Electromechanical resonators as measuring transducers

Abstract

With the increasing use of digital computers for data acquisition and digital process control, frequency domain transducers have become very attractive due to their virtual digital output. Essentially they are electrically maintained oscillators where the sensor is the controlling resonator.They are designed to make the frequency a function of the physical parameter being measured. Because of their high quality factor, mechanical resonators give very good frequency stability and are widely used as sensors. For this work symmetrical mechanical resonators such as the tuning fork were considered, to be the most promising. These are dynamically clamped and can be designed to have extensive regions where no vibrations occur.This enables the resonators to be robustly mounted in a way convenient for various applications. Designs for the measurement of fluid density and tension have been produced. The principle of the design of the resonator for fluid density measurement is a thin gap (trapping a lamina of fluid) between its two members which vibrate in antiphase.An analysis of the inter­ action between this resonator and the fluid lamina has carried out.In gases narrow gaps are needed for a good sensitivity and the use of the material fused quartz, because of its low density and very low temperature coefficient, is ideally suitable. In liquids an adequate sensitivity is achieved even with a wide lamina gap. Practical designs of such transducers have been evolved. The accuracy for liquid measurements is better than 1%. For gases it was found that, in air, a change of atmospheric pressure of 0.3% could be detected. In constructing a tension transducer using such a mechanical sensor as a wire or a beam, major difficulties are encountered in making an efficient clamping arrangement for the sensor. The use of dynamically clamped beams has been found to overcome the problem and this is the basis of the transducer investigated.

Divisions: College of Engineering & Physical Sciences
Additional Information: If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our takedown policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: electromechanical resonators,measuring transducers
Last Modified: 08 Dec 2023 08:11
Date Deposited: 12 May 2010 13:10
Completed Date: 1980
Authors: Hassan, Anwar

Download

Export / Share Citation


Statistics

Additional statistics for this record