for the data is given by the two-parameter UNIQUAC equation which gave R M.S.
deviations of 3.48 mmHg for pressure, 0.23°C for temperature, 0.0075 acetone liquid

composition and 0.0074 acetone vapour composition. These R.M.S. deviations are
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larger than the 1 atmosphere data set results but are still acceptable. It can be seen
quite clearly from the results of the consistency tests that three of the data points at
0.6055, 0.6618 and 0.6755 acetone liquid mol fractions are erroneous. These points lie
on the maxima turning point of the VLE curve where it is most difficult to obtain
accurate VLE measurements. It is believed that these erroneous points have been
produced in this case due to the greater difficulty of running at varying pressure to

maintain a given boiling temperature to produce isothermal data.

7.5 AGAPE Predictions for both data sets

The AGAPE program VLEF, the fitting version of the AGAPE package, was used to
determine the molecular parameters for the data point at 64.3°C which is common to

both data sets. The values of Z and r were set to their normal values of 11 and 0.63
respectivily for this size and type of molecule. The value of ®,, which represents the
inter-molecular attractive forces was varied until a fit was achieved on the data point.
This value of ®,, was 1.03. This value of ®,, together with the set values of Z and r
was used to predict the vapour-liquid equilibrium data for the mixture isobaric

conditions at 1 atmosphere and isothermal conditions at 64.3°C(see Appendix 9).

x ( mol fraction acetone )

Figure 7.6 Plot of (y-x) against x for acetone-chloroform at 1 atmosphere,
including AGAPE predicted data.
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Figure 7.7 Plot of (y-x) against x for acetone-chloroform at 64.3° C,
including AGAPE predicted data.

The predicted data set at one atmosphere is shown in figure 7.6 together with the
experimental data at one atmosphere. It can be seen that very good agreement is

achieved.

The predicted data set at 64.3°C is shown in figure 7.7 together with the smoothed
data calculated from the consistency test using a two parameter UNIQUAC equation
given in Appendix 7. The smoothed data was used because of the three erroneous data
points in the experimental data which distort the results. It can be seen that agreement
is achieved between the experimental and predicted data. Some deviation is noted but
this is no greater than that observed between different experimental data sets. This
deviation is probably due to the assumption of an ideal vapour phase in the AGAPE
model. This explanation is supported by the activity coefficient graphs, figure 7.8 and
7.9. The very good agreement between the AGAPE activity coefficients and those
obtained from the experimental data suggest that the errors in the predicted data lie in

the calculated vapour phase compositions.

The activity coefficients have been calculated using the AGAPE fit model, the original
UNIFAC model (see Fredenslund et al. 1977) and the modified UNIFAC model (see
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Figure 7.9 Plot of activity coefficients against x for acetone-chloroform
at 64.3° C.

Larsen (1985). These activity coefficients have been plotted with those obtained for
the experimetal data in figure 7.8 for the 1 atmosphere data set and for the 64.3°C in
figure 7.9. It can be seen that the activity coefficients obtained from AGAPEFIT
program give the best agreement with the experimental data. Of the two UNIFAC
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models used the best results are obtained with the original UNIFAC model. The
modified model deviates more significantly from the experimental data which suggest
that this model is less suitable for this mixture. This behaviour of this model has been

observed before for highly polar mixtures see (Larsen 1985).
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Chapter 8: Discussion of results for cyclohexane ethanol mixture.

8.1 Introduction

Mixtures of cyclohexane and ethanol are of a complex nature, being strongly non-ideal
and having an azeotrope have been selected to give a rigorous test of the performance
of the moderate pressure apparatus above atmospheric pressure. Though some data
exist for this mixture at and below one atmosphere pressure, for conditions above 1

atmosphere no data are extant.

The experimental work has involved the determination of saturated vapour pressure
data for pure ethanol and pure cyclohexane at one bar intervals from one to 10 bar
gauge. The equilibrium still was then used to investigate the binary mixture
cyclohexane-ethanol isothermally at 90.9°C and 138.2°C and isobarically at 1

atmosphere and at 2, 4, 6, 8, 11 bar pressure respectively.

The data have been used to provide useful information on the temperature dependence
of such integrated forms of the Gibbs-Duhem equation as the Margules, Wilson and
UNIQUAC equations. They can also provide guidance on the robustness of UNIFAC
predictions if extant literature values of the UNIFAC group parameters are used to

predict VLE data over a wide range of temperatures and pressures.

The data provide a knowledge of the dependence of the azeotrope composition on
pressure (and so also on temperature). This has been used to test the suitability of
using azeotrope data to provide fit parameters for the AGAPE data prediction

technique.

8.2 Materials

The ethanol used was obtained from James Burrough (F.A.D.) Ltd and was B.P.
Absolute Alcohol (specified to be 99.86%v/v minimum ethanol with the remainder

largely water). The cyclohexane was supplied by Aldrich chemicals as 99.9% HPLC
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grade. It was further purified by batch distillation to remove water, using a 3-litre batch
under a 30 plate Oldershaw column. The first litre of distillate was discarded and the
next litre collected for use. Both components were stored as 500 ml lots over 3A

molecular sieve to complete dehydration.

8.3  Saturated vapour pressure measurements for pure ethanol and pure

cyclohexane.

Saturated vapour pressure measurements were made on the two pure components at
one bar intervals from 1 bar to 10 bar gauge. The data are set out in table 8.1 and
plotted in the form of log P against (1/T) in figures 8.1 and 8.2 where they are

compared with those of other workers.

Table 8.1 Saturated vapour pressure data for ethanol and cyclohexane.
Saturated vapour pressure data |Saturated vapour pressure
Ethanol data Cyclohexane

Temperature Pressure Temperature Pressure
°’c bar °C bar
77.51 1.01 79.12 0.99
95.65 2.01 104.09 2.01
116.44 4.00 120.70 3.01
12411 5.00 133.00 3.98
130.27 6.00 143.50 4.98
136.48 7.00 1562.43 5.98
141.27 8.00 166.49 7.98
145.44 9.00 184.64 11.00
149.27 10.00

Figure 8.1 shows this experimental data for ethanol plotted with the sub-atmospheric
results of Scatchard et al. (1964), Rafaquat and Jenkins (1982) and Larkins and
Pemberton (1976), as well as a curve reported by Prausnitz et al. (1967). Good
agreement is shown between this work and the previous results. These data confirm
the reliability of the new still for the measurement of boiling points. The Prausnitz

equation has a stated limit of applicability of 280 to 370 K. The new data confirm these
limits and extends the upper limit to 423 K.
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Figure 8.1 Plot of saturated vapour data for pure ethanol
including data of other workers

Figure 8.2 gives a similar comparison for the cyclohexane data. Here the comparison is
with the data of Scatchard et al. (1964). The 6-parameter Antoine equation of
Prausnitz et al. (1967) agree well at the low pressures and up to the 2 bar limit of
applicability but above this pressure deviate significantly from the new data. The data

were found to be well represented by the simple 3-parameter Antoine equation whose

constants are given in table 8.2.

Table 8.2 Constants for new Antoine equations for cyclohexane

Three-parameter equation
In P (mmHg (abs)) = ¢, + ¢,/ (T(°C)+c,)
¢, c, c;
756.56 -1661.2 273
Six-parameter equation
In P (atm (abs)) = c, + ¢,/ (T(K)+c,) +¢,T(K) + ¢,T(K) + c,InT(K)

C C, C, C, Cs Ce
98.585 -6943.3635 0 0.015303
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The equation is valid over the pressure range 0 to 1latmospheres. The six-parameter
Antoine équation of Prausnitz et al. (1967) was subsequently modified to account for
the deviations experienced above 2 bar pressure. The new constants are given in table
8.2. Figure 8.3 shows the plot of the experimental data and the new six-parameter
Antoine equation. It can be seen this six parameter equation gives a better fit for the

data and is now valid over the temperature range 5 - 180°C.

84 The application of consistency tests to the experimental vapour-liquid

equilibrium data for cyclohexane ethanol.

Prior to application of the consistency test each data set has been initially screened
using a (y-x) against x plot. The lack of alternative experimental data has precluded the
use of these plots as comparative tests (apart from one atmosphere data set) but they
have proved useful in identifying data points which appear to be erroneous. From these
plots no data points have been identified as obviously erroneous and that the data

appear to be of even consistency.

In the Barker method, the parameters in the integrated form of the Gibbs-Duhem
equation used are adjusted by a non-linear least-squares fitting procedure until a
minimum error between the experimental and calculated total pressures is obtained. In
essence, the Barker method uses only the x-P-T data and assumes that the T and x

measurements are error-free.

Since experimental uncertainty is likely to be greater for y (Van Ness et al. 1973),
prudence suggests that the preferred procedure for data reduction is one based on just
the x-P-T data. Values of y calculated from the correlation can then be compared with
measured values as a check on the thermodynamic consistency of the vapour-liquid
equilibrium data. Thus it was decided to correlate all the x-P-T data using this method
but to vary the procedure slightly by minimising the differences between estimated and

measured values for x, P and T, not just for the pressure after Prausnitz et al .(1980).
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All the data sets have been tested for consistency using the Barker method (Barker
1953; Prausnitz et al, 1980). The basis of the Barker method is that an integrated form
of the Gibbs-Duhem equation (e.g. the UNIQUAC equation) is used to relate the
liquid-phase activity coefficients to the mole fractions in a binary mixture. It was
decided to use a selection of liquid-phase activity coefficient models to represent the
liquid-phase behaviour. The models chosen were Margules, Van Laar, NRTL, Wilson
and UNIQUAC, representing a fair cross-section of the common models available.
These models each have two adjustable binary parameters. The two adjustable binary
parameters were estimated by a non-linear regression method based on the
maximum-likelihood principle (Anderson et al. 1978) as set out in Prausnitz et al.
(1980). The computer program used was VPLQFT which is capable of correlating
binary vapour-liquid equilibrium data at low to moderate pressures. The most
important feature of the maximum-likelihood principle is that it attempts properly to

account for all measurement errors.

In the data reduction the default standard state liquid fugacity curve was not used.
Instead for ethanol the extended Antoine equation was used. Parameters reported by
Prausnitz (1967), for this equation, on comparison with the experimental data obtained
here, have been shown to give good agreement across the full pressure range. This was
not true for cyclohexane and so the new 3-parameter Antoine equation shown in table

8.2 has been used.

8.5 Cyclohexane-ethanol data at 1 atmosphere.

A P-T-x-y data set of 23 points was obtained for the mixture at 1 atmosphere. Figure
8.4 plots the data of Murachevsky and Zarkov (1963) and of Yuan et al. (1963) and of
this work as a y-x against x plot. The data of Murachevsky and Zarkov (1963) show
poor agreement with the other two and will be considered no further. The data of
Yuan et al. (1963) agree with this work well, although an erroneous point close to the
azeotrope led them to report an erroneous azeotrope composition. Our azeotrope

composition at 1 atmosphere pressure is 0.446 mole fraction of ethanol, at 64.6°C, in

155



good agreement with the reported value of 0.446 mole fraction of ethanol, at 64.9°C
(Horsley 1977).

The results of the Barker type consistency tests are given in Appendix 6. The best fit
was obtained using the Wilson equation. This returned values for the RMS deviations
for the pressure of 1.48 mmHg, temperature 0.1 K, liquid mole fraction 0.0022 and
vapour mole fraction 0.0093. The UNIQUAC returned similar values, whilst the other
equations failed to represent the liquid phase as well. This was to be expected and
similar patterns are observed with the data of Murachevsky and Zarkov (1963) and of
Yuan et al. (1963). This data set represents a improvement in the consistency of data

for this mixture at this pressure.

8.6 Cyclohexane-ethanol data at 2 bar.

A P-T-x-y data set of 15 points was obtained for the mixture at 2 bar. Figure 8.5 plots
the data of this work as a y-x against x screening plot. By an oversight the atmospheric
pressures were not measured for this data set. In order to correct for this a standard
atmosphere was used to correct the gauge pressures. This will have reduced the
accuracy of the pressure measurement and thus this data set is believed to be the least
accurate of all those measured. The azeotrope has been determined from the

experimental data at 2 bar pressure (absolute) is 0.488 mole fraction of ethanol, at
83.7°C.

The results of the Barker type consistency tests are given in Appendix 6. The best fit
was obtained using the Wilson equation. This returned values for the RMS deviations
for the pressure of 2.56 mmHg, temperature 0.14 K, liquid mole fraction 0.0026 and
vapour mole fraction 0.0170. The UNIQUAC returned similar values, whilst the other
equations failed to represent the liquid phase as well. These results indicate the RMS
deviation for y is twice that obtained for the 1 atmosphere data set, this is as expected
due to the error in pressure measurement. However the consistency of this data is still

in line with the most reliable data for organic mixtures found in the literature.
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Figure 8.4 Plot of (y-x) against x for cyclohexane-ethanol at 1 atmosphere,
including data of earlier workers.
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Figure 8.5 Plot of (y-x) against x for cyclohexane-ethanol at 2 bar.
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8.7  Cyclohexane-ethanol data at 4 bar.

A P-T-x-y data set of 13 points was obtained for the mixture at 4 bar. Figure 8.7 plots
of this work as a y-x against x screening plot. The atmospheric pressures were not
measured for this data set. The gauge pressures measured experimentally were
corrected using daily atmospheric pressure measurements obtained from The
Birmingham Weather Centre, Birmingham University. The azeotrope has been
determined from the experimental data at 4 bar pressure (absolute) as 0.549 mole

fraction of ethanol, at 106.0°C.

The results of the Barker-type consistency tests are given in Appendix 6. The best fit
was obtained using the UNIQUAC equation. This returned values for the RMS
deviations for the pressure of 9.71 mmHg, temperature 0.20 K, liquid mole fraction
0.0044 and vapour mole fraction 0.0085. The Wilson returned similar values, whilst
the other equations failed to represent the liquid phase as well. For this pressure the
minimisation of the pressure parameter was relaxed again. The RMS deviation for
pressure is therefore much higher for this pressure. This is still acceptable because the
deviation measured is still less than 0.5% of the actual pressure measured. Thus the
consistency of this data is still in line with if not superior to the most reliable data for

organic mixtures found in the literature.

8.8 Cyclohexane-ethanol data at 6 bar.

A P-T-x-y data set of 14 points was obtained for the mixture at 6 bar. Figure 8.7 plots
the data of this work as a y-x against x screening plot. The atmospheric pressures
were not measured for this data set. The gauge pressures measured experimentally
were corrected using daily atmospheric pressure measurements obtained from The
Birmingham Weather Centre, Birmingham University. The azeotrope has been
determined from the experimental data at 6 bar pressure (absolute) as 0.59 mole

fraction of ethanol, at 120.8°C.
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Figure 8.6 Plot of (y-x) against x for cyclohexane-ethanol at 4 bar.
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Figure 8.7 Plot of (y-x) against x for cyclohexane-ethanol at 6 bar.

The results of the Barker type consistency tests are given in Appendix 6. The best fit
was obtained using the UNIQUAC equation. This returned values for the RMS
deviations for the pressure of 19.04 mmHg, temperature 0.20 K, liquid mole fraction

0.0051 and vapour mole fraction 0.0089. The Wilson, NRTL and Margules equations
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all returned similar values. For this pressure the minimisation of the pressure parameter
was relaxed. The RMS deviation for pressure is therefore much higher for this
pressure. This 1s still acceptable because the deviation measured is still less than 0.5%
of the actual pressure measured. Thus the consistency of this data is the same as that

at 4 bar.

8.9  Cyclohexane-ethanol data at 8 bar.

A P-T-x-y data set of 16 points was obtained for the mixture at 8 bar. Figure 8.8 is a
plot as y-x against x screening plot. The atmospheric pressures were not measured for
this data set. The gauge pressures measured experimentally were corrected using daily
atmospheric pressure measurements obtained from The Birmingham Weather Centre,
Birmingham University. The azeotrope determined from the experimental data at 8 bar

pressure (absolute) as 0.616 mole fraction of ethanol, at 132.2°C.

The results of the Barker type consistency tests are given in Appendix 6. The best fit
was obtained using the Wilson equation. This returned values for the RMS deviations
for the pressure of 6.54 mmHg, temperature 0.07 K, liquid mole fraction 0.0030 and
vapour mole fraction 0.0127. The UNIQUAC and NRTL equations all returned similar
values. For this pressure the minimisation of the pressure parameter was relaxed. This
is acceptable because the deviation measured is still less than 0.5% of the actual

pressure measured. Thus the consistency of this data is the same as for the data sets
at 4 and 6 bar.

8.10 Cyclohexane-ethanol data at 11 bar.

A P-T-x-y data set of 14 points was obtained at 11 bar. Figure 8.9 is a plot this work
as a y-x against x screening plot. The atmospheric pressures were not measured for
this data set. The gauge pressures measured experimentally were corrected using daily
atmospheric pressure measurements obtained from The Birmingham Weather Centre,

Birmingham University. The azeotrope determined from the experimental data at 11

bar pressure (absolute) as 0.635 mole fraction of ethanol, at 145.3°C.

160



B This work

y-x mol fraction

x Liquid mol fraction ( ethanol )

Figure 8.8 Plot of (y-x) against x for cyclohexane-ethanol at 8 bar.
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Figure 8.9 Plot of (y-x) against x for cyclohexane-ethanol at 11 bar.

The results of the Barker type consistency tests are given in Appendix 6. The best fit
was obtained using the Wilson equation. This returned values for the RMS deviations

for the Pressure of 12.42 mmHg, temperature 0.26 K, liquid mole fraction 0.0054 and
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vapour mole fraction 0.0063. All the equations used returned similar RMS deviations.
For this pressure the minimisation of the pressure parameter was relaxed. This is still
acceptable because the deviation measured is still less than 0.5% of the actual pressure
measured. Thus the consistency of this data is still in line with if not superior to the

most reliable data for organic mixtures found in the literature.

8.11 Cyclohexane-ethanol data at 90.9°C.

A P-T-x-y data set of 24 points was obtained for the mixture at 90.9°C. Figure 8.10 is
a plot as a y-x against x screening plot. The pressure measurement for this data set was
produced using the Druck DPI 140 pressure gauge which measures absolute pressure
and so for this data set no pressure correction was required. The azeotrope has been

determined from the experimental data at 90.9°C as 0.507 mole fraction of ethanol, at
1895 mmHg (absolute).

The results of the Barker type consistency tests are given in tables in Appendix 6. The
best fit was obtained using the UNIQUAC equation. This returned values for the RMS
deviations for the pressure of 2.44 mmHg, temperature 0.14 K, liquid mole fraction
0.0025 and vapour mole fraction 0.0042. The Wilson returned similar values, whilst
the other equations failed to represent the liquid phase as well. Thus the consistency of

this data is in line with the new one atmosphere data and of a very high quality.

8.12 Cyclohexane-ethanol data at 138.2°C.

A P-T-x-y data set of 11 points was obtained for the mixture at 138.2° C. Figure 8.11
is a plot of this work as a y-x against x screening plot. The atmospheric pressure was
measured daily for this data set using the Druck DPI 140 pressure gauge. This pressure
measurement was used to correct the data gauge pressure readings. The azeotrope has

been determined from the experimental data at 138.2°C as 0.630 mole fraction of

ethanol, at 7195.5 mmHg pressure (absolute).
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The results of the Barker type consistency tests are given in tables in Appendix 6. The
best fit was obtained using the Wilson equation. This returned values for the RMS
deviations for the pressure of 14.34 mmHg, temperature 0.26 K, liquid mole fraction
0.0081 and vapour mole fraction 0.0105. The Wilson and NRTL equations returned
similar values. For this pressure the minimisation of the pressure parameter was
relaxed. The RMS deviation for pressure is therefore much higher for this pressure.
This is still acceptable because the deviation measured is still less than 0.5% of the
actual pressure measured. The RMS deviation for the liquid composition is higher for
this data set making this data set less reliable than the others. The still is more difficult
to run isothermally because the pressure is continually adjusted to maintain a constant
temperature. Since the temperature is dependent on the pressure it is more difficult to
stabilise the still at the operating conditions. This may explain why this data set is not

as reliable as the isobaric data sets.

M This work

y-x mol fraction

x Liquid mol fraction ( ethanol )

Figure 8.10 Plot of (y-x) against x for cyclohexane-ethanol at 90.9°C.
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Figure 8.11 Plot of (y-x) against x for cyclohexane-ethanol at 138.2°C.

8.13 Variation of UNIQUAC parameters with temperature.

One aspect of the performance of the UNIQUAC equation is the dependence of its
parameters on temperature, a better knowledge of this relationship would give
guidance on how reliable are predictions at conditions other than those for which data
are available. Figure 8.12 gives plots of the values of the parameters for the
two-parameter UNIQUAC equation as functions of temperature. The temperatures for
the isobaric cases are those of the azeotropes. It can be seen that the variation is not
linear with temperature, the curve shown is a simple quadratic. The observed spread is

of the same order as the uncertainty in the fitted values of the parameters.
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Figure 8.12 Dependence for the UNIQUAC parameters on temperature.
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8.14 Prediction using literature UNIFAC group parameters.

For each data set measured activity coefficients were predicted using UNIFAC to
determine the temperature dependence of these predicted activity coefficients. Two
sets of group parameters were used, the original parameters proposed by Fredenslund
et al. (1977) and the revised group parameters of Larson (1986). The revised
UNIFAC model proposed by Gmehling et al. (1986) was also considered but rejected
at this stage because work by Schmelzer et al. (1996), suggested that the Gmehling

model represented alcohol- cyclohexane mixtures poorly.

A Original UNIFAC
0O Modified UNIFAC

0.0 01 02 03 04 0.5 06 0.7 08 09 10
Liauid mol fraction ( ethanol )

Figure 8.13 Activity coefficient against x plot for cyclohexane-ethanol at 1

atmosphere.
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Figure 8.14 Activity coefficient against x plot for cyclohexane-ethanol at 2 bar.
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Figure 8.15 Activity coefficient against x plot for cyclohexane-ethanol at 4 bar.
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Figure 8.16 Activity coefficient against x plot for cyclohexane-ethanol at 6 bar.
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Figure 8.17 Activity coefficient against x plot for cyclohexane-ethanol at 8 bar.
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Figure 8.18 Activity coefficient against x plot for cyclohexane-ethanol at 11 bar.
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Figure 8.19 Activity coefficient against x plot for cyclohexane-ethanol at 90.9°C.
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Figure 8.20 Activity coefficient against x plot for cyclohexane-ethanol at 138.2°C.
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Figures 8.13 to 8.20 show the activity coefficient against x plots for all the
experimental data sets. Trials with the original parameters gave very poor predictions
over-estimating the activity coefficients in all cases. It can be seen that for the modified
parameters agreement is reasonable up to about 4 bar. Above these pressures the
modified equation under-estimates the coefficients. Thus whilst revised group
parameters of Larson (1986) are an improvement, further revision is necessary to
account for, both the temperature dependence of the parameters (which ought to be in

line with that observed above for UNIQUAC parameters) and the effects of the higher

pressures .

8.15 Prediction of data cyclohexane ethanol using AGAPE prediction techniques.

The AGAPE direct prediction technique using the generalised London's potential has
been used to predict VLE data for this mixture at and below one atmosphere pressure
with some degree of success. This experimental data have been used to test this

technique and find its limits of use above one atmosphere pressure.
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Figure 8.21 Dependence of azeotrope composition on temperature and pressure.

The use of the AGAPEFIT technique is discussed in chapters 4 and 7. It fits the

variable parameters of the AGAPE model to a single experimental data point then uses
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these fitted parameters to predict the VLE data for the rest of the composition range.
A knowledge of the variation of azeotrope composition with pressure and temperature

would permit the azeotrope values to be used as the fitting points for the model.

The experimental data determined for this mixture gives us a knowledge of the
variation of azeotrope composition with pressure and temperature. The azeotrope
obtained for each set are plotted in figure 8.21; a linear relationship is obtained

between composition and temperature, while that for pressure is quadratic in form.

These two techniques have been used to predict data for the experimental data sets at
1 atmosphere, 2, 4, 6, 8, bar pressure and 90.9°C. The data from the GLP predictions
are given in tables Appendix 8 and the data from the AGAPEfit predictions are given
in tables Appendix 8. The value of Z was set to its normal value of 11 for this size and

type of molecule. The value of r was initially set at 0.7 the normal values of r for this
mixture. The value of ® , which represents the inter-molecular attractive forces was
varied until a fit was achieved on the data point activity activity coefficient values.

The activity coefficients predicted using r = 0.7 were plotted with those obtained
from the experimental data. The fits obtained were poor. Homer (1996) suggested this
was due to association between ethanol molecules to form dimers and advised that r be
doubled to account for the association. The best results were obtained by taking a
mean value of r of 1.1 which allows for some association at higher concentrations of
ethanol band little association at low concentrations where single molecules are more

likely to prevail.

Figures 8.22 to 8.27 show the screening plots of y-x against x for the experimental
data replotted with the new data predicted using the AGAPE models. The data is
represented well by both models for liquid mole fractions greater than 0.4 (ethanol). At

lower concentrations the models both over estimate the vapour phase concentrations.

The observed differences in y values between experimental and predicted values do not
appear to be temperature dependant. It is known from consistency tests performed on

the experimental data that this mixture is not represented well by the assumption of
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ideal vapour phase behaviour. Therefore the assumption of ideal vapour phase
behaviour used by the AGAPE models may be responsible for the observed

deviations.

In order to test this hypothesis the AGAPE predicted activity coefficients, from both
methods, have been plotted with those obtained from the experimental data and the
UNIFAC predictions (see figures 828 to 8.33). The experimental data activity
coefficients have been deduced from the consistency tests performed on the data, using

the best fit liquid activity coefficient model and allowing for vapour phase non-
ideality.
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Figure 8.22 Plot of (y-x) against x for cyclohexane-ethanol at 1 atmosphere including

data predicted using both AGAPE methods.
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Figure 8.23 Plot of (y-x) against x for cyclohexane-ethanol at 2 bar including data

predicted using both AGAPE methods.
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Figure 8.24 Plot of (y-x) against x for cyclohexane-ethanol at 4 bar including data
predicted using both AGAPE methods.
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Figure 8.25 Plot of (y-x) against x for cyclohexane-ethanol at 6 bar including data

predicted using both AGAPE methods.
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Figure 8.26 Plot of (y-x) against x for cyclohexane-ethanol at 8 bar including data

predicted using both AGAPE methods.
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Figure 8.27 Plot of (y-x) against x for cyclohexane-ethanol at 90.9°C including data
predicted using both AGAPE methods.

The graphs indicate that both the AGAPE GLP model represent the activity
coefficients surprisingly well. It overestimates the activity coefficients slightly, to
about the same amount as the original UNIFAC model. For the higher pressures (see
figures 8.31 and 8.32 ) the activity coefficients obtained from the AGAPE GLP model
are better than those obtained from either of the UNIFAC models.

The data obtained from the AGAPEFIT predictions using the mean value of r = 1.1
indicate a strong improvement in the ability to predict activity coefficients for this
mixture. The data fits obtained are not as perfect as those obtained for acetone
chloroform mixture (see chapter 7) but are in themselves good data fits and validate
the use of azeotrope data for parameter fitting. They also indicate that the errors

found in the y data predictions using AGAPE are probably due to vapour phase
non-ideality.
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Figure 8.28 Activity coefficient against x plot for cyclohexane-ethanol at 1

atmosphere including data predicted using both AGAPE and UNIFAC methods.
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Figure 8.29 Activity coefficient against x plot for cyclohexane-ethanol at 2 bar

including data predicted using both AGAPE and UNIFAC methods.
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Figure 8.30 Activity coefficient against x plot for cyclohexane-ethanol at 4 bar
including data predicted using both AGAPE and UNIFAC methods.
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Figure 8.31 Activity coefficient against x plot for cyclohexane-ethanol at 6 bar

including data predicted using both AGAPE and UNIFAC methods.

176



A  Original UNIFAC gamma 12 X  Original UNIFAC gamma 21
T o Modified UNIFAC gamma 21 O Modified UNIFAC gamma 12 a)
¢ Experimental data gamma 21 A Experimental data gamma 12
6 B AGAPE predicted 12 ® AGAPE predicted gamma 21|
— - — - AGAPE fit gamma 12 ——AGAPE fit gamma 21

5»_)*(| | l_

Activity coefficient
S

0.0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1.0
Liquid mol fraction ( ethanol )

Figure 8.32 Activity coefficient against x plot for cyclohexane-ethanol at 8 bar
including data predicted using both AGAPE and UNIFAC methods.

Activity coefficient

12 1l A Original UNIFAC gamma 12 X Original UNIFAC gamma 21 | |
L O Modified UNIFAC gamma 21 O  Modified UNIFAC gamma 12
8 p & Experimental data gamma 12 A BExperimental data gamma 21
7Ll B AGAPEpreditedgammai2 @ AGAPE predicted gamma 21
6 P :k- AGAPE fit gamma 21 | [ AGAP{Eﬁt gamma 12
5 i 4 [ | I
| | | ]
4 b \_\ - i E i i, b f/
3 |
2 [
1 Y ——
. i

0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
Liquid mol fraction ( ethanol )

Figure 8.33 Activity coefficient against x plot for cyclohexane-ethanol at 90.9°C
including data predicted using both AGAPE and UNIFAC methods.
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Chapter 9: Modifications to high pressure still

From the experience gained whilst running this apparatus several possible
modifications were defined which would improve the performance, ease of operation

and stability.

9.1  Reboiler redesign.

The acetic acid-water mixture highlighted some of the limitations of the present
reboiler design. The reboiler is quite adequate for organic mixtures but the increased
latent heat requirements for boiling an aqueous mixture mean that the reboiler must be
run at maximum power input to barely achieve the minimum vapour flowrate
required. Running at the maximum power input also leads to a higher wall
temperature which with acid mixtures is undesirable. Severe corrosion was observed in
the reboiler for the higher acid concentrations, a problem not noted elsewhere in the

apparatus where the wall temperatures are considerably lower.

It is proposed that the reboiler be redesigned and constructed in nickel or monel metal
which would give the high temperature surfaces greater resistance to corrosive
mixtures. The single 250 W cartridge heater at present installed should be replaced
with two 250W heaters inserted from either end of the reboiler. This will have two

benefits :-

(1) The power input for the reboiler will no longer be restricted, thus aqueous
mixtures will be handled better, by permitting finer control of the boilup

rate.

(i) The heat load will be spread over a greater surface area with a lower wall
temperature. This will reduce the rate of corrosion at the wall surface and
prevent degradation of the mixture due to thermal cracking from the very

high wall temperatures.
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9.2 The glass still.

The glass still, though significantly improved from the Zain-Jenkins version was prone
to instability problems and flooding. These characteristics can be improved by further

modifications to the Russell-Jenkins glass still.

The depth of the still needs to be increased. This would have several benefits. The
residence time in the glass spiral would be increased allowing the vapour-liquid
mixture greater time to reach equilibrium. The central thermometer pocket could be
increased in length which would permit more of the central PRT to be immersed in the
pocket improving the temperature measurement. The central cup could be deepened
which would increase its ability to handle the fluctuations in liquid level reducing the

still's tendency to flood.

The vapour pathways through the still need to be increased to the maximum
permissible by the pressure vessel internal diameter and the limitations of standard
glass sizes. The rate at which equilibrium is achieved and the stability of operation of
the still are directly related to the vapour flowrate. The vapour pathways were enlarged
in the present still but there is still room for further increases which would lead to

better performance.

9.3 Modifications to the liquid circulation loop.

The liquid circulation loop requires two modifications. The recirculation pump on the
vapour condensate circuit has been observed to intermittently interfere with the liquid
feed to the main liquid circulation pump to the reboiler. This problem arises because
the two pumps feed via a common line, of 1/8" O.D from the vapour condensate
receiver. The capacity of this line is too small to meet the requirements of both pumps
at the normal operating flowrates. It is proposed make the following modifications to
the circuit:

i) The line forming the outer annulus from the liquid reservoir which forms the

initial portion of the feed line to the pumps should be increased from 1/4"
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O.D. to 3/8" O.D. and the 3/8" Swagelok tee should be replaced with a 3/8"

Swagelok cross.

i) The two outlets from the 3/8" cross should be reduced down to 1/4" O.D.

and fed directly to each of the two pumps .
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Figure 9.1 Modifications to liquid take off and returns from vapour condensate

receiver.
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Figure 9.2 Modifications to liquid overflow weir

These modifications are shown in figure 9.1. The modifications made should increase
the possible flowrates by a factor of four and guarantee that the pumps will no longer
interfere with each other.

The liquid overflow weir which maintains the liquid level inside the still is prone to
liquid backup in the line above the weir which causes intermittent flooding of the
central cup of the still. This is believed to be due to the simple design of the weir which

cannot handle surges of liquid. It is therefore proposed that the liquid weir be modified
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to more closely resemble the weir design used in the atmospheric stills which do not
exhibit this fault. Figure 9.2 shows how this modification could be achieved using

standard stainless steel fittings.

9.4 Repositioning of the liquid feed vessel.

The position at which the liquid feed charging vessel is attached to the apparatus needs
to be changed. In the present design the feed vessel is mounted above the pressure
vessel and feed has been observed syphoning in to the pressure vessel rather than
feeding directly in to the vapour condenser/vapour condensate receiver when charging
at atmospheric pressure. This could be avoided by moving the feed vessel to feed into
the liquid circulation line just above the liquid overflow weir as shown in Figure 9.2.
This would move the feed vessel to a position below the top of the pressure vessel and

prevent flow of the feed through the pressure lines to the pressure vessel.

9.5 On-line analysis.

Operation of the moderate pressure apparatus could be simplified and improved by the

use of on-line analysis. On-line analysis has many benefits, i.e.

1) The possibilities of sample contamination and disruption of the sample

composition by pressure reduction are eliminated.

2) The phase composition can be tracked accurately allowing easy

determination of when equilibrium is achieved.

3) Operation of the still is rendered safer by removing the need to dismantle
integral pipe work to allow vapour condensate samples to be removed. This

effectively halves the operator exposure to the process materials.

4) Removal of the need to disconnect pipe work will reduce the turn round

time between samples dramatically saving 0.5 hours per data point.
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The Anton Paar densimeter could be installed directly into the vapour condensate loop
in addition to the normal sample chamber. A filter would be required in the sample line
feeding the densimeter to prevent any particulates entering the cell. The densimeter is

fitted with high pressure adapter heads and can be operated up to 35 bar pressure.

For some mixtures refractive index measurements have proved more suitable for
measuring composition. HPLC comparative refractive index instruments are available
with operating pressure limits of about 100 psi, e.g. Varian Star 9040. Use of this type
of instrument in comparative mode, using one of the pure components as reference
fluid, should allow composition determinations to the same accuracy as presently
measured by the Index Instruments refractive index instrument GPR 11-37 currently

used for off-line measurements.

9.6  Computer control of moderate pressure apparatus.

Full automation of the apparatus, whilst desirable, is difficult to achieve due to the fine
control of the apparatus being dependent on visual observation. A degree of
automation can be achieved relatively easily, reducing the amount of manual
supervision required and increasing the integral safety of the apparatus but retaining

the fine control of the manual apparatus.

The critical operation characteristics of the apparatus are governed by a balance
between the return pump rate and the reboiler heat input to give the optimum boilup
rate. Control of the pump speed is insufficient to maintain this balance as gear wear
reduces the flowrate with time. Therefore it is necessary to measure the feed rate to the
reboiler and use this in a feed back loop to control the speed of the pump by
controlling the power supply to the pump. A power cut-off to the reboiler and surface
heaters should be installed for zero flow to prevent the apparatus boiling dry. The
power control to the new boiler should be set from the computer via a Omega CN
76000 controller. A temperature sensor should be installed on the reboiler surface

below the insulation and connected to a power cut off on the reboiler supply to guard

against overheating.

183



The apparatus surface heaters are presently controlled by Omega CN 76000
controllers. These controllers can be connected to a computer via a RS 232 port for
remote control. The controllers also have built in high/low temperature alarms/cutouts.

These alarms should also have visual indicators on the control computer.

Pressure control has been improved and the provision of overpressure alleviated on the
present apparatus by the provision of pressure relief valves. The inclusion of a pressure
transducer in the control loop would permit remote pressure data logging by the
computer and shut down of the apparatus if the pressure drops below 1 bar of the
desired operating pressure. This is necessary to prevent the apparatus from boiling off

the contents of the apparatus.

In addition to the control measures stated above the following alarms/cutouts are

required:

1) No condenser coolant flow alarm. This must be crosslinked to cut power to

all heaters and the reboiler.

2) Reboiler feed no flow alarm. This must be crosslinked to cut power to all

heaters and the reboiler.
3) Alarms on both pumps to show when they are not working.
4) High temperature alarms for each heater on the pressure vessel body and

vapour line set to 10 K above the boiling point of the test mixture with auto

power shutoff to the associated heater.
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Chapter 10: Conclusions and recommendations.

10.1 Conclusions.

A family of recirculation stills of a common design have been developed to allow
measurement of vapour-liquid equilibria from sub-atmospheric pressures to 35 bar
pressure. By measurement of vapour-liquid equilibria data for the mixture acetic
acid-water at one atmosphere, these stills have been shown to generate data of high
quality and, more importantly, consistent with each other and the best data extant in

literature sources.

Two high quality data sets for acetone-chloroform mixtures have been generated at 1
atmosphere pressure and isothermally at 64.3°C. These data have been used to test the
limitations of the AGAPEFIT prediction method for polar compounds. It has been
demonstrated that the AGAPE method predicts accurately the activity coefficients for

this mixture and hence is suitable for use with other highly polar mixtures.

Eight vapour-liquid equilibrium data sets have been produced for the mixture
cyclohexane-ethanol at 1 atmosphere, 2, 4, 6, 8, 11 bar, 90.9°C and 132.8°C. together
with saturated vapour pressure curves for the pure components up to 11 bar. These
data sets have been tested for thermodynamic consistency using a Barker-type fitting
package and shown to be of high quality. The data have been used to investigate the
dependence of UNIQUAC parameters on temperature. The data show the relationship
to be non-linear but maybe represented by a simple quadratic equation with the same

degree of uncertainty, as for the fitted parameters.

The data have been used to compare activity coefficients for this mixture, with those
obtained from the data prediction methods, Original UNIFAC, Modified UNIFAC
Larsen, (1986) and the AGAPEFIT technique. It can be seen that the Original
UNIFAC predictions agree to 2 bar pressure. Above two bar this method
overestimates the coefficients. The Modified UNIFAC method agrees up to 4 bar,
above this pressure it underestimates the coefficients. The AGAPEFIT method can be
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shown to best approximate the experimental coefficients up to 8 bar. This work has
validated the use of azeotropic data to furnish the single experimental data point
required by the AGAPEFIT method. This may open up the possibility of using this
method to predict VLE data using the large data bases of azeotrope data for
parameter fitting.

This study represents a significant contribution to the field of experimental
vapour-liquid equilibrium data measurement. It has enabled through the provision of
high quality experimental data the examination of existing data predictive techniques
for temperature dependence. This study also makes a contribution to the development

of the new novel predictive methods encompassed in the AGAPE suite of programs.

10.2 Recommendations.

Inter alia, this work has highlighted a severe limitation of the AGAPE prediction
methods in their current form. Assumption of ideal behaviour at even atmospheric
pressures for the type of mixtures encountered in this study has reduced calculated
vapour compositions to very poor fits. It is imperative that this model should be
modified to account for non-ideality in the vapour phase by implementation of the

Hayden-O'Connell equation.

The AGAPEFIT model should be modified to allow the r constant to be made
composition dependent for use with associating mixtures. As shown with the
cyclohexane-ethanol activity coefficient predictions, a degree of success can be
obtained by assuming a mean value for r. A better solution which would more
realistically represent the true behaviour would be a weighted value of r dependent on
composition. Kretschmer and Weibe (1954) and Renon and Prausnitz (1967) have
shown that alcohol-saturated hydrocarbon mixtures could be modelled by assuming the
alcohol is linear self-associated to form binaries and higher polymers and interacts with
the hydrocarbon by physical forces alone. Both of these used a specific form of the
Gibbs-Duhem equation based on the theory of polymer mixtures developed by Flory
(1944). Nagata (1979) expanded on this approach to include mixtures with aromatic

186



hydrocarbons and chlorinated solvents by considering in addition the formation of
complexes between solvent and alcohol. The equations presented by Nagata (1979)
could be used as a basis to calculate r in the AGAPEFIT model from the overall
concentrations and the equilibrium constants for the association and complex

formation, thus making r truly composition dependent.

Accurate measurement of other mixtures at moderate pressures are now possible. In
order to develop both AGAPE methods more data are required for a wider range of

mixtures in the pressure range 1 to 10 bar.

Both AGAPE methods claim to be able to distinguish between isomers in a VLE
- mixture, a feature of which no other prediction method is capable. It is recommended
that a study be made of isomeric binary mixtures of hydrocarbons, e.g. cis/trans
isomers of ethyl pentene mixtures with a hexane solvent. The use of this mixture,
though at the limits of GLP theory, makes experimental work easier and safer by
avoiding the use of gaseous feeds. The complex problems of polar associating mixtures
are avoided and this would permit a rigorous examination of the ability of AGAPE to

discriminate between isomers at pressure.
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Nomenclature

Van der Waals constant a

Activity of component 1

Energy size parameter

Interaction parameter

Interaction parameter

UNIFAC group interaction parameter for groups m and n
Adjustable parameters in Van Larr and similar equations

First virial coefficient

Van der Waals group surface area

Constant in temperautre dependence expression for UNIFAC
Van der Waals constant b

Molecular size parameter

Second virial coefficient

Mixture cross second virial coefficient for components i and |
Constant in temperature dependence expression for UNIFAC
Third virial coefficient

Adjustable parameters in Margules and similar equations
Fourth virial coefficient

Energy required to vapourise one mole of component at infinite volume
Fugacity of component i

Standard state fugacity of component 1

Fugacity of component i in the liquid phase

Fugacity of component i in the vapour phase

Standard state fugacity of component i in the liquid phase
Molecular structure-dependent factor in expression for net potential
Interaction energy in NRTL equation

Molar Gibbs free energy

Gibbs free energy

Parameter in the NRTL equation

Excess Gibbs free energy

Molar excess enthalpy

Molar enthalpy of component i

Standard state enthalpy

Enthalpy

Excess enthalpy

Partial molar enthalpy of component i

Equilibrium ratio

Auxiliary relationship in UNIQUAC equation

Number off whole molecular contacts betweenacentral molecule of type
2 with molecules of type 2

Number off whole molecular contacts betweenacentral molecule of type
2 with molecules of type 1

Number of moles of component i

Total number of moles

Pressure

Critical pressure of component i
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Greek letters

Partial pressure of component 1

Saturated vapour pressure of component i

Heat exchange

Pure component molecular surface area of component i in UNIQUAC
equation

Effective volume, surface solubility parameter for component 1
Effective volume, surface solubility parameter for component 2
Van der Waals group surface area

Group surface area parameter of group i in the UNIFAC equation
Relative molecular volumes of components 1 and 2

Van der Waals group volume

Universal gas constant

Group volume of group iin UNIFAC method

Molar excess entropy

Entropy

Excess entropy

Temperature

Critical temperature

Reduced temperature

Internal energy

Interaction energy between two like segments in UNIFAC
Volume

Molar volume of i'th component

Specific volume of pure liquid i

Van der Waals group volume for group k

Partial molar volume of component i

Mole fraction of component i in liquid phase

Local mole fraction in liquid phase

Group fraction of group i in the liquid phase

Mole fraction of component i in vapour phase

Coordination number

Volume fraction of component 1 in the liquid phase

Volume fraction of component 2 in the liquid phase
Compressibility factor

Compressibility factor at critical point

Parameter in NRTL equation

Relative volatility

Binary adjustable parameter

Activity coefficient

Combinatorial activity coefficient

Residual activity coefficient

Group activity coefficient

Marek and Standart liquid phase correction factor (monomer)
Residual activity coefficient of group k

Residual activity coefficient of group k in reference solution of type i
only

Solubility parameter
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Jenkins and Gibson-Robinson vapour phase correction factor (dimer)
Average solubility parameter

Enthalpy change on mixing

Volume change on mixing

Surface area fraction for UNIQUAC equation

Group Surface area fraction for UNIFAC method

Boltzmann factor parameter

Adjustable parameter in Wilson equation

Chemical potential of component i

Standard state chemical potential in gaseous phase

standard state chemical potential in the liquid phase

Number of groups of type k in molecule i

Net potential between two molecules of type 1

Net potential between two molecules of type 1 and 2
Fugacity coefficient

Interaction parameter

Volume fraction in the UNIFAC method

Binary parameter for the Wilson equation in the UNIFAC method
Parameter in NRTL and UNIFAC method

Acentric factor

Proportionality constant in Redlich-Kwong equation of state
Proportionality constant in Redlich-Kwong equation of state
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Appendix 1 Temperature calibration of central PRT in the moderate pressure still.

The boiling temperature in the equilibrium cell, of the moderate pressure still, is
measured by a central four-wire PRT. This has been calibrated to 0.002 K against a
secondary standard, namely a Guildline 9540 platinum resistance thermometer with a
discrimination of 0.001 K. The Guildline 9540 platinum resistance thermometer in

turn has been calibrated against a primary standard which is an NPL design type
5650F inductively coupled double ratio bridge, (with a precision of +0.0001 K) using
a platinum resistance thermometer No 221426 calibrated at the National Physical

Laboratory to IPTS68. The central PRT and the platinum resistance thermometer No
221426 use the same double ratio bridge as a readout device thus the central PRT had
to be calibrated against a intermediate standard rather than directly against the

platinum resistance thermometer No 221426.

Calibrations were carried out in a Pye Unicam 104 Chromatograph oven used as
thermostated air bath with temperature control better than £ 0.1 K. The temperature
sensors were immersed to the same depth, in a 1" diameter boiling tube filled with

silicone oil and 1 mm balotini. This was done to ensure that both temperature sensors
were measuring the same temperature and to damp out any minor temperature

variations in the air bath.

The calibration graph for the central PRT resistance measurements versus the
Guildline 9540 platinum resistance thermometer temperature readings is given in
Figure Al.1. Figure Al.2 is the temperature correction graph used for the Guildline
9540 platinum resistance thermometer obtained from the calibration against the

primary standard platinum resistance thermometer No 221426.
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Appendix 2 Calibration graphs used for analysis of test mixtures.

Two methods have been employed for the analysis of the vapour and liquid test

samples obtained during this experimental program.

Density measurements have been used to determine compositions for mixtures of
acetic acid and water. These measurements were made using an Anton Paar
Densimeter (DMA 60) with two DMA 602 cells. The Anton Paar Densimeter was
used in ratio mode measuring the density of a mixture sample in one cell against the
density of pure water as a standard in the second cell. This method is known to be

more stable than direct measurement of the mixture density. All density measurements
were made at 25.00°C. Temperature control of the cells to = 0.001 K was achieved
using a heater controller (Heto Birkerod Demark)

Refractive Index was used to analyse test mixtures of acetone-chloroform and
cyclohexane-ethanol. This method was preferred to density measurements as a
minimum was detected in the density-composition curve for both of these mixtures
which reduced the accuracy of composition determination to unacceptable levels. A
Index Instruments automatic refractometer (GPR 11-37), accurate to 4 decimal places
when repeatedly standardised with HPLC grade water, was used to obtain both

refractive index calibration curves.

All calibrations were performed on a series of samples representing the full
composition range, prepared by weight using a balance accurate to 0.001 g. The
experimental data samples were analysed in batches over a period of time. It was
therefore necessary to check that the calibration curve remained valid for all batches of
samples. This was checked by measuring the density/refractive index of both pure
components and the mid-point composition standard at the same time that each batch

of samples were analysed .
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Appendix 3 Raw experimental data for all test mixtures.

TABLE A3.1

Vapour liquid equilibrium data for the mixture acetic acid-water at 760 mm Hg

obtained using the low pressure still.

Mol fraction of Acetic Acid Operating Equilibrium X-y
Pressure | Temperature
in liquid x in vapour y P/mmHg trC
0.0565 0.0470 758.89 100.4 0.0095
0.1543 0.1220 758.96 100.9 0.0323
0.2027 0.1492 758.13 101.6 0.0535
0.2830 0.2307 759.64 102.2 0.0523
0.3737 0.2600 757.72 103.15 0.1137
0.4885 0.3646 758.18 105.2 0.1239
0.6047 0.4710 759.30 106.3 0.1337
0.6970 0.5690 757.71 106.7 0.1280
0.7071 0.5864 758.93 108.0 0.1207
0.8183 0.7112 759.15 110.6 0.1071
0.8328 0.7232 760.91 110.8 0.1096
0.8792 0.7903 759.23 112.2 0.0889
0.8887 0.7993 760.80 112.5 0.0894
0.9135 0.8355 758.14 113.4 0.0780
0.9250 0.8591 760.60 113.9 0.0659
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TABLE A.3.2

Vapour liquid equilibrium data for the mixture acetic acid-water at 760 mm Hg

obtained using the moderate pressure still.

Mol fraction of Acetic Acid Operating | Equilibrium X-y
Pressure | Temperature
in liquid x in vapour y P/mmHg t°C
0.0307 0.0260 759.285 100.31 0.0047
0.0820 0.0640 760.31 101.34 0.0180
0.2050 0.1430 755.56 101.66 0.0620
0.2450 0.1720 752.67 101.866 0.0730
0.3580 0.2530 762.98 102.97 0.1050
0.3520 0.2500 762.57 103.2 0.1020
0.4660 0.3350 767.26 104.66 0.1310
0.6200 0.4940 759.98 107.21 0.1260
0.7124 0.5878 756.51 108.42 0.1246
0.7804 0.6750 755.62 109.986 0.1054
0.7985 0.7001 757.14 110.46 0.0984
0.8216 0.7230 763.20 111.108 0.0986
0.8855 0.8060 760.68 112.87 0.0795
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TABLE A 3.3

Vapour liquid equilibrium data for the mixture acetone-chloroform at 760 mm Hg

obtained using the low pressure still.

Mol fraction Acetone Operating | Equilibrium y-X
of Pressure | Temperature
inliquid x  in vapoury P/mmHg tr°C

1 1 759.9 56.1 0
0.9396 0.9676 759.8 §7.05 0.028
0.8784 0.9278 759.9 58.00 0.0494
0.7361 0.8118 759.8 60.45 0.0757
0.6304 0.6992 760.0 62.2 0.0688
0.6741 0.7510 759.8 61.45 0.0769
0.5626 0.6251 759.8 63.13 0.0625
0.4966 0.5456 759.7 63.8 0.0490
0.5563 0.6211 760.3 63.14 0.0648
0.5012 0.5478 759.8 63.75 0.0466
0.4375 0.4637 759.8 64.15 0.0262
0.3389 0.3327 759.8 64.35 -0.0062
0.0901 0.0642 761.0 62.4 -0.0259
0.1827 0.1438 759.9 63.5 -0.0389
0.1532 0.1176 760.0 63.05 -0.0356
0.0870 0.0599 760.0 62.35 -0.0271
0.1361 0.0998 760.3 63.0 -0.0363
0.1827 0.1400 759.9 63.5 -0.0427
0.1795 0.1424 759.9 63.25 -0.0371
0.2352 0.2000 759.9 63.7 -0.0352
0.2876 0.2602 759.8 63.9 -0.0274
0.4551 0.4826 759.7 64.0 0.0275
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TABLE A3 4

Vapour liquid equilibrium data for the mixture acetone-chloroform at 64.3°C obtained

using the moderate pressure still.

Mol fraction of Acetone Operating Equilibrium y-X
Pressure | Temperature
in liquid x in vapour y P/mmHg t°C
0.9072 0.9528 965.1 64.35 0.0456
0.8721 0.9165 950.7 64.64 0.0444
0.8076 0.8743 909.8 64.31 0.0667
0.6755 0.7926 851.49 64.32 0.1171
0.6618 0.7775 848.9 64.34 0.1157
0.6055 0.7178 818.85 64.28 0.1123
0.4833 0.5447 791.5 64.3 0.0614
0.4286 0.4620 774.6 64.36 0.0334
0.3389 0.3327 759.8 64.35 -0.0062
0.3086 0.2917 772.2 64.44 -0.0169
0.2440 0.2123 783.1 64.38 -0.0317
0.2149 0.1790 795.6 64.5 -0.0359
0.2040 0.1689 794.5 64.33 -0.0351
0.1759 0.1423 804.5 64.31 -0.0336
0.1686 0.1429 805.95 64.26 -0.0257
0.1398 0.1123 803.2 64.3 -0.0275
0.1227 0.0914 814.0 64.65 -0.0313
0.0699 0.0582 828.0 64.32 -0.0117
0.0532 0.0351 843.0 64.39 -0.0181
0.0011 0.0004 853.53 64.31 -0.0007
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TABLE A3.5

Vapour liquid equilibrium data for the mixture cyclohexane-ethanol at 760 mm Hg

obtained using the moderate pressure still.

Mol fraction of Cyclohexane Operating | Equilibrium y-X
Pressure | Temperature
in liquid x in vapour y P/mmHg tr°C
0.9858 0.9179 754.8 76.5 -0.0679
0.9378 0.6648 759.8 67.6 -0.2730
0.8835 0.6117 762.6 65.93 -0.2718
0.8047 0.5954 760.1 65.00 -0.2093
0.6901 0.5765 763.5 64.66 -0.1136
0.5974 0.5647 762.0 64.53 -0.0327
0.5497 0.5583 761.7 64.52 0.0086
0.9029 0.6230 761.8 66.1 -0.2799
0.8582 0.6115 766.4 65.77 -0.2467
0.8406 0.6056 763.9 65.45 -0.2350
0.7798 0.5929 762.9 65.1 -0.1869
0.7564 0.5935 761.2 64.96 -0.1629
0.7438 0.5804 763.2 64.96 -0.1634
0.7238 0.5817 760.9 64.79 -0.1421
0.6146 0.5666 759.9 64.66 -0.0480
0.4364 0.5365 763.1 65.00 0.1001
0.3152 0.5136 763.2 65.04 0.1984
0.2301 0.4731 763.9 66.43 0.2430
0.1870 0.4546 765.6 67.05 0.2676
0.1462 0.4076 763.9 68.26 0.2614
0.1044 0.3617 763.6 69.55 0.2573
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TABLE A.3.6

Vapour liquid equilibrium data for the mixture cyclohexane-ethanol at 1500 mm Hg

obtained using the moderate pressure still.

Mol fraction of Cyclohexane Operating | Equilibrium y-X
Pressure | Temperature
in liquid x in vapour y P/mmHg trPC
0.9544 0.7941 1500 91.3 -0.1603
0.9147 0.7134 1500 89.24 -0.2013
0.9089 0.7045 1500 88.96 -0.2044
0.6853 0.5320 1500 84.27 -0.1533
0.5490 0.4999 1500 83.74 -0.0491
0.4423 0.4795 1500 83.74 0.0372
0.3306 0.4614 1600 84.01 0.1308
0.2616 0.4524 1500 84.34 0.1908
0.2184 0.4489 1500 84.6 0.2305
0.1363 0.4128 1500 85.7 0.2765
0.1250 0.3858 1500 86.33 0.2608
0.0832 0.3698 1500 87.84 0.2866
0.0618 0.3356 1500 89.42 0.2738
0.0443 0.3150 1500 91.66 0.2707
0.0229 0.1813 1500 96.99 0.1584
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TABLE A.3.7

Vapour liquid equilibrium data for the mixture cyclohexane-ethanol at 4 bar obtained

using the moderate pressure still.

Mol fraction of Cyclohexane Operating Equilibrium y-X
Pressure | Temperature
in liquid x in vapour y P/mmHg t°C
0.8797 0.7160 3003.8 109.48 -0.1637
0.8512 0.6882 3005.6 108.83 -0.1630
0.7709 0.6273 3005.6 107.43 -0.1436
0.7238 0.6169 3005.6 107.06 -0.1069
0.6647 0.5730 3009.0 106.16 -0.0917
0.6034 0.5556 3009.0 106.15 -0.0478
0.5829 0.5560 3000.0 106.16 -0.0269
0.5473 0.5524 3009.0 106.05 0.0051
0.4908 0.56352 3007.1 106.05 0.0444
0.3888 0.5149 3007.1 106.45 0.1261
0.3104 0.5000 3007.1 107.1 0.1896
0.2502 0.4816 3003.8 107.83 0.2314
0.2354 0.4743 3003.8 107.96 0.2389
0.1612 0.4448 3003.8 109.36 0.2836
0.0229 0.1813 2996.99 1500 0.1584
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TABLE A3.8

Vapour liquid equilibrium data for the mixture cyclohexane-ethanol at 6 bar obtained

using the moderate pressure still

Mol fraction of Cyclohexane Operating | Equilibrium y-X
Pressure | Temperature
in liquid x in vapoury P/mmHg t’°C

0.9022 0.7598 4500 124.00 -0.1424
0.7862 0.6693 4503.75 121.8 -0.1169
0.7314 0.6491 4503.75 121.34 -0.0823
0.6612 0.6124 4496.18 121.03 -0.0488
0.6117 0.5946 4496.18 120.94 -0.0171
0.5207 0.5650 4486.18 121.21 0.0443
0.2385 0.4882 4500.9 123.53 0.2497
0.2202 0.4792 4500.9 123.9 0.2590
0.1706 0.4530 4500.38 125.62 0.2824
0.1232 0.4120 4500.38 128.63 0.2888

0 0 4485 152.43 0
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TABLE A3.9

Vapour liquid equilibrium data for the mixture cyclohexane-ethanol at 8 bar obtained

using the moderate pressure still

Mol fraction of Cyclohexane Operating | Equilibrium y-X
Pressure | Temperature
in liquid x in vapour y P/mmHg trC
0.9607 0.8907 6017.7 137.83 -0.0700
0.9501 0.8673 6017.7 137.34 -0.0828
0.9386 0.8420 6017.2 136.72 -0.0966
0.8560 0.7549 6017.2 133.94 -0.1011
0.8259 0.6957 6014.9 133.4 -0.1302
0.7384 0.6656 6014.2 132.82 -0.0728
0.6805 0.6392 6014.2 132.34 -0.0413
0.5979 0.6094 6018.5 132.44 0.0115
0.5211 0.5815 6012.4 132.43 0.0604
0.4490 0.5669 6012.4 132.84 0.1179
0.4255 0.5557 6012.4 133.25 0.1302
0.3630 0.5417 6011.2 133.59 0.1787
0.3630 0.5417 6011.2 133.59 0.1787
0.3297 0.5314 6011.2 133.99 0.2017
0.1620 0.4420 6020.8 138.68 0.2800
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TABLE A.3.10

Vapour liquid equilibrium data for the mixture cyclohexane-ethanol at 11 bar. obtained

using the moderate pressure still

Mol fraction of Cyclohexane Operating Equilibrium y-X
Pressure | Temperature
in liquid x in vapour y P/mmHg t°C
0.9845 0.4420 8267.3 15141 -0.5425
0.9757 0.5314 8267.4 150.5 -0.4443
0.9592 0.5417 8274.3 149.95 -0.4175
0.9293 0.5557 8263.1 148.29 -0.3736
0.8762 0.5669 8252.3 147.18 -0.3093
0.7211 0.5815 8254.5 145.56 -0.1396
0.6915 0.6094 8254.5 145.46 -0.0821
0.5556 0.6392 8254.7 145.43 0.0836
0.4880 0.6656 8255.0 145.88 0.1776
0.2938 0.6957 8253.5 148.68 0.4019
0.2694 0.7549 8261.4 148.96 0.4855
0.2105 0.8420 8261.4 151.31 0.6315
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TABLE A.3.11

Vapour liquid equilibrium data for the mixture cyclohexane-ethanol at 90.9°C. obtained

using the moderate pressure still

Mol fraction of Cyclohexane Operating | Equilibrium y-X
Pressure | Temperature
in liquid x in vapour y P/mmHg trC
0.8801 0.6715 1691.6 90.93 -0.2086
0.8669 0.6613 1723.8 90.89 -0.2056
0.8572 0.6502 1728.9 90.92 -0.2070
0.8221 0.6205 1730.4 90.98 -0.2016
0.8117 0.6137 1779.2 90.9 -0.1980
0.7671 0.5846 1828.9 91.0 -0.1825
0.7495 0.5789 1838.8 90.94 -0.1706
0.7327 0.5761 1838.6 20.9 -0.1566
0.7156 0.5596 1851.6 90.88 -0.1560
0.7081 0.5608 1857.6 90.91 -0.1473
0.7007 0.5665 1856.7 90.84 -0.1342
0.6945 0.5563 1859.6 90.85 -0.1382
0.6824 0.5509 1864.7 90.9 -0.1315
0.6530 0.5404 1882.9 90.62 -0.1126
0.6225 0.5304 1876.8 90.85 -0.0921
0.6097 0.5314 1890.96 90.95 -0.0783
0.4951 0.5061 1894.1 90.94 0.0110
0.3644 0.4861 1886.7 90.95 0.1217
0.2993 0.4724 1865.7 90.85 0.1731
0.2991 0.4716 1863.1 90.86 0.1725
0.2871 0.4690 1860.9 90.87 0.1819
0.2777 0.4676 1850.8 90.85 0.1899
0.2358 0.4564 1831 90.87 0.2206
0.2225 0.4542 1836.6 90.97 0.2317
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TABLE A.3.12

Vapour liquid equilibrium data for the mixture cyclohexane-ethanol at 138.2°C.

obtained using the moderate pressure still

Mol fraction of Cyclohexane Operating Equilibrium y-X
Pressure | Temperature
in liquid x in vapour y P/mmHg tPC
0.8893 0.6146 5489.0 138.25 -0.2747
0.7772 0.5115 6389.0 138.22 -0.2657
0.7299 0.4894 6502.0 138.24 -0.2405
0.6500 0.4576 6866.3 138.14 -0.1924
0.5026 0.4107 7143.8 138.25 -0.0919
0.3947 0.3671 7167.3 138.16 -0.0276
0.3019 0.3446 7204.8 138.21 0.0427
0.2659 0.3264 7083.2 138.22 0.0605
0.2284 0.3066 7105.7 138.04 0.0782
0.2136 0.3975 7029.4 138.16 0.1839
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Appendix 4 Consistency test results for acetic acid-water data.

The results of the consistency tests performed on the experimental data for the mixture
acetic acid-water are reported here. The fitting package proposed by Gibson-Robinson
(1977) has been used to perform the tests. Test results are given for each data set using
three activity coefficient models, Wilson 2-parameter, NRTL 3-parameter and

Redlich-Kister 4-parameter equations, to represent the liquid-phase.

The vapour pressure is represented by the 3-parameter Antoine equation for acetic acid
and the 6-parameter Antoine equation for water. These equations were found to give
the least deviations for pressure and vapour-phase compositions when used to
represent the vapour phase behaviour in the consistency tests, irrespective of the liquid

activity coefficient model used.

In order to demonstrate the benefit of including association in both phases when
performing the tests, test results for each data set for each different liquid phase model

are given with and without association being used.

Table A.4.19 and A.4.20 give the results of consistency tests for the data of Brown
and Ewald (1950) and Garner and Ellis (1954) using the three parameter NRTL
equation and association in both phases. The results of these consistency tests have

been used in the deviation plots, figure 6.3 and 6.4.
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Appendix 5 consistency test results for acetone- chloroform mixture.

The results of the consistency tests performed on the experimental data for the mixture
acetone-chloroform are reported here. The fitting package proposed by Prausnitz et al.
(1980) was used to perform the tests, the vapour phase was represented by a 5
constant fugacity equation given in Appendix 10 for each pure component. Four
different liquid phase activity coefficient models were used, i.e. Wilson, NRTL,
Margules and UNIQUAC. Constants for each of these models at each condition are
recorded in Appendix 11.

Tables A.5.1 to A.5.4 give the one atmosphere results for each liquid-phase model
used Tables A.5.5 to A.5.8 give the 63.4°C results for each liquid-phase model used
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Appendix 6 Consistency test results for cyclohexane-ethanol mixture.

The results of the consistency tests performed on the experimental data for the mixture
cyclohexane-ethanol are reported here. The fitting package proposed by Prausnitz et
al. (1980) was used to perform the tests, the vapour phase was represented by a 5
constant vapour pressure equation given in Appendix 10 for ethanol. The vapour phase
for cyclohexane was represented by the new 3-constant vapour pressure equation
developed from the new vapour pressure measurements made as part of this work
again given in Appendix 10. Five different liquid-phase activity coefficient models
were used, i.e. Wilson, NRTL, Margules, Van Laar and UNIQUAC. Constants for

each of these models at each condition are recorded in Appendix 11.
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Appendix 7 Tabulated activity coefficients deduced for cyclohexane-ethanol and

acetone-chloroform.

This appendix contains the activity coefficients deduced for each experimertal data set.
The activity coefficients have been deduced from the reduced experimental data from
the Prausnitz type consistancy tests. Data are presented only for the liquid activity
coefficient model which best described the individual data set. Table A.7.1 to A.7.8 list
data for cyclohexane-ethanol mixture at 1 atmosphere, 2, 4, 6, 8, 11 bar and at 90.9°C
and 138.2°C. Table A.7.1 to A.7.8 list data for Acetone Chloroform. mixture at 1
atmosphere and 63.4°C.

The tables also present the activity coefficient calculated for the data sets using the
original UNIFAC method of Fredenslund et al. (1977) and the Modified UNIFAC
method of Larsen et al. (1987).
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TABLE A.7.1 Liquid-phase activity coefficients for Cyclohexane-Ethanol mixture

at 1 atmosphere.

Liquid Experimental Original UNIFAC |[Modified UNIFAC

mol Frac

(Ethanol)

X A Ay A At A Ay
0.0142 12.4183 1.0005] 15.6356| 1.0014| 12.0335| 1.0012
0.0622 8.4431 1.0090| 9.6626| 1.0230| 8.0526| 1.0212
0.0971 5.6937 1.0307| 7.1813| 1.0502( 6.1302| 1.0467
0.1165 6.4999 1.0216| 6.2221| 1.0685| 5.3621| 1.0637
0.1418 4.8620 1.0450{ 5.2657| 1.0953| 4.5859| 1.0888
0.1594 4.3976 1.0564| 4.7449| 1.1160| 4.1611| 1.1081
0.1953 3.6536 1.0838| 3.9272f 1.1629) 3.4872| 1.1518
0.2202 3.2558 1.1059| 3.4957| 1.1987| 3.1238| 1.1850
0.2436 2.9496 1.1292| 3.1648| 1.2354| 2.8490| 1.2189
0.2562 2.8059 1.1428| 3.0098| 1.2562| 2.7185| 1.2381
0.2762 2.6041 1.1659| 2.7921| 1.2912| 2.5353| 1.2703
0.3099 2.3216 1.2093| 2.4866| 1.3548} 2.2765| 1.3285
0.3854 1.8731 1.3283| 1.9970| 1.5222( 1.8589| 1.4794
0.4026 1.7936 1.3617| 1.9123| 1.5661| 1.7866| 1.5187
0.4503 1.6173 1.4630| 1.7132] 1.6994| 1.6156| 1.6366
0.5636 1.3317 1.7894 1.3896| 2.1046( 1.3364| 1.9851
0.6848 1.1551 2.3466] 1.1845| 2.7406| 1.1592| 2.5096
0.7699 1.0787 2.9524 1.0944| 3.3785| 1.0812| 3.0110
0.8130 1.0511 3.3668{ 1.0616| 3.7883| 1.0528| 3.3221
0.8538 1.0309 3.8476| 1.0374| 4.2434| 1.0319| 3.6552
0.8956 1.0156 4.4601| 1.0190| 4.7962| 1.0161| 4.0473
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TABLE A.7.2 Liquid-phase activity coefficients for Cyclohexane-Ethanol mixture at 2
bar.

Liquid Experimental Original UNIFAC |[Modified UNIFAC

mol Frac

(Ethanol)

X Ay Ay A Az A Ay
0.0456 9.1049 1.0017| 10.0342] 1.0114| 7.3242| 1.0108
0.0853 6.0292 1.0467| 7.2531 1.0353| 6.7620| 1.0297
0.0911 5.7406 1.0518| 6.9513| 1.0397| 5.5600( 1.0334
0.3147 2.0452 1.3379| 2.4126| 1.3430{ 2.1531| 1.3052
0.4510 1.5234 1.6038| 1.6988| 1.6678| 1.5747| 1.5847
0.5577 1.3006 1.8827| 1.3972| 2.0336| 1.3265| 1.8857
0.6694 1.1547 2.2723| 1.2025| 25781 1.1656| 2.3104
0.7384 1.0939 2.5830| 1.1223| 3.0370f 1.0995| 2.6515
0.7816 1.0646 2.8138| 1.0839| 3.3893| 1.0680| 2.9031
0.8637 1.0248 3.3508| 1.0321| 4.2448| 1.0257| 3.4796
0.8750 1.0208 3.4347| 1.0270{ 4.3834| 1.0215| 3.5635
0.9168 1.0092 3.7798| 1.0119| 4.9637| 1.0094| 3.9127
0.9382 1.0051 3.9719| 1.0061| 5.3357| 1.0048] 4.1119
0.9557 1.0026 4.1327| 1.0030{ 5.6325| 1.0023| 4.2384
0.9771 1.0007 4.3207| 1.0005| 6.0645| 1.0004| 4.3444
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TABLE A.7.3 Liquid-phase activity coefficients for Cyclohexane-Ethanol mixture at 4

bar.
Liquid |Experimental Original UNIFAC [Modified UNIFAC
mol Frac
(Ethanol)
X A, A, A A, A, Ay

0.1203 4.5278 1.0276| 4.2770] 1.0247| 3.9340| 1.0472
0.1488 3.9534 1.0420| 3.9445| 1.0378| 3.4646| 1.0694
0.2291 2.8563 1.0990{ 3.1860| 1.0914] 2.5669| 1.1499
0.2762 2.4390 1.1445( 2.8360| 1.1353| 2.2211| 1.2085
0.3353 2.0590 1.2161| 2.4765| 1.2060] 1.9079| 1.2957
0.3966 1.7747 1.3096| 2.1709{ 1.3013] 1.6673| 1.4004
0.4171 1.6980 1.3459| 2.0819] 1.3392| 1.6021] 1.4392
0.4527 1.5819 1.4160f 1.9411 1.4135| 1.5033| 1.5121
0.5092 1.4333 1.5481| 1.7477| 1.5580| 1.3756| 1.6415
0.6112 1.2441 1.8710| 1.4728] 1.9375| 1.2114| 1.9251
0.6896 1.1466 22251 1.3121] 24007 1.1263| 2.1962
0.7498 1.0921 2.5890| 1.2124; 29363 1.0787| 2.4418
0.7646 1.0809 2.6947| 1.1908{ 3.1042| 1.0690| 2.5078
0.8388 1.0369 3.3483| 1.0982| 4.2946| 1.0310| 2.8719
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TABLE A.7.4 Liquid-phase activity coefficients for Cyclohexane-Ethanol mixture at 6

bar.

Liquid Experimental Original UNIFAC {Modified UNIFAC

mol Frac

X A, Ay A Ay A Ay
0.0978 2.5977 1.0077| 4.4034| 1.0162| 3.7988 1.0279
0.2138 2.2007 1.0402| 3.2436; 1.0785| 24714 1.1167
0.2686 2.0372 1.0664| 2.8317| 1.1264| 2.1118| 1.1756
0.3388 1.8493 1.1127| 2.4102| 1.2087| 1.7844| 1.2664
0.3883 1.7304 1.1558| 2.1690| 1.2839| 1.6148| 1.3413
0.4793 1.5384 1.2648| 1.8156f 1.4711| 1.3882| 1.5031
0.7615 1.1307 2.1318] 1.1851| 3.0078| 1.0617| 2.2684
0.7798 1.1132 2.2457( 1.1605| 3.2236| 1.0519| 2.3325
0.8294 1.0712 2.6254| 1.1017{ 3.9731| 1.0298| 2.5053
0.8768 1.0392 3.1213| 1.0564| 5.0148| 1.0147| 2.6484
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TABLE A.7.5 Liquid-phase activity coefficients for Cyclohexane-Ethanol mixture at 8

bar.

Liquid Experimental Original UNIFAC [Modified UNIFAC

mol Frac

(Ethanol)

X Ar Ax A Ay A Ay
0.0393 3.8482 1.0028| 5.0583| 1.0042| 4.1864| 1.0042
0.0499 3.7169 1.0045| 5.2280| 1.0026] 4.0056| 1.0067
0.0614 3.5833 1.0067| 4.8833| 1.0063| 3.8271| 1.0100
0.1440 2.8123 1.0356| 3.8354| 1.0349| 2.7954| 1.0497
0.1741 2.5985 1.0514| 3.5337| 1.0512| 2.5367| 1.0705
0.2616 21179 1.1131| 2.8299| 1.1186[ 1.9897| 1.1472
0.3195 1.8841 1.1679] 2.4757| 1.1820| 1.7497] 1.2116
0.4021 1.6291 1.2677) 2.0774] 1.3050, 1.5008| 1.3202
0.4789 1.4511 1.3886| 1.7934| 1.4652| 1.3412| 1.4421
0.5510 1.3219 1.5329| 1.5822| 1.6730| 1.2315] 1.5742
0.5745 1.2863 1.5877| 1.5225| 1.7566| 1.2017| 1.6188
0.6370 1.2041 1.7673| 1.3843| 2.0323] 1.1379| 1.7559
0.6703 1.1671 1.8638| 1.3216| 2.2211| 1.1114] 1.8449
0.8380 1.0405 2.6599| 1.0882| 4.0285| 1.0226| 2.2660
0.9501 1.0041 3.6404| 1.0095| 7.2456| 1.0016| 2.2422
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TABLE A.7.6 Liquid-phase activity coefficients for Cyclohexane-Ethanol mixture at

11 bar.

Liquid Experimental Original UNIFAC [Modified UNIFAC

mol Frac

(Ethanal)

X A Ay Ar Ay Az A
0.0155 5.5191 1.0004| 9.4375| 1.0010| 3.7013| 1.0005
0.0243 5.3677 1.0010| 8.8302| 1.0024| 3.6011| 1.0014
0.0408 5.0938 1.0028( 7.8242| 1.0066| 3.3872| 1.0037
0.0707 4.6524 1.0083| 6.4354| 1.0187| 3.0908( 1.0110
0.1238 3.9827 1.0256| 4.7624| 1.0526{ 2.6000{ 1.0320
0.2789 2.6725 1.1348| 2.5549| 1.2285 1.7605| 1.1425
0.3085 2.4975 1.1673| 2.3367| 1.2750{ 1.6614{ 1.1709
0.4444 1.8873 1.3830{ 1.6806| 1.5538| 1.3439| 1.3301
0.5120 1.6702 1.5461| 1.4826| 1.7417| 1.2416| 1.4249
0.7062 1.2490 2.4332| 1.1503| 2.5714| 1.0692| 1.7472
0.7306 1.2122 2.6239| 1.1250{ 2.7203| 1.0568| 1.7944
0.7895 1.1348 3.2154| 1.0747| 3.1326| 1.0319] 1.8857
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TABLE A.7.7 Liquid-phase activity coefficients for Cyclohexane-Ethanol mixture

at 90.9°C

Liquid Experimental Original UNIFAC [Modified UNIFAC

mol Frac

(Ethanol)

X A Ay A A A Ay
0.1199 3.6241 1.0228| 4.4162| 1.0248| 3.5191{ 1.0193
0.1331 3.4982 1.0281| 4.2481| 1.0305] 3.4127| 1.0238
0.1428 3.4096 1.0323| 4.1304| 1.0352| 3.3374f 1.0275
0.1779 3.1171 1.0562| 3.7420| 1.0549| 3.0845| 1.0431
0.1883 3.0385 1.0562| 3.6372| 1.0616| 3.0150| 1.0484
0.2329 2.7327 1.0864| 3.2335| 1.0955| 27416 1.0754
0.2673 2.6257 1.0323| 2.9662| 1.1275] 2.5552| 1.1009
0.2505 2.5296 1.1149| 3.0924 1.1112| 2.6438| 1.0879
0.2844 2.4374 1.1308| 2.8494| 1.1448| 2.4724| 1.1148
0.2919 2.3985 1.1381] 2.7949| 1.1538| 2.4334| 1.1220
0.2993 2.3614 1.1457| 2.7464| 1.1623| 2.3985| 1.1288
0.3055 2.3309 1.1521 2.7066| 1.1697, 2.3698| 1.1347
0.3176 2.2730 1.1653| 2.6316| 1.1846] 2.3153| 1.1467
0.3470 2.1425 1.2004| 2.4622| 1.2245| 2.1906{ 1.1788
0.3775 2.0190 1.2413] 23037 1.2717| 2.0719| 1.2167
0.3903 1.9707| 1.2600{ 22420 1.2934] 2.0250| 1.2342
0.5049 1.6144 1.4816] 1.7903| 1.5527| 1.6714]| 1.4425
0.6356 1.3321 1.9143] 1.4378| 2.0806| 1.3802| 1.8630
0.7007 1.2280 2.2563| 1.3075| 2.5202| 1.2688| 2.2081
0.7009 1.2277 22575 1.3072| 25219 1.2685| 2.2093
0.7129 1.2107 2.3344| 1.2859| 26240 1.2500f 2.2888
0.7223 1.1979 2.3984| 1.2697| 27097 1.2360f| 2.3553
0.7642 1.1457 2.7290| 1.2032( 3.1672] 1.1781] 27072
0.7775 1.1308 2.8519| 1.1839| 3.3441| 1.1612| 2.8419
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TABLE A.7.8 Liquid-phase activity coefficients for Cyclohexane-Ethanol mixture
at 132.8°C.

Liquid |Experimental Original UNIFAC |Modified UNIFAC

mol Frac

X Ay Ay Ay Ay
0.1107 3.8966 1.0293| 5.2390| 1.0447| 3.0529( 1.0039
0.2228 2.6906 1.1075| 3.1285| 1.1561] 2.1306| 1.0295
0.2701 2.3703 1.1543| 2.6490( 1.2207| 1.8944| 1.1052
0.3500 1.9699 1.2543| 2.0967| 1.3554| 1.6073| 1.1484
0.4974 1.5060 1.5272) 1.5242| 1.7109| 1.2925| 1.2360
0.6053 1.2959 1.8370| 1.2911| 2.0972] 1.1605| 1.4488
0.6981 1.1699 2.2250| 1.1604| 2.5602( 1.0868| 1.6530
0.7341 1.1316 24197 1.1224] 27846 1.0656| 1.9636
0.7716 1.0793 2.6577| 1.0891| 3.0521| 1.0472] 2.0704
0.7864 1.0853 2.7631| 1.0769| 3.1767 1.0405] 2.1179
0.8035 1.0725 2.8937| 1.0654| 3.3117{ 1.0343| 2.1680

319




TABLE A.7.9 Liquid-phase activity coefficients for Acetone-Chloroform mixture

at 1 atmosphere.

Liquid Experimental Original UNIFAC [Modified UNIFAC

mol Frac

(Acetone)

X A Ay, A A A A
0.0870 0.5863 0.9948| 0.5659| 0.9959| 0.5214| 0.9935
0.0901 0.5844 0.9952| 0.5678] 0.9956| 0.5241| 0.9930
0.1361 0.6138 0.9561| 0.5960( 0.9898| 0.5635| 0.9844
0.15832 0.6149 0.9882| 0.6063| 0.9869| 0.5776| 0.9804
0.1795 0.6254 0.9850| 0.6226| 0.9819| 0.5994;| 0.9734
0.1827 0.6418 0.9794| 0.6251| 0.9812| 0.6027| 0.9725
0.1827 0.6418 0.9794| 0.6251| 0.9812| 0.6027| 0.9725
0.2352 0.6439 0.9787| 0.6578| 0.9682| 0.6451| 0.9555
0.2876 0.6766 0.9648| 0.6911| 0.9517| 0.6864| 0.9351
0.3389 0.7091 0.9474| 0.7246] 0.9320( 0.7266| 0.9124
0.4375 0.7409 0.9274| 0.7871| 0.8839| 0.7956| 0.8606
0.4966 0.8098 0.8708| 0.8236| 0.8487| 0.8335| 0.8252
0.5012 0.8335 0.8474| 0.8263] 0.8458| 0.8363| 0.8223
0.5563 0.8360 0.8446) 0.8588| 0.8085| 0.8685| 0.7866
0.5626 0.8656 0.8105] 0.8625| 0.8040{ 0.8721| 0.7825
0.6304 0.8689 0.8065| 0.8997| 0.7529| 0.9071| 0.7357
0.6741 0.9221 0.7295| 0.9215| 0.7175] 0.9271| 0.7041
0.7361 0.9470 0.6833{ 0.9492| 0.6656] 0.9516| 0.6585
0.8784 0.9879 0.5721| 0.9912| 0.5487| 0.9895| 0.5525
0.9396 0.9969 0.5236| 0.9977| 0.5131| 0.9966| 0.5142
1.0000 1.0000 0.4760| 1.0000{ 0.4831| 1.0000| 0.4647
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TABLE A.7.10 Liquid-phase activity coefficients for Acetone-Chloroform mixture

at 64.3°C.

Liquid Experimental Original UNIFAC |[Modified UNIFAC

mol Frac

(Acetone)

X A, Ay A Ay A Ay
0.0011 0.5605 0.9916| 0.5557{ 1.0000{ 0.4872| 1.0000
0.0532 0.5941 0.9846| 0.5512| 0.9985| 0.5221| 0.9981
0.0699 0.6528 0.9670| 0.5606{ 0.9974| 0.5335| 0.9967
0.1227 0.7619 0.9166{ 0.5911 0.9918| 0.5697| 0.9937
0.1398 0.7721 0.9106| 0.6012| 0.9892| 0.5816| 0.9918
0.1686 0.8118 0.8846| 0.6184| 0.9842| 0.6016] 0.9806
0.17598 0.8845 0.8236| 0.6228| 0.9827| 0.6067{ 0.9789
0.2040 0.9110 0.7952| 0.6399| 0.9765| 0.6262| 0.9716
0.2149 0.9463 0.7482| 0.6466| 0.9621 0.6338| 0.9685
0.2440 0.9561 0.7324| 0.6646( 0.9658| 0.6541| 0.9595
0.3086 0.9734 0.6989| 0.7053] 0.9442| 0.6987| 0.9356
0.3389 0.9796 0.6841| 0.7246| 0.9320| 0.7194] 0.9226
0.4286 0.9817 0.6784| 0.7818| 0.8889| 0.7791| 0.8779
0.4833 0.9866 0.6642( 0.8161| 0.8574| 0.8138| 0.8464
0.6055 0.9877 0.6605| 0.8883| 0.7746] 0.8844| 0.7662
0.6618 0.9917 0.6463| 0.9178| 0.7320{ 0.9127| 0.7255
0.6755 0.9937 0.6382| 0.9245| 0.7213] 0.9192| 0.7153
0.8076 0.9980 0.6123| 0.9761| 0.6175| 0.9700| 0.6128
0.8721 0.9988 0.6044( 0.9910| 0.5708; 0.9864| 0.5610
0.9072 1.0000 0.5801| 0.9958| 0.5485| 0.9928| 0.5327
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Appendix 8 Predicted data using AGAPE GLP method.

Data are presented in tables A.8.1 to A.8.6 for cyclohexane-ethanol mixture at 1
atmosphere, 2, 4, 6, 8, bar and 90.9°C predicted using the AGAPE method with GLP
theory.

TABLE A.8.1

Data predicted for Ethanol-Cyclohexane mixture at 1.01325 bar using AGAPE GLP

prediction program.

X y T P A A
Mol Mol Fraction °C mmHg
Fraction
0.1 0.4121 66.8 760; 6.5965| 1.0236
0.2 0.4898| 63.81 760| 4.4601| 1.1028
0.3 0.4977| 63.56 760| 3.054| 1.1165
0.4 0.4805| 63.81 760 2.1873| 1.4976
0.44 0.4705| 63.88 760| 1.9419| 1.6322
0.5 0.4549| 63.88 760| 1.6521| 1.8836
0.6 0.4327| 63.63 760] 1.3241| 2.4685
0.7 0.4316] 63.63 760 1.132| 3.2975
0.8 0.4813| 65.13 760] 1.0348| 4.298
0.9 0.6403| 69.81 760| 1.0022| 5.1118
TABLE A.82

Data predicted for Ethanol-Cyclohexane mixture at 2 bar using the AGAPE GLP
prediction program.

X y T P A, A,
Mol Mol Fraction °C Bar
Fraction
0.1 0.4108 89.19 2| 5.3403| 1.0192
0.2 0.5098 84.66 2| 3.9232| 1.0856
0.3 0.5349 83.72 2| 2.8438| 1.2113
? 0.4 0.5329 83.75 2| 2.1224| 1.4181
! 0.488 0.5214 83.84 2| 1.6961| 1.6960
0.5 0.5201 83.88 2| 1.6494| 1.7427
0.6 0.5073 83.81 2| 1.3438| 2.2385
5_ 0.7 0.5097 83.88 2| 1.1546| 2.9647
0.8 0.5547 85.08 2| 1.0504| 3.8997
0.9 0.6895 88.88 2 1.0074 4876
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TABLE A.8.3

Data predicted for Ethanol-Cyclohexane mixture at 4 bar using the AGAPE GLP

prediction program.

X y T P A, A,
Mol Mol Fraction °C Bar
Fraction

0.1 0.3966| 116.78 4,  4.0779| 1.4056
0.2 0.5198| 110.20 4] 3.2845| 1.1892
0.3 0.5648| 107.98 4| 2.5560| 1.1682
0.4 0.5798| 107.48 4| 2.0003| 1.3326
0.5 0.5823| 107.34 4 1.6144) 1.5959

0.549 0.5819| 107.34 4 1.4693 | 1.7708

0.6 0.5821| 107.34 4] 1.3450| 1.9951

0.7 0.5931| 107.53 4 1.1674] 2.5791

0.8 0.6333| 108.36 4 1.0618| 3.4149

0.9 0.7457| 111.28 4 1.0117| 4.4049

0.95 0.8489| 113.97 4] 1.0024| 4.9010

TABLE A.8.4

Data predicted for Ethanol-Cyclohexane mixture at 6 bar using the AGAPE GLP

prediction program.

X y T P Ar Ay
Mol Mol Fraction °C Bar
Fraction
0.1 0.3795| 135.94 6| 3.3582| 1.0118
0.2 0.5191 127.87 6| 2.8796| 1.0556
0.3 0.5772| 124.58 6| 2.3481] 1.1416
0.4 0.6033] 123.39 6| 1.9063| 1.2838
0.5 0.6156] 122.97 6| 1.5755| 1.5085
0.59 0.6231 122.91 6| 1.3589| 1.8058
0.6 0.6241 122.91 6| 1.3336| 1.8465
0.7 0.6391 122.95 6 1.1691] 2.3632
0.8 0.6790| 123.61 6| 1.0657| 3.1016
0.9 0.7791 126.00 6] 1.0136| 4.0425
0.95 0.8699; 128.31 6| 1.0030| 4.5168
0.98 0.9925( 130.13 6| 1.0002| 4.7951
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TABLE A.8.5

Data predicted for Ethanol-Cyclohexane mixture at 8 bar using AGAPE GLP

prediction program.

X Yy T P A12 A21
Mol Fraction | Mol Fraction °C bar

0.1 0.3795| 135.94 8| 3.3539| 1.0118
0.2 0.5191| 127.87 8| 2.8796| 1.0556
0.3 0.5772| 124.58 8| 2.3481| 1.1416
0.4 0.6033] 123.39 8| 1.9063| 1.2838
0.5 0.6156] 122.97 8| 1.5755| 1.5085
0.6 0.6241| 122.91 8| 1.3336] 1.8465

0.6546 0.6231| 122.91 8/ 1.3539] 1.8058
0.7 0.6391| 122.95 8 1.1691| 2.3632
0.8 0.6790| 123.61 8| 1.0657| 3.1016
0.9 0.7791| 126.00 8| 1.0136] 4.0425

TABLE A.8.6

Data predicted for Ethanol-Cyclohexane mixture at 90.9°C using the AGAPE GLP

prediction program.

X y T P Ar A,
Mol Fraction | Mol Fraction °C bar
0.1 0.4101 90.9| 2.0982| 5.2529| 1.0194
0.2 0.5118 90.9| 2.3936| 3.7397| 1.0826
0.3 0.5424 90.9| 2.4798| 2.7374| 1.2015
0.4 0.5456 90.9| 2.4874| 2.0712| 1.3963
0.5 0.5379 90.9] 2.4807| 1.6293| 1.6293
0.507 0.5373 90.9| 2.4805| 1.6048{ 1.7257
0.6 0.5308 90.9] 2.4813 1.545| 2.1574
0.7 0.56372 90.9] 2.4721| 1.3401| 2.8269
0.8 0.5780 90.9| 2.3905| 1.1582| 3.7383
0.9 0.6976 90.9| 2.1317| 1.0087| 4.7787
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Appendix 9 VLE data predicted for mixtures acetone-chloroform and

cyclohexane-ethanol using the AGAPE fitting program.

Data are presented here for the mixtures acetone-chloroform and cyclohexane-ethanol
predicted using the AGAPE fitting program. The value of Z the coordination number is
set to 11 for all predictions. The values of r have been set using molar volume ratios

for the molecules concerned. For the cyclohexane mixture an average value of r to
account for association of ethanol molecules has been used. Values of ¢12 have been
determined using an iterative fitting procedure.

TABLE A.9.1

Data predicted for Ethanol-Cyclohexane mixture at 1.01325 atm using the AGAPE
fitting program.

Constantsused -Z =11 R=13 Ratio = 0.9025
4 y T P Ay Ay
Mol Fraction | Mol Fraction °C bar
(Ethanol) (Ethanol)
0.05 0.2897| 71.38| 1.0133| 7.6473| 1.0074
0.1 0.3931 67.56) 1.0133| 6.0903| 1.0297
0.15 0.4373| 65.88| 1.0133| 4.8545| 1.0669
0.2 0.4571 65.25| 1.0133| 3.9097| 1.1189
0.25 0.4641 65.06/ 1.0133| 3.2014| 1.1860
0.3 0.4647| 65.03| 1.0133| 2.6752| 1.2696
0.35 0.4625| 65.06| 1.0133] 2.2792]| 1.3712
0.4 0.4592| 65.09| 1.0133| 1.9774| 1.4930
0.45 0.4565| 65.13| 1.0133| 1.7447| 1.6375
0.5 0.4546f 65.13| 1.0133| 1.5638| 1.8079
0.55 0.4547| 65.13| 1.0133| 1.4221| 2.0078
0.6 0.4573| 65.13| 1.0133| 1.3108| 2.2418
0.7 0.4802| 65.63| 1.0133| 1.1546| 2.8224
0.8 0.5376f 67.09| 1.0133 1.062| 3.5835
0.9 0.6738| 70.75| 1.0133] 1.0141| 4.5021
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TABLE A.9.2

Data predicted for Ethanol-Cyclohexane mixture at 2.bar using the AGAPE fitting

program.
Constants used :- Z =11 R=1.1 Ratio = 0.895
X y T P Au A21
Mol Fraction | Mol Fraction °C Bar
(Ethanol) (Ethanol)
0.05 0.2945 94.13 2| 6.4057| 1.0067
0.1 0.4062 89.19 2| 5.2800f 1.0273
0.15 0.4561 86.94 2| 4.2958| 1.0612
0.2 0.481 85.94 2| 3.5275| 1.1084
0.25 0.4935 85.47 2| 2.9467| 1.1697
0.3 0.499 85.28 2| 2.5005] 1.2452
0.35 0.502 85.25 2| 2.1588] 1.3365
0.4 0.5034 85.22 2| 1.8962[ 1.4453
0.45 0.5039 85.19 2| 1.6894| 1.5742
0.5 0.5059 85.19 2| 1.5263| 1.7255
0.55 0.5094 85.19 2| 1.3971] 1.9026
0.6 0.5158 85.25 2| 1.2938( 2.1083
0.7 0.5423 85.66 2 1.1483| 2.6263
0.8 0.6012 86.97 2| 1.0604| 3.3042
0.9 0.7258 90.09 2| 1.0140f 4.1607
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TABLE A.9.3

Data predicted for Ethanol-Cyclohexane mixture at 4 bar using the AGAPE fitting
program.

Constants used :- Z =11 R=1.1 Ratio = 0.898
X y T P A, A,
Mol Fraction | Mol Fraction °C Bar
(Ethanol) (Ethanol)
0.056 0.2844| 122.09 4| 49797 1.0056
0.1 0.4059 115.8 4] 4.3012] 1.0230
0.15 0.4665[ 112.56 4| 3.6466| 1.0523
0.2 0.4996| 110.89 4| 3.0883| 1.0933
0.25 0.5191| 109.98 4| 2.6425| 1.1463
0.3 0.5313| 109.48 4| 22908 1.2121
0.35 0.5385| 109.22 4| 2.0107| 1.2911
0.4 0.5460| 109.05 4| 1.7905| 1.3850
0.45 0.5515( 108.92 41 1.6142| 1.4972
0.5 0.5577( 108.84 41 1.4727| 1.6269
0.55 0.5656| 108.81 4/ 1.3591| 1.7779
0.6 0.5756| 108.81 4| 1.2679] 1.9531
0.7 0.6081| 109.13 4/ 1.1367| 2.3869
0.8 06677, 110.17 4/ 1.0560| 2.9562
0.9 0.7807| 11269 4] 1.0131| 3.6680
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TABLE A.94

Data predicted for Ethanol-Cyclohexane mixture at 6 bar using the AGAPE fitting
program.,

Constants used :-Z =11 R =1.05 Ratio = 0.890
X y T P A, A,
Mol Fraction | Mol Fraction °C Bar
(Ethanol) (Ethanol)
0.05 0.2942| 139.75 6| 4.6973| 1.0052
0.1 0.4241 132.09 6] 4.1735] 1.0217
0.15 0.4889( 128.06 6| 3.5957| 1.0499
0.2 0.5241| 125.94 6| 3.0737| 1.0897
0.25 0.5451| 124.76 6] 2.6470| 1.1416
0.3 0.5580| 124.12 6| 23011 1.2061
0.35 0.5668| 123.76 6| 2.0245| 1.2837
0.4 0.5731| 123.52 6| 1.8037| 1.3777
0.45 0.5789| 123.37 6| 1.6270{ 1.4878
0.5 0.5849| 123.27 6| 1.4840| 1.6172
0.55 0.5921| 123.19 6 1.3687| 1.7686
0.6 0.6015| 123.16 6 1.2757| 1.9453
0.7 0.6312| 123.34 6 1.1412| 2.3903
0.8 0.6869| 124.25 6| 1.0581| 2.9801
0.9 0.7932| 126.62 6| 1.0136] 3.7317
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TABLE A9.5

Data predicted for Ethanol-Cyclohexane mixture at 8 bar using the AGAPE fitting

program.
Constantsused :-Z =11 R=1.1 Ratio = 0.885
X y 8 ) P A, A,
Mol Fraction | Mol Fraction °C bar
(Ethanol) (Ethanal)
0.05 0.2913| 154.12 8| 4.2890| 1.0048
0.1 0.4258| 145.55 8| 3.8905| 1.0205
0:15 0.4944| 140.91 8| 3.4016| 1.0476
0.2 0.5324| 138.38 8| 29397 1.0857
0.25 0.5555| 136.92 8| 2.5523| 1.1356
O.Sf 0.5702| 136.09 8/ 2.2330] 1. 1972/
0.35 0.5806| 135.59 8| 1.9757( 1.2722
0.4 0.5885| 135.25 8| 1.7688| 1.3621
0.45 0.5956| 135.05 8/ 1.6003( 1.4671
0.5 0.6027| 134.85 8| 1.4652| 1.5920
0.55 0.6111| 134.73 8| 1.3549( 1.7362
0.6 0.6214| 134.66 8| 1.2658| 1.9039
0.7 0.6526| 134.75 8| 1.1364| 2.3245
0.8 0.7085| 135.55 8| 1.0562| 2.8750
0.9 0.8102{ 137.67 8| 1.0132| 3.5792
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TABLE A.9.6

Data predicted for Ethanol-Cyclohexane mixture at 90.9°C using the AGAPE fitting

program.
Constants used .- Z =11 R=1.1 Ratio =0.905
X y T P A12 A2‘1
Mol Fraction | Mol Fraction o bar
(Ethanol) (Ethanol)
0.05 0.2779 90.9| 1.7867| 6.0636| 1.0066
0.1 0.3874 90.9] 2.0329| 4.8079| 1.0256
0.15 0.4415 90.9| 2.1699| 3.8994| 1.0567
0.2 0.4712 90.9| 2.2448| 3.2288| 1.0998
0.25 0.4884 90.9| 2.2848| 2.7250{ 1.1553
0.3 0.4988 90.9| 2.3059| 2.3405| 1.2238
0.4 0.5106 90.9| 2.3233] 1.8104| 1.4047
0.45 0.5153 90.9| 2.3271( 1.6268| 1.5202
0.5 0.5207 90.9| 2.3293| 1.4808]| 1.6551
0.55 0.5277 90.9| 2.3291| 1.3642| 1.8121
0.6 0.5372 90.9| 2.3252 1.2710{ 1.9941
0.7 0.5683 90.9| 2.2954| 1.1376]| 2.4484
0.8 0.6267 90.9| 2.2088| 1.0564| 3.0557
0.9 0.7411 90.9|] 2.0155] 1.0133| 3.8672
0.95 0.8411 90.9| 1.8559| 1.0032| 4.3706
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TABLE A9.7

Data predicted for Acetone-Chloroform mixture at 1 atmosphere using the AGAPE
fitting program.

Constants used :- Z = 11 R=0.7 Ratio = 1.03
X y T P A12 A21
Mol Fraction | Mol Fraction °C bar
0.1000 0.0722| 62.28; 1.0133| 0.5867| 0.9946
0.1500 0.1157| 62.78| 1.0133| 0.6168| 0.9877
0.2000 0.1643{ 63.21{ 1.0133| 0.6476| 0.9779
0.2500 0.2178| 63.59| 1.0133| 0.6787 0.9649
0.3000 0.2756| 63.84| 1.0133| 0.7098[ 0.9489
0.3500 0.3376{ 64.03] 1.0133] 0.7408| 0.9296
0.4000 0.4027| 64.09] 1.0133| 0.7716| 0.9072
0.4500 0.4689| 63.96| 1.0133| 0.8019| 0.8816
0.5000 0.537| 63.78| 1.0133| 0.8316| 0.8529
0.5500 0.6033 63.4| 1.0133] 0.8598| 0.8215
0.6000 0.6679 62.9| 1.0133] 0.8868| 0.7874
0.7000 0.7847| 61.53] 1.0133| 0.9341| 0.7126
0.8000 0.8794| 59.78| 1.0133| 0.9706| 0.6332
0.9000 0.9505 57.9] 1.0133| 0.9929| 0.5544
0.9500 0.9773| 56.96/ 1.0133| 0.9983| 0.5174
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TABLE A9.8

Data predicted for Acetone-Chloroform mixture at 64.3°C using the AGAPE fitting

program.
Constants used :-Z =11 R=0.7 Ratio = 1.03
X y T P A, Ay,
Mol Fraction | Mol Fraction °C bar

0.1000 0.0726 64.3| 1.0815| 0.5899| 0.9947
0.1500 0.1161 64.3| 1.0643| 0.6192| 0.9878
0.2000 0.1647 64.3| 1.0493| 0.6491| 0.9780
0.2500 0.2181 64.3| 1.0370| 0.6796| 0.9650
0.3000 0.2760 64.3] 1.0279| 0.7104| 0.9490
0.3500 0.3378 64.3] 1.0223| 0.7413| 0.9297
0.4000 0.4026 64.3| 1.0209| 0.7720| 0.9073
0.4500 0.4693 64.3| 1.0239| 0.8024| 0.8818
0.5000 0.5366 64.3] 1.0317| 0.8319| 0.8534
0.5500 0.6030 64.3] 1.0443| 0.8603| 0.8223
0.6000 0.6671 64.3| 1.0620| 0.8872| 0.7888
0.7000 0.7835 64.3| 1.1114] 0.9345| 0.7160
0.8000 0.8783 64.3| 1.1768| 0.9707] 0.6390
0.9000 0.9497 64.3] 1.2523| 0.9929| 0.5623
0.9500 0.9772 64.3] 1.2917| 0.9983| 0.5260
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Appendix 10 Vapour pressure equations.

The vapour pressure equations and fugacity equations used in this work are reported

together with the relevant constants used for each pure component. All temperatures

are given in K. Pressures for three parameter Antoine equation and Harlacher equation

given in mmHg. Pressures for six parameter Antoine equation and Fugacity equation

given in bar

Three parameter Antoine Equation

InPs =C, + C,/ (T+C3)

Table A.10.1 constants for three parameter Antoine equation.

Component C, C, C,
Water 18.3036 3,816.44 -46.13
Acetic Acid 16.808 3,405.57 -56.34
Cyclohexane 756.56 -1,661.2 0
Six parameter Antoine Equation

InP** =C; + C2/ (T+Cg) + C3T + C4lInT +C;5T?
Table A.10.2 constants for six parameter Antoine equation.
Component C, C, C, C, C; C
Water 70.4347| -7,362.6981 0.007 -9
Cyclohexane | 98.585|-6,943.3635 0.0153 -14.372
Ethanol 123.912| -8,754.0896 0.0202 -18.1

Five parameter fugacity Equation

Inf"=Cy + Ca/ T+ C3T + C4lnT +CsT?
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Table A.10.3 constants for five parameter fugacity equation.

Component C; C, C, C, Cs
Acetone | -2.3066*10%|6.8603*10%|-1.4358*10"| 4.6384*10"| 6.3961*10°
Chloroform | 1.7424*10?| -8.14*10°| 6.5975*10| -2.9011*10"| -3.0001*10°®

Four parameter Harlacher Equation

InP¥ =C; +C3/ T+ C3InT +C4*Pst/ T2

Table A.10.4 constants for four parameter Harlacher equation.

Component C, C, C, C,
Acetic Acid 57.834| -6,841.98 -5.647 3.44
Water 55.336| -6,869.5 -5.115 1.05
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Appendix 11 Parameters for liquid phase activity coefficients deduced from

consistency test data.

Table A.11.1 gives the parameters derived as part of the consistency test for the
cyclohexane-ethanol data sets. Parameters are provided for Wilson two parameter
equation, UNIQUAC two parameter equation, Van Laar two parameter equation,

Margules two parameter equation and NRTL three parameter equation.

Table A.11.2 gives the parameters derived as part of the consistency test for the
acetone-chloroform data sets. Parameters are provided for Wilson two parameter
equation, UNIQUAC two parameter equation, Margules two parameter equation and

NRTL three parameter equation. Values are not provided for Van Laar two parameter

equation as problems were encountered with this fit which would not converge.

Table A.11.3 gives the parameters derived as part of the consistency test, using the
Lshark program for the Acetic acid water data sets. Parameters are provided for
Wilson two parameter equation, Redlich-Kister four parameter equation and NRTL
three parameter equation. The values quoted are those obtained form the best fit

consistency test for each activity coefficient model.

335



L6ZP'0{9G°€06 |SP'6S8 |6'GEB L'0LL- |E9°L 89} 2ol 69°L ve'Ler |L'8vb'L | D Z'8el|
b0 |[¥O'69EL{IY'8LL [LE°) 9celL- [eL') 154 4 L'l g€cC 890 |L'6CLC | 0606
pr'0 |65°/98 |[S6VL. (6.8 008L- [8F') ¢Sl JASH LE°) €€60C |9Lv¥'L | 1eq )
b0 |646G8 [88'928 [800'L 08SL- (P9l 9l ¥9’L 6G°) 6G°/GE |SELPL Jeq g
b0 |€°2L0°) [6€°18. (S80'L 0¥SL- |[2G7) 69°L P9l 6Ll L6'8LE |TL6S'L ieqg
br'0  |p902ZL|2Sell |L1€2') Ovrl- (L) l0¢ 89°L S0¢ €.86C |L268°L Jeq ¢
br'0  |SP18ZL|eeg8  |£82'L 8'Gcl- [LL') 9c'¢ 8.1 £¢ 9L0F |1°1/8°L Jleqg
bP'0 |/8C8E'L|PS9EL |88E°L 0GcL- (L'} lv'C €Ll G geee 18<lle wie |
5 & ‘9 % 9 % '9 % 9 i Lo

188

(esed-g) TLUN| (Bled-Z) OVNDINN|(B1ed-Z) Seinbiepy| (esed-z) leequep| (esed-z) UOS[IAA Bleqg

$195 B1Ep [OUBY)T-SUBXYO[OAD) 10] S[SpOU JUSIOII0O AJAIOR I0F SIUBISUOD PaTR[No[R))

I'IT'V dT1dV.L

336



9e80°0-

POL'L  |96ChC |ZSEO'0 |ZSE0'0- [€€00'0 |6S'8E |ZEVZE |68'C8L | BIEp ||is 8inssald sjelspol

oL L [Vvb-  |SELOC |L00  |¥BLLS |SZLLZ [8LOQL- |€66Z |SPL'GSE|  Elep |Is ousydsowle meN
6bCC |€9LY'L |PLLS  |GCE0- |8S'SEL |6C°/2- |S8°.GZ |0OF 00Z BJep |jauuoq,0

nO NO _,0 wQ nO NO _.0 NO vo
(eied-g) TLYN (esed-p) JoYS-Yolipay| (esed-z) uos|ip 1eS ejeq

§195 jep 191eM-PIOY O11OJY O] S[9POW JUSIDLJI0D AYAIIOR JOJ S)UBISUOD PIje[nofe)

1y d14v.L

990€0 (EL'6EC |EL'69G- (VL'LGL (88'G6C- (€90~ [CL0- |Lv'eby- |6L°G8 QPE9
990€0 (8E'GS- |S0°€9E- [LL'L) |98'P6L- |€9°0- (CL0- |GEbEe- |9L'89- uwje |

) o) i) o) o) o) o) o) )
(eied-z) 188
(eJed-¢) TLYUN OVNDINN|(eied-g) ssinbiepy| (esed-z) uosiipg|  eleq

$19§ BIRP ULIOJOIO[D-0U0II0Y I0J S|OPOUI JUIOLJI00 AJATIOR 10 SIUBISUOD Pajejnofe))

I’V d14avl

337




Appendix 12 Operating instructions for the Atmospheric pressure still.

The equilibrium still is operated using the pressure control system shown in figure
A.12.1.

1) 125ml of one of the lower boiling pure component is charged to the still. It is

fed into the still via the rotolex joint above the liquid return guard condenser.

2) The vacuum is applied to the still via the vacuum system figure A.12.1 and
controlled to give the required pressure via the Fairchild valve V1. A nitrogen
balance of Spsi is applied to the Fairchild valve so that any balance gas

admitted to the still is inert nitrogen.

3) The magnetic stirrer in the liquid return line is switched on and run
continuously .
4) The main reboiler is switched on and the controlling variac set to 50% full scale

to warm up the still contents. Fine adjustment of the reboiler settings is made
as the still reaches the boiling point of the mixture to give a constant vapour
overflow from the vapour receiver whilst maintaining the liquid level in the

heated portion of the liquid disengaging cup.

5) The vapour line tracing wire is supplied with 15 volts DC to maintain the

vapour line at 1°C above the mixture boiling point.

6) The vapour receiver is agitated every fifteen minutes to mix the sample and

readings are taken at this interval.

7) The still is maintained at constant temperature for at least 1.5 hours before it
is deemed to have reached equilibrium.

8) If the apparatus is run under vacuum, the vacuum is released rapidly via the
Fairchild valve V1 quenching the boiling action of the still and preserving the

vapour and liquid samples.
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9) The vapour and liquid samples are drawn off through valves V2 and V3 in to
ice cooled vials. The first 2 mls of each sample are discarded to account for

dead space in the sample line.

10)  The still mixture composition is changed by with drawing a known amount
from the still via drain valve V3 and adding a corresponding amount of the

higher boiling component to the still .The procedure is then repeated from step
2

ROTOLEX JOINT f:l VA‘_POUR
CONDENSER

LIQUID

GUARD DPI 140

CONDENSER X V2 FILTER  { PRESSURE
| ‘ | < GAUGE

—.—._..

NITROGEN
FAIRCHILD
REGULATOR
REBOILER
= — O~
]
V4 VACUUM PUMP
>

Figure A12.1 Flow diagram low pressure apparatus with pressure control system
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Appendix 13 Operating instructions for the moderate pressure still.

The equilibrium still is operated using the pressure control system shown in figure 5.7

All valves referred to in these operating instructions are detailed in figures 5.6 and 5.7

1Y)

2)

3)

4)

5)

Pressure vessel heaters at the top and middle of the pressure bomb are switched
on and set to 10°C below the boiling point of the lower boiling component of
the test mixture at the desired pressure to preheat the pressure vessel. The tape
heater on the vapour line is set to 10% which is sufficient to maintain it at 1°C

above the mixture boiling point
Close ALL valves before commencing operations.

Pressurising the apparatus. If the apparatus is to be run below three bar
pressure open valves V3 and V1. If the apparatus is to be run above 3 bar open
valve V1 only and disconnect the Druck DPI 140 gauge from the pressure
system. The pressure system should be blanked off behind valve V3. Use the
DPIS00 Pressure controller to raise the apparatus pressure to the desired

pressure, and match it to the balance pressure of the dead weight tester.
Cooling water to condensers is switched on.

Filling the apparatus. 225ml of feed is charged to the apparatus via the 50 ml
feed vessel above the condenser as four aliquots of 50ml and one of 25ml.
Break Swagelok joint above V7 CAREFULLY. Open V7 and fill feed vessel.
Close V7 and reconnect Swagelok joint. Open in sequence V6, V7 and V8,
allow contents of feed vessel to drain in to the liquid receiver. When no more
liquid is seen to drain into the receiver close valves, V6, V7 and V8. Slowly
break open the Swagelok joint above V7 and allow line to vent between valves
V6 and V7. Open V7 SLOWLY and vent feed vessel. Repeat filling operation

until total charge has been transferred to still
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6)

7

8)

9)

10)

11)

12)

13)

Open valves V12, V13, V14, V15, V16 and V17

Switch on the two recirculation pumps. Set main recirculation pump to 5 volts

and the liquid sample circulation pump to 15 volts

Set reboiler to 50% and allow vapour flowrate to bring the apparatus up to the
boiling point. Refine reboiler setting to give steady vapour flowrate to allow 1"
of condensing liquid on the cold finger condenser. Increase the pressure

vessel heaters, setpoints to match the measured boiling point of the mixture.

The boiling point is monitored for the next 2.5 hours using the Omega Digital
temperature reader. The NPL resistance bridge is used to take definitive

temperature measurements every fifteen minutes for this 2.5 hour period.

If an isothermal run is required the pressure has to be adjusted FINELY to
maintain a constant temperature. Equilibrium is assumed to have been reached
when the temperature remains constant for a period of two hours during which

the pressure is not adjusted.

Taking a liquid sample. Valve V10 is opened and the first Smis of liquid are
discarded. A sample of 5 to 10 ml is then taken in to a vial cooled in dry ice.

Valve 10 is then closed.

Taking a vapour sample. Ball Valves V12 and V13 are closed simultaneously.
Valve V11 is opened to allow circulation through the still to be maintained.
Valves V13, V14, V15 and V16 are then closed. The vapour sample vessel can

then be removed and the sample drained in to a vial cooled with dry ice.

Changing the still composition, with the vapour sample vessel removed a
known volume of mixture can be removed from the still by carefully opening
valves V12 and V13 and draining liquid into a receiver. Extra feed of a pure

component can be charged from the feed vessel using procedure described in 4.
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14)

Shut down. ALL heaters are shut off. The Pressure vessel is allowed to cool
naturally to under 100°C. The pressure is then released. Pressurising nitrogen
is shut off from the Druck DPIS00 pressure controller. The pressure is vented
slowly by opening Valve V5. The apparatus is then left to cool to ambient

temperature. ALL pumps are shut down. Cooling water to condensers is
shutoff.
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