Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches
copyright, (either yours or that of a third party) or any other law, including but not limited to
those relating to patent, trademark, confidentiality, data protection, obscenity, defamation,
libel, then please read our Takedown policy and contact the service immediately
(openaccess@aston.ac.uk)




ELECTROMECHANICAL RESONATORS

AS MEASURING TRANSDUCERS

by

ANWAR HASSAN

Submitted for the Degree of
Doctor of Philosophy
at

The University of Aston in Birmingham

November 1980



ELECTRCMECHANICAL RESONATORS AS MEASURING TRANSDUCERS

by
ANWAR HASSAN

A thesis submitted to the
University of Aston in Birmingham
for the degree of
Doctor of Philosophy 1980

Sumary

With the increasing use of digital camputers for data acquisition
and digital process control, frequency damain transducers have became
very attractive due to their virtual digital output. Essentially they
are electrically maintained oscillators where the sensor is the
controlling rescnator. They are designed to make the frequency a
function of the physical parameter being measured. Because of their
high quality factor, mechanical resonators give very good frequency
stability and are widely used as sensors.

For this work symmetrical mechanical resonators such as the
tuning fork were considered to be the most promising. These are
dynamically clamped and can be designed to have extensive regions
where no vibrations occur. This enables the resonators to be robustly
mounted in a way convenient for various applications. Designs for
the measurement of fluid density and tension have been produced.

The principle of the design of the rescnator for fluid density
measurement is a thin gap (trapping a lamina of fluid) between its
two members which vibrate in antiphase. An analysis of the inter-
action between this resonator and the fluid lamina has been carried
out. In gases narrow gaps are needed for a good sensitivity and the
use of the material fused quartz, because of its low density and very
low temperature coefficient, is ideally suitable. In liquids an
adequate sensitivity is achieved even with a wide lamina gap.
Practical designs of such transducers have been evolved. The accuracy
for liquid measurements is better than 1%. For gases it was found
that, in air, a change of atmospheric pressure of 0.3% could be
detected. This corresponds to a density sensitivity of about
4 x 1073 kg m~S.

In constructing a tension transducer using such a mechanical
sensor as a wire or a beam, major difficulties are encountered in
making an efficient clamping arrangement for the sensor. The use of
dynamically clamped beams has been found to overcame the problem and
this is the basis of the transducer investigated.
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CHAPTER 1

ELECTROMECHANICAL RESONATORS AS MEASURING TRANSDUCERS -

A REVIEW

1.1 INTRODUCTION

The Instrument Society of America has defined a
transducer as a device that converts physical phenomena
and chemical composition into electric, pneumatic or
hydraulic output signals. However the electric form
is mostly desirable in measurement and control systems,
whether in laboratory, production plant or aviation.
This is because of the convenience of subsequent

operations on the data.

Thus a measuring transducer may be looked upon as
a device to convert non-electrical measurands into
electrical guantities. Transducers may be genuine
energy converters, called active transducers, or they
may require an auxiliary energy source and are therefore
energy controllers, called passive transducers. Distinction
can also be made between a sensor and a complete transducer
in that a sensing element or sensor can be said to'be
that part of a transducer that responds directly to the
measurand. A diaphragm, for example, can respond directly
to changes in pressure by mechanical displacément. No
electrical output is produced. However a resistance

strain gauge attached to the diaphragm can modify a



supplied voltage in proportion to the strain in the disk.
The combination of the two elements forms an electro-

mechanical transducer.

Figure 1.1 shows the place of such a tranducer in a
general functional diagram of a measuring system. As
output quality of the system can be no better than the
quality of the input, the vital role played by the measuring
transducer is quite evident. Gardiner(l) has described it
as "an unfortunate fact of life that in any measurement
and control system, the system accuracy is largely dependent
on the accuracy and repeatability of the transducers or
prime measuring elements". So there is a continuous
effort for the development of new improved transducers.
Most of the earlier developed transducers provide outputs
in analog form. Table 1.1 gives a list of some physical

effects employed in these transducers.

The recent increasing use of digital computers for
data acquisition and digital process control has stimulated
development for transducers with digital output. Schuler(z)

has defined four types of digital transducers:

(1) analog-to-digital (A-D) transducers

(2) direct digital transducers

(3) indirect digital transducers

(4) quasi-digital transducers.

When computers were first used for control purposes digital
instruments were not generally available so A-D converters

were developed to provide digital data formats which the
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FIGURE 1.1 A general functional diagram of a

measuring system.



PHYSICAL EFFECTS USED IN

'ACTIVE' (ENERGY-CONVERTING)

PHYSICAL EFFECTS USED IN

'"PASSIVE' (ENERGY-CONTROLLING)

Magnetorstrictive (as a
generator)

Thermec-electric
Photo-electric
Photo-voltaic

Electro-kinetic

Pyro—-electric

TRANSDUCERS TRANSDUCERS
Electromagnetic Resistance
Piezoelectric Controlled

)
)

Inductance ; by geometry
)

Capacitance

Mechano-resistance (strain)
Magneto-resistance
Thermo-resistance

Photo-resistance
Piezo-resistance

Magnetostrictive (as a
variable inductance)

Hall effect
Radioactive ionization
Radioactive screening

Ionization (humidity in
solids

TABLE 1.1 LIST OF SOME PHYSICAL EFFECTS USED IN

MEASURING TRANSDUCERS




computer could interpret. The direct digital transducer
uses no analogue phenomenon or counting technique to obtain
a digital output. There have been attempts to develop a
transducer of this type but as yet none have been success-
fully developed(2’4). Indirect digital transducers use

an analogue phenomenon, such as displacement, for sensing
and conversion to a digital output. However developments
of this type are very few and until now the shaft angle
encoder seems to be the only practical one of this type(3'4)<
Quasi-digital transducers are those which have frequency or
pulse rate or pulse duration outputs. Of these perhaps the
most versatile is the first one. Sometimes this type is
called frequency domain or variable frequency transducer.
Actually they are electrically maintained oscillators where
the sensor is the phase sensitive controlling element. Thus
the oscillator frequency is a function of the parameter
being measured such as temperature, fluid density, fluid
pressure, etc. The advantages of an electrical frequency
output from a transducer, in contrast to voltage or current,
have a radical effect on the data handling methods employed
to process the outputs(5’6’7’8). A main one arises from

the virtual digital nature of the output which hence can

be processed, transmitted and stored by high reliable low
cost digital techniques. Practical advantages also arise

as immunity to plant vibration, the ease with which safety

techniques such as zener safety barriers and transformer

coupling may be applied to the output signal without loss



of accuracy.

Variable capacitance or variable inductance trans-
ducers can be incorporated in the tuned resonant circuit
Oor so called tank circuit of an L-C oscillator as to
control the frequency of oscillation and thus producing
frequency domain transducers. There are few practical
transucers of this type. Even changes of resistance can
be used in f.d. technique. One interesting development
of this type is the digital force transducer by Dorrity
and Gilliland(4). It is based on the variation of a
strain cauge resistance with force; the resistance being
connected to control the run time of a monostable multi-
vibrator. However perhaps widely used sensors in frequency
domain technique are mechanical resonators. This is
because of the high quality factor, versatility and other
practical advantages such as good repeatability, low
hysteresis, excellent stability, etc. of a mechanical

resonator. Derrick(g)

has called it "measurement tool of
the Seventies”. The natural frequency of resonance of a
mechanical system depends upon physical quantities such

as density, stress, elasticity, dimensions, temperature,
etc. When this variation in natural resonant frequency
can be arranged to respond to changes-in only one of these
physical quantities with high immunity to changes of the

Oothers, then the resonant frequency may be effectively

employed as a measure of the former physical variable,



1.2 FUNDAMENTALS OF FREQUENCY DOMAIN TECHNIQUES WITH

MECHANICAL RESONATORS

This may be best understood by consideration of an
idealized mechanical vibrator with one degree of freedom.
Such a system, as shown in Figure 1.2, consisting of mass

M, spring of stiffness K and viscous damping Rm has the

X
—>

™ —— Kk s(t)

A

7 T T T

Figure 1.2 AN TIDEALIZED MECHANICAL SYSTEM WITH MASS,

SPRING AND DAMPING

equation of motion

MX + R X + KX = KS(t) (1.1)

where KS(t) is the driving force and

S(t) is a function of time



or TOZX + T.X + X = S(t) (1.2)

1

R

—'...._m =
where Tl =z and TO /

izl

For sinusoidal excitation of S(t) = Aejwt, the output

X(t) is given by

jwt

>
‘+
]

F(jw) Ae

Aejwt

]

(1.3)

. n2m 2
l+jwT, ~w T.o

1

where F(jw) is the complex frequency response of the

system.

or Fijw) = , (1.4)

Therefore relative amplitude response

1

|F(jw) | =
: /{(l-szO?)2+m2Ti}

and phase angle ¢ between the input and output signals 1is
-1 2m 2
¢ = tan {le/(l—w TO )} : (1.6)
Rearranging equations (1.5) and (l1.6) and introducing

w_ = 1/T = /K/M | undamped natural frequency
© © (circular) |



and R = Tl/ZTO = Rm/2¢MK

we have,

|F(Fw) | = 1 (L.7)
V{] 1-(w/w ) ?[?+4R? (w/w)?}

and

-1 ZR(w/wo)

l-(w/wo)2

¢ = tan

(1.8)

Equations (1.7) and (1.8) haﬁe been plotted in

Fig. 1.3 for various values of w/wo, the damping ratio

R being a parameter. It can be seen from the curves that
oscillations of the system can be maintained at a precise
stable state at its natural frequency of resonance Wy s by
electrical circuits with proper phase and gain; provided
damping parameter R is of low value, say below 0.4. We

is ]K/M]%, sO that any factor contributing to a variation
in K or M will result in a change in the frequency of the
maintained oscillation and this frequency may be employed

as a measure of such variations.

1.3 PHYSTCAL QUANTITIES MEASURABLE

As stated above any physical variable which contributes
to changes in the mass or stiffness of the vibrating resonator
will cause a change in the maintained oscillation frequency.
Changes in mass may be made by density changes of surrounding

fluid or by direct change of solid mass. In this way the



R=0
Q
0
o
& R=0.2
)]
8 R:O.4’
Q
T
]
P
o~
~t
Q4
g
©
Q
20
o .2
[t}
4
0}
m e A P .
0-1 0.2 0.4 0.60.3) 2 4 6 30

w/wy -

Phase response

4 & 310

FIGURE 1.3 Response curves of an idealized mechanical
system with mass, spring and damping (see
Figure 1.2).



frequency domain technique may be used to design fluid
density transducers or as detectors of solid deposition.

An example of the latter case is the common use of
vibrating quartz crystals in vacuum chambers to monitor

the thickness of evaporated or sputtered films. As a

film builds up on workpieces and crystal monitor, the

extra vibrating mass causes a reduction in resonant
frequency. Very fine control of film thickness is
achievable with this method. Changes in the stiffness

of the system may be arranged to be a direct effect of
changes in compressive or tensile stress on such physical
elements as vibrating wires or prismatic beams. This may
be used to design load cells, pressure transducers, etc.
Again the dependence of resonant frequency on temperature
because of the large temp.coefficient of elasticity of somé
materials and to a smaller extent the expansion coefficients
of the materials, may be utilized to design a thermometer.
This catalogue is by no means exhaustive, and many other
variables may be measured either directly or by implication.
A brief discussion of operating principles and main features
of some of the important transducers based on mechanical

resonators is given in the following sections.

1.4 A REVIEW OF SOME MEASURING TRANSDUCERS BASED ON

MECHANTCAL RESONATORS, USING FREQUENCY DOMAIN TECHNIQUES

1.4.1 Fluid Density Transducers(6’lo)

(6)

(a) Solartron liquid density meter: The transducer

consists of a pair of nickel-iron alloy tubes welded

- 11 -



to a common support at each end so that they lie

FLEXIBLE PIPES COIL ASSEMBLY

\ /
‘ / d
6 ] j

CASE

3’?

Figure 1.4 SOLARTRON LIQUID DENSITY METER

parallel to each other (Figure 1.4). Suspended from
the end supports and lying between the two tubes is an
electromagnetic drive and pick-up coil assembly. With
the use of a maintaining amplifier, the coils drive the
tubes in the fundamental lateral mode at their mean
natural frequency. The tubes and coils are held to
the transducer case with anti-vibration mounts and the
liguid whose density is to be measured flows through
both tubes. This is arranged by 'Y' coupling tubes and
flexible connecting pipes as shown in the illustrations.
Since the natural frequency of oscillation of the tubes
is a function of their mass per unit length, it is also
a function of the density of the liquid contained in the

tubes. By measuring this frequency, it is therefore

- 12 -



possible to compute the liguid density. The tubes vibrate
at a frequency of about 1.3 kxHz when filled with air. When
water filled the frequency is reduced to about 1 kHz giving
a 20% reduction in frequency (ox 25% increase in periodic

* time) for a density span of 1000 Ké/m3. The use of nickel-
iron alloy makes it possible to have a very low instrument
temperature coefficient of less than 0.02 Kg/m3/deg. C. The
density/frequency relationship is given by

[(£.2/8,0)-1 ] (1.9)

Po = Pg

where = liquid density
f2 = frequency output at density Py
f_ = frequency output at zero density

P = sensitivity constant.

In practice fo and P, are the calibration constants. This
transducer is expensive but provides high orders of accuracy(g).

(b) Solartron gas density transducer(6): The sensing

element of this transducer is a thin walled cylinder
resonated in 'hoop' or radial mode. Figure 1.5 shows a
diagrammatic representation of the cylinder and its hoop
vibration mode. The maximum vibration amplitude occurs at
the middle of the cylinder length with nodes at the ends.
The cylinder is therefore clamped at one end with a free
node-forming ring at the other end. The gas, whose
density is to be measured, is passed over both the inside

and outside of the cylinder. Gas is thus broughtinto

- 13 =



GAS

EJ GAS

‘\.,;4’

VIBRATION MODE

Figure 1.5

oscillation by the vibrating walls and contfibutes to
the mass of the walls by an amount which depends on the
density of the gas. 2An increase in density will increase
the effective mass_of the vibrating system and»thus lower
the natural resonant freguency. Oscillation is again
maintained electromagnetically by positioning drive and
pick-up coils inside the cylinder and coupling them to a
maintaining amplifier ciruit. A low instrument temper-
ature coefficient is achieved by machining the cylinder
sensing element from the same nickel-iron alloy used
for the ligquid density transducer giving a near zero
thermoelastic coefficient. The cylinder wall thick-
ness varies between 5 x lO-Sm to 30 x lO—Sm, depending
on the density range to be measured. A 20% frequency
reduction is chosen to correspond to full scale density

range with ranges such as 4.9 kHz to 3.9 KHz for O to

- 14 -



60 Kg/m3 and 7 kIt to 5.6 kiz for O to 120 Kg/m3. A
strong housing is used to withstand pipeline pressures
and filters are provided to help ensure that the sensing
element is kept clean. The density/frequency relation-

ship is given by

C . C

o = —L + 2 4¢ (1.10)
g
where pg = gas density
fg = transducer frequency output at pg
Cl’ C2, C3 = caliberation constants
(c) Agar vibrating spool density meter(lo): The
principle of operation is shown in Figure 1.6. The sensing
!( IAMPLIFTER
? FLUID > ~>
—— S
L
Figure 1.6

element is a tube thickened at the two ends (spool), which

is set in the circumferential mode of oscillation. The

- 15 -



spool is maintained in oscillation by a feedback
amplifier, The fluid to be measured is allowed to
surround the spool and thus is set in oscillation as
well. The frequency of oscillation is a function of the
mass of the surrounding fluid. An increase in the
density of the fluid lowers the frequency of oscillation.
The output of the amplifier is monitored by a frequency
meter whose display is calibrated in the desired units
of density. The periodic time/density relationship is

given by the empirical formula

- 2 _ ~ :
op = ool(Tf/To) 1] (1.11)

g
oy
0]
H
®

1o
1

£ = measured fluid dénsity

po = scale factor
Tf = measured periodic time of oscillation at o
To = periodic time at vacuum.

A typical sensitivity is a change of periodic time from
300 x lO-Gs to 330 x lO-6s for a density span of 100 Kg/m3.
Sufficient information is not available about the driving
technique and other important criteria such as gecmetrical

dimensions, materials, etc. of this transducer.

1.4.2 Gas Pressure Transducers(ll—la)

A typical example of these transducers is one

(11)

developed by Meyer The sensing element consists of

an assembly of two concentric closed-end cylinders - a

- 16 -



vibrating inner one and a protective outer one. These
cylinders are fastened to a common base at one end and

are free at the other. A schematic representation of this
configuration is shown in Figure 1.7. An additional
central structure is built from the base, and this is

called the spool body. The spool body serves as a support

- COIL
OUTER | ASSEMBLY
CYLINDER
1V
CZJ/
INNER
CYLINDER
O 9
SPOOL—m—m—— T
BODY -
' T —-PRESSURE
FOUR LOBED HOOP
MODE
Figure 1.7

for electromagnets used in (l) exciting the vibrating
inner cylinder and (2) detecting its motion and frequency.
The space between the vibrating inner cylinder and the
protective outer cylinder is evacuated to serve as the
absolute pressure reference. The cavity volume between
the vibrating inner cylinder and the spool body receives
the input pressure, generally through porting passages

in the transducer base. The wall elements of the

cylinder are tensioned by the pressure acting over the



Cylinder internal area. This tension causes the cylinder
natural frequency to increase as a function of the increased
pressure. The mode of vibration of the cylinder is chosen
to operate in the four lobed symmetrical hoop mode as

shown in Figure 1.7. The exXpression for pressure as a

function of vibratory cylinder frequency is

P=By(f - £) + By(f, = £)% + By(f, = £)° (1.12)
where constants Bl’ B2, B3 are derived from calibration
and fp and fo are the transducers freguencies at pPressure
P and at zero pressure fespectively. The effect of density
of gas is removed during the calibration process for a
given gas. lThe vibrating cylinder is typically 45 x lO—3m
long; 19 x lO-3m diameter and a wall thickness of 75 x lO-Sm.
Typically a 20% frequency change is chosen over full working
range with a nominal frequency of 5 ki1y to about 16 KHz,
depending on the pressure range. Full-scale ranges avail-

able are 1 to about 7 x lO7 pascal.

l.4.3‘Temperature Transducers(lG—zo)

Changes in the elasticity, due to thermal effect, of
a vibrating body, will cause variations in resonant
frequency. 1In most cases this is an undesirable effect
and materials are chosen to give a very low thermo-elastic
coefficient (as mentioned in previous sections). Obviously
the above effect may be turned to advantage in the design

of a thermometer with a frequency output. In this case,
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materials are chosen to give the greatest possible effect
of temperature changes on elasticity and physical dimensions
resulting in the maximum sensitivity of frequency to
temperature. Thermometers are available employing thi;
technique using a duartz crystal sensing element(lG). In
this case the reverse design criteria apply to those used
to produce high stability frequency standards. This is
achieved by employing an angle of cut to give the largest
possible temperature coefficient. In the commercially
available Hewlett-Packard thermometer the crystal is
approximately 6.5 x lO_3m diameter and sealed in an inert
atmosphere in a small container. The frequency temperature

relation is given by

fT = foo(l + aT) (1.13)
where fOO = fundamental frequency at T = 0°¢c
fT = frequency at temperature e
a = calibration constant.

A convenient slope is 1000 Hz per °c at a fundamental
frequency of approximately 28 MHz. The operating temper-
ature range is ~4OOC to + 23OOC which limits the application.
However, the very high 'Q' factor gives a correspondingly
high frequency stability, and although the temperature
coefficient is relatively small the result is a high

sensitivity instrument.
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1.4.4 Torce Transducers (21=26)

This type of transducer is based on the change of
resonant frequencies of wires or beams, due to force
applied on them in the form of compression or tension.

A number of transducers have been built on this principle.
A typical one described by Wyman(Zl) consists of a
vibrating titanium wire (.63 x lO-4m diameter and

32 x lO-Bm long) located between the poles of a permanent

magnet as shown in Figure 1.8.

— AN
ELECTRICAL
INSULATION
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N S X o
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X
: T

Figure 1.8

Tensile force is applied to the wire through insulated
anchorages. The wire forms part of the electrical
detecting network which maintains the wire vibrating
at the frequency of its transverse resonance. The

electrical impedance of such a wire vibrating in a
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magnetic. field peaks sharply when vibrating at this
frequency. The oscillator circuit:  consists of an
amplifier with broad-band negative feedback aﬁd narrow-
band positive feedback. The centre frequency of the
narrow band is set at the mean frequency of vibration
over the operating range required. The output
amplitude is regulated by overall control of the loop
gain by the field effect transistor. This circuit will
‘maintain. the output at a frequency equal to the natural

frequency f of the tensioned wire. This frequency is

given by
_ 1 /T
f = —2~L——1/-E hertz (1.14)
w -
where Lw = length of wire
T = tension force
m = mass per unit length.

The transducer has a centre freguency of about 3700 Hz

for a tension load of 0.81N. Maximum force measurable

is around 1lOON. It is particularly important to terminate
the wire efficiently, so that no relative movement exists
between the wire and any part of the clamping arrangements.

1.5 OTHER TECHNIQUES OF MEASURING TRANSDUCERS WITH
(27-36)

MECHANICAL RESONATORS

Though frequency domain technigue seems to be very
attractive for designing transducers with mechanical

resonators, there are a good number of developments
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(27)

using other techniques. Mason used impedance method
to measure fluid prOperties; This method employs the fact
that electrical impedance of a driving unit used to set
forced vibration in a mechanical system, immersed in a
medium, varies with the properties of the medium.

Another important technique, which has been widely
(28-34)

used mainly for measuring fluid viscosity '

the resonance decay method. It consists of measuring
the amplitude time decay of free vibrations of a
resonator. A brief discussion of two transducers of
this type is given below to have an understanding of the
working principles and other related features of this
method.

(a) Ultra-viscoson: This instrument developed by Roth

and Ritch(28)

utilises the interaction of ultrasonic
elastic waves with the fluid whose viscosity is to be
measured. A thin metal strip, as shown in Figure 1.9,
is excited magnetostrictively in its fundamental
longitudinal mode by an impulsive signal. If the strip
is in a vacuum so that the movement of its surface is
unimpeded, once an eastic disturbance is established,
it will propagate along the strip with a velocity of
propagation equal to the so-called "long bar”" velocity.
If internal losses are negligible, the disturbance
will propagate along the strip without suffering any

attenuation. If this same strip is now immersed in a

viscous ligquid, its surfaces are no longer unimpeded
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Figure 1.9

- the velocity will be reduced, and the elastic disturbances
will be attenuated as it propagates along the strip. The
viscometer operates by measuring this attenuation as a
function of time. The strip is held at its centre and only
one half of its length L is immersed in the material to be
measured. The particle displacement & (x,t) at any point

along the strip under the above condition, is given by

e—(a—jb)t

£z, t) = g sinf=, n=1,3.... (1.15)
R L L
where a = 3 Od - 1%({C2 + D?}* - Q) |*?
°m
X L by
S T VT
2p_ d

- 23 -



Z = driving point impedance of the medium

o]
= Ro +‘3Xo
nmC_ 2 X R G
- m O 0
S R U oL
m m
R X
D = —m————
232
2pm d

O™ density of strip material

2=
C.m E/pm

E = Young's modules

The amplitude is seen to comprise a sinusoidal oscillation
of frequency which decays exponentially with time. For a
viscous material Zo is given by

Jwoen
z_ = 1 5 l (1+3) (1.16)

where pe = density of the fluid
n = viscosity of the fluid
w = circular frequency of oscillation
and a then becomes
nmC 0N %

a = (—————) , n=1, 3 ... (1.17)
8me?d2

An electronic computer is used to generate the impulse
that sets the probe into vibration and then produces an

electrical output proportional to a. From equation 1.17,
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a = Klpfn where Kl is system constant. The instrument

thus reads (viscosity x density) of the fluid.

(b) Viscometer designed for biological fluids(zg):

The basic principle of design involves the electronic
measurement of the damping constant of a tuning fork
which is damped by the fluid immersion of needle-like
leg projection, as shown in Figure 1.10. The elctro-
magnetic driver and receiver are connected as part of an

amplifier and phase locked loop circuit. In operation,

s PICK UP COIL 1 RO
ﬂ > PROGRAMMER
L
L L
Y
Y v
COUNTER
£ /N
|
AN
— POWER | PHASE

AMPLIFIER LOCKED LOOP

Figure 1.10

the tuning fork is part of an oscillatory system and
quickly builds up to a pre-established maximum amplitude.
The driver amélifier is then shut off by a programmer
system and the oscillations naturally decay in amplitude
exponentially. An electronic counter counts the number
of oscilla£ions, and provides a digital readout of

these counts, until the amplitude of oscillation decays

- 25 -



1l/e of the initial maximum amplitude. The electronic
programmer then turns on the driver again, and the fork

is driven to the maximum amplitude again to start the
cycle over again. The digital readout of the number of
cycles in the decrement, or natural decay is the parameter
for the desired measurement. The number of cylces fe’
until the oscillation decays to l/e of its initial

amplitude is given by

i 3 313 1 T 2 192
/ 8{3 o |A_L +A (L *-L%) |+ FK_M_'LE+K M, "2
£ o= (1.18)

e 1—_ y ] 2 1 ! 2 "
T 3Ka Ma wL“+ KQ MR wl“+ K

where § is the stiffness coefficient, p is material density,
A the cross sectional area, L is the length of the tuning
-fork prong, A2 is the length of the immersed part of the
needle, % is the distance from the pivot to the mid-point

of AL, Ln is the total length of the cylinder plus needle
(Figure 1.10). The subscript c stands for tuning fork
cylinder, n for the needle, a for air, and % for test liquid.
Thus Ma’ and MZ, represent, respectively, the mass of air
displaced by the tuning fork and the mass of test liquid
displaced by the immersed part of the needle, and Ka, Ka'

and K Kd the Stokes coefficients for the air and

,Q,’
ligquid respectively. For fixed physical and geometric
configurations, everything in equation 1.18 is known

except K, and K,'. K, and K,’ are functions of (wA?/v)

where v is the kinematic viscosity, so that by measuring

f_ the value of the viscosity of the fluid can be determined.

=

- 26 -



CHAPTER 2 .

THE PRESENT DEVELOPMENT - A BRIEP OUTLINE

2.1 INTRODUCTION

Various transducers using electromechanical resonators,
developed in the past, for the measurement of physical
variables such as fluid density, fluid pressure, temperature,
force, viscosity, etc., have been reviewed in the previous
chapter. The work described in this thesis is the result
of an attempt to develop some improved versions of this
type of transducer for measuring fluid density and
force in the form of:tension. Impro&eménts in
such factors as sensitivity, accuracy, robustness,
simplicity and cost have been the aims. Some resonators
of special structural configurations have been considered
and studied for this purpose. The resulting designs
have been used to achieve the improvements of the
transducers. The basic operating technique adopted is
that of frequency domain, as described in Chapter 1. This
technique has been used for its various advantages, already

discussed there.

2.2 A GENERAL VIEW OF THE RESONATORS

Figure 2.1 shows general designs of the resonators.
2.1(a) is a pair of clamped-free-free~free rectangular
plates and 2.1(b) is a pair of circular disks clamped

together at the centre by a post. These designs are for
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(a) A pair of clamped-free- (b) A pair of circular disks
free-free rectangular clamped at the centre
plates. by a post.

(For fluid density (Also for fluid density).
transducer).

N— ]
O C > O
7 N

(c) A pair of clamped-free-clamped-free beams.
(For tension transducer).

FIGURE 2.1 A general view of the resonators shown
in section.
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fluid density transducers. That for a tension transducer
is a pair of clamped-free-clamped~free beams, as shown
in 2.1(c). Considering structural configurations and
their desired flexural mode of vibration, they may be
classifield as a type of double resonators. In the
literature, the most familiar double resonator is

the tuning fork. It has a long history of various
applications. Lord Rayleigh used an electrically
maintained tuning fork to measure temperature. Where
the accuracy requirement does not justify the higher
cost of crystal controlled oscillators, tuning forks

are widely used as frequency standards<37). Other
typical applications are in time and frequency measuring

devices(38’39), fixed audio filters(4o'4l), and remote

control systems(42).. In our laboratory much work had
been done successfully to develop ultrasonic thermometers
using specially designed double resonators(ls_ZO) which
may be taken as a type of tuning fork. A general view

of a typical one of them is shown in Figure 2.2. From
the view point of their desired mode of vibrations -
flexure of the two members in anti-phase, the resonators
used by the author may also be regarded as some types of
tuning forks. For example the resonator of FigurelZ.l(a)

may be taken as a rectangular plate tuning fork, that of

Figure 2.1(b) as a circular plate tuning fork, etc..
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A/4 coupling transformer

FIGURE 2.2 A double resonator used for ultrasonic thermometxry

A brief outline of the properties of- these double resonators,
which are the basis of the proposed developments, is given

in the following sections.

2.3 ~ DOUBLE RESONATORS AND DYNAMIC CLAMPING

The use of mechanical resonators in the designs of
transducers and also other practical situations, generally
require one or more of the boundaries of the resonators to
be clamped. This clamping condition is, however, difficult
to realise practically but the use of double resonators
gives a simply realisable method of approximating to this
condition by the phenomenon of dynamic clamping. It is a
situation created by the opposing motion of the two memkers

of a double resonator vibrating in anti-phase. Thus at
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the base of a tuning fork, because of the constraining
effect one tine sets on the other, the angular mementum
of one tine exactly balances that of the other. The
static equivalent is the clamped reed, where it is
assumed that the clamp is sufficiently massive to react
to momentum changes without energy absorption. Consider
the vibration of the resonator of Fig. 2.1(a) as shown

in Fig. 2.3. When the two tines perform the kind

of motion indicated, the very small displacement at point

p will be in the x direction only, since the resultant

P LT >
' Y
%
Z
‘\
\\
N 3 X
V 7
p/ ,
7/
/
Z.
5 8H

FIGURE 2.3 A Double Resonator in Tuning Fork-like Vibration

LT is the tine length and 0,68H is the empirical correction

of Karlmarczie.

of that in y direction will be zero. ~In addition, the
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differential of the displacement in the Y direction

will be zero. Therefore since
98U
Uy = §§X =0 (Uy is displacement in y direction)

(2.1)

at y=0,1it seems reasonatle to assume that the kind of
boundary condition that exist should be related to that
of clamped, However, because of the complexity of the
problem, theoretical solutions are not readily obtainable
to locate the position of p on x-axis. Karlmarczie(43)
depending on experimental results, made an empifical approach
to solve the problem. He compared the natural frequencies

of the tines of the double resonator with that of a
statically C.F.F.F. plate, by developing a dimensionless
frequency factor. Thereby he concluded that the tines

may be taken in C.F.F.F. state by assuming an apparent
increase in length LT by a factor proportional to thick-

ness H. He also found that this proportionately factor

C depends on the particular mode of vibration. He deter-
mined the values of C for first and second modes of tuning
fork like vibration, approximately, as 0.68 and 1.14

respectively.

Similar conditions may be assumed for the other
resonators of Figure 2.1, as have been verified
experimentally in Chapters 4 and 6. Thus it can be
seen that the problem of clamping in designing transducers

with mechanical resonators, is made considerably easier
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by using this type of double resonator.

2.4 DOUBLE RESONATORS" AND FLUID DENSTTY TRANSDUCERS

A general view of the particular structures of the
double resonators designed for fluid density transducers
has been shown in Figures 2.1(a) and 2.1(b). A significant
feature of these resonators is that a thin layer of fluid
is trapped between the vibrating members. This feature
may be taken as a main criterion for the proposed

improved versions of density transducers.

When a vibrating body is immersed in a fluid medium,
there are changes in the dynamics of thé body due to loading
effects of the fluid,» This interaction may be used as a
good basis for designing density transducers. In the past
several such transducers were built with different structures
of resonators giving various degrees of success , as
already discussed in Chapter 1. While based on the same
fundamental principle, the present structures have been
designed with an aim to have a significant improvement in
sensitivity of the transducers. At the same time improve-

ments in robustness, simplicity, cost, etc., have also been

locked for.

Fluid loading effect on a resonator may be split

up into three main divisions

(a) reactive loading
(b) sound radiation loading
(c) viscous loading.
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Of these the first one has the effect of changing the
natural frequencies of the resonator, while due to the
other two its vibrations are damped. Therefore in
designing frequency domain transducers utilising fluid
loading effects, a normal attempt is a maximisation of
reactive loading with possible minimums of the other

two. Reactive loading may be expressed by an equation

of the form

w? o= (S, + AS) /(Mg + M) (2.2)
where w is a natural frequency of a resonator, Se is the
stiffness and Me is the mass of its corresponding in
vacuum equivalent lumped circuit. AS and AM are the
effective changes in stiffness and~mass respectively due
to the loading. From equation 2.2 it can be seen that

AM, which arises from . the additional kinetic energy
stored by the resonator in its surrounding fluid, lowers
the natural frequency. On the other hand AS - due to
compression of the fluid raises the natural frequency.

The resultant change depends upon the relative values of
AM and AS. AM is the one which is normally related
directly with the density of the fluid. Thus a predominant
mass effect (negligible stiffness effect) is usually the
desirable criterion for designing density transducers.
Conditions unaer which compression, hence stiffness effect
is negligible, can be found in the literature; A main one

is that the wavelength of sound in the fluid should be
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considerably larger than the gecmetriCalfdimensions‘
of the vibrating body(44545), In View of the

above comments and also of supporting results of pre-
liminary experiments, the double resonators were designed
to operate at low frequencies (typically below 5kHz). Low
frequency also increases the magnitude of the mass effect.
The interpretation given by Junger(46) is that at high
frequencies, the resonator vibrates with such rapidity
that the disturbance does not travel far before the action
is reversed; whereas with low frequency the resonator
tendsvto accelerate larger gquantities of fluid. Again

this low frequency helps to keep the unwanted loss due

to sound radiation loading at a low value.

The literature indicates that at low frequencies
mass effect is normally highest at the fundamental flexural
mode of vibration of the resonator(47). This being the
lowest frequency mode also favours geometrical designs.
Another practical advantage of this mode is its good
isolation from other modes. This generally helps in the
design of the associated electrical circuits for maintaining

the vibration of the resonators in this mode (see Chapters

4 and 5).

Initial experiments with the double resonators support
the above discussed criteria of fluid-vibrating body
interaction. In fact in those experiments it was found that
these resonators at low frequency fundamental flexural mode,

are a very convenient type of structure to obtain pre-
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dominant mass effect of high values. This initiated
further practical and theoretical investigations with them
for the proposed development. Theoretical analysis has
been discussed to a detail in Chapter 3; while
experimental verifications and thereby practical designs

for gas density and liquid density transducers have been

discussed in Chapters 4 and 5 respectively.

To have a preliminary idea, added mass AM for
the double resonator of Figure 2.1(b) (analysed in Chapter
3 as an approximate model of two disks in piston like

motion at low frequencies) has been found to be

3ﬂpr“
AM = —Z—O—H—" ’ (2..3)
o
where Pe = fluid density
R = radius of the disks

2ho= initial gap between the disks.

Added mass for a single disk in piston like motion

at low frequencies (in an infinite baffle) is given by (&)
8pr3
AM = 3 (2.4)

It can be seen that AM of equation 2.3 1is greater than
that of equation 2.4 by a multiplication factor of .lS(R/ho).
For the rectangular plate double resonator a similar

multiplication factor W/ho, where W is the width of the

plates, has been found. 1In a practical design for a gas
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density transducer (liquid density will be discussed
separately, later on in this section, for reasons stated
there) R or W, as the case is, can be made much larger
than ho. In typical designs as shown in Figures 2.4(a)
and (b), R or W is about two hundred times larger than
ho. This gives high values of sensitivity even with
such_robust structures as shown in those figures. The
sensitivity of the resonator of Figure 2.4 (a) results in
a 20% change of frequency for density change from

0 to 20 kg/m3. That of the resonator of Figure 2.4 (b)

is about a 20% change of frequency for density change from
0O to 10 kg/m3. Simplicity of structure, particularly the
rectangular one, is also a virtue of the present design.
Moreover this type of structural configurations makés

it very convenient to maintain the oscillation of the
resonators by a considerably simple and more reliable
electrical circuit (Chapter 4). In addition to the
conventional uses of a gas density transducer, the
present design has been found to have potentiality of
being developed for special uses such as a detector

stage of a gas chromatographic system. This has been

discussed in Chapter 4.

Typical geometrical aimensions of a practical
design of the double resonator for a liquid density
transducer are as shown in Figure 2.5. It may be noted
that while all other dimensions are of same orders as

for a gas density transducer, the gap 2hO between the
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two vibrating members isg relatively wider. This has

been done from the practical point of view, of allowing

free movement of the liquigd surrounding the resonator.
Due to this required wider gap the rectangular one of the
resonators has been found to be more practical from the
manufacturing point of view, as discussed in Chapter 5.
Though a wider gap lowers the multiplication factor, the
retained sensitivity is quite high considering the
relatively higher densities of liquids. The sensitivity
of the typical unit of Figure 2.5 is about a 55% reduction
in frequency for a density span of 1000 kg/m? (i.e.
vacuum to water). All the other virtues of the gas
density transducers. - dynamic clamping, robustness,

simplicity, low cost, are also present in the liquid one.

2.5 DOUBLE RESONATORS AND TENSION’TRANSDUCERS

Changes in stiffness of a mechanical body may be
arranged to be a direct effect of changes in tensile
Stress applied on it. Resonant frequencies of the
mechanical body are functions of its stiffness. Thus
they can be good measures for the applied tensile force.
On this basic principle there are, as mentioned in Chapter
1, a number of developments using such mechanical bodies
as wires, beams, etc.. However in these designs much
difficulty was encountered regarding an important require-
ment - efficient clamping arrangements for the resonators.

With an aim to overcome this problem, the type of double
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resonators, shown generally in Figure 2.1(c) and in

typical geometrical dimensions (for a range 0-5kN) in
Figure 2.6 has been designed. as already discussed in
Section 2.3, dynamic balancing in this type of resonator
makes the problem of Clamping easier. Development of a

tension transducer using this type of resonator ha§ been

discussed in detail in Chapter 6.
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A Dimensions (m x 102):

Lp : length of the plates = 3.8
¥ LT : length of the tines = 2.54
L
P W  : width of the tines = 2.54
L
T H : thickness of the = .254
tines
2hof: gap between the = .04
vl A v tines
W
>
H
(a) Rectangular plate
tuning fork.
. R N Dimensions (m x 102):
IE ] 0 4f2ko R : radius of the disks = 2.54
N R : radius of the post = .237
Re P
H : thickness of the = .254
disks
(b) Circular plate
tuning fork 2h : gap between the = .04
-0 disks

FIGURE 2.4 Typical geometrical dimensions of the
resonators for gas density transducers. The gap
between the vibrating members is very small'in
comparison to width or radius (as the case 1is)

of the resonator.
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—>
H
Lp : length of the plates = 3.8 x lO—zm
L, : length of the tines = 2.54 x 10 °m
W : width of the tines = 2.54 x 10 °m
H : thickness of the tines = 2.54 x lO-3m

2h _: gap between the tines = 2.54 x lO—3m

FIGURE 2.5 Typical geometrical dimensions of the
resonator for the liquid density transducer.
The gap between the tines is wider in comparison
to that for the gas density transducer.
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L : Length of beams = 5.39 x 10™%m

H : thickness of the beams = 0.13 x lO-2m

W : width of the beams = 0.6 x 10 2m

FIGURE 2,6 Typical geometrical dimension of the
resonator for the tension transducer for a
range of (0-5) kN.

It can be seen that the holes by which the

force is applied are remote from the
vibrating members.
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CHAPTER 3

VIBRATING BODY - FLUID INTERACTION

3.1 INTRODUCTION

An elastic structure yibrating in a fluid medium
experiences loadings due to its interaction with the
fluid, which results in the modifications of the forces
acting on it. Thereby thein-fluid dynamic characteristics
of the structure may differ considerably from its
characteristics in vacuo. This phenomencon being the
basis of the density transducers, as already mentioned
previously, an analytical investigation of it 1is
presented in this chapter. Firstly, a general outline
of the loading effects has been given followed by a
discussion of some common approaches and techniques of
analysis found to be in use in the literature. There-
after a brief review of the cases of some structures of
vibrating bodies, comparable with the present resonator,
has been given. Finally the present resonator has been
analysed revealing some features of it, significant

for the improvements in aim.

3.2 AN OUTLINE OF THE PHENOMENON

There are three main classifications that may be

given to the loading effects on a structure due to the

interaction:



(a) The vibrating body sets the fluid into motion and
thus stores additional kinetic energy in it. This
has an inertial reaction on the resonator dynamics
which effectively is an apparent increase in the
mass of the body. This mass loading causes a lowering

in the resonant frequency of the body. While normally

there is always this mass loading, there could be a

stiffness loading, due to compression of the fluid,

which raises the resonant freguency. The net effect
of the two reactive loadings depends upon their

relative values.

(b) Energy is radiated away from the body in the form
of sound. This has a damping effect on the body
which causes its free vibratibn to decay in
amplitude. In general the radiation of sound
decreases as the ratio of resonator size to acoustic

wavelength in the fluid decreases.

(c) By virtue of the motion of the structure in the
fluid, viscous drag forces are produced on the
structure. This also has a damping effect on the

body.

The magnitudes of the above mentioned effects
depend on such factors as geometrical dimensions and
structural configurations of the body, mode of vibration,
frequency of resonance, and physical properties of the £fluid.
As already mentioned in Chapter 2, a predominated mass

loading of significant value is a good basis for designing
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a fluid-densj—ti/‘‘transducer. The analysis of the present

resonator (section 6 of this chapter) shows a very

convenient way of achieving this.

3.3 APPROACH - ACOUSTIC vs HYDRODYNAMIC

The vibréting body~fluid interaction is quite an
old and vastly studied phenomenon in the literature.
Dubut in 1786 and Bessel in 1826, while studying the
sources of errors in pendulums, found that it was
necessary to attribute to an oscillating sphere in a
fluid a virtual mass greater than that of the body alone
(i.e. the mass effect). The vast study of the phenomenon
can be found in various literature such as Acoustics, and
Hydrodynamics. Some main concerns regarding it in
Acoustics, are its effects on such phenomena as the radiation

and the scattering of sound. A good reference is the
(45)

force on the body, lift on the body, flow of the fluid

book by Junger and Feit Its influences on drag

are some main topics of interest in Hydrodynamics. Books
by Lamb(49), Landau and Lifshitz(so) are good references.
Though dealings with the interaction problem in both
Acoustics and Hydrodynamics are mainly in their own domains
of interest, a useful amount of information about the
loading effects (on which the present density transducer

is based), is also available there. Thus the mass loading
is found to be dealt with in both Acoustics and Hydro-

dyanmics, while usually, radiation loading is dealt in the

former and viscous loading in the latter.
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A rigorous theoretical analysis of the interaction

problem taking all the involving factors into account, is

too difficult if not impossible, Thus a normal procedure

in the literature is to solve a particular case under
some consistent assumptions and approximations, thereby
simplifying the situation. In the words of Cottrell(Sl),
(from hydrodynamical approach), - "the general equations
are formidable but fortunately many simplifying concepts
can be introduced, e.g streamline flow, irrotational flow,
representation of velocity in terms of potential, which
when combined with various approximations, e.g. neglect
of viscosity and compressibility, enables a variety of

(52), in 1954, stated,

problems to be solved". Von Karman
"looking back on fifty yeérs of aerodynamic research, it
appears to me most remarkable that the crude approximation
which considers the air as an incompressible fluid has

proved itself so valuable in solving many practical

problems of aircraft design'.

There is no sharp line of demarcation between the
hydrodynamic and acoustic approaches. Usually, when the
body is in steady or accelerated motion (an approximation
of low frequency oscillation), the former approach is more
suitable. Oscillatory motions, particularly in high
frequency range, are best dealt with by the latter
approach. Thus two important usual assumptions in the

former approach are to take the fluid as incompressible

and to ignorethe radiation of sound. In the latter
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approach a common assumption is to take the fluid as
inviscid. This simplifies the problem significantly

as then only normal loading on the body comes into
account. The two approaches may be related by examining
the results which show that as frequency of oscillation
w+0, normally acoustic solutions tend to those of hydro-
dynamic. This will be more clear in Section 3.5, where

some specific cases will be discussed.

Again another simplifying approach is to consider
the various effects separately as if the others were
absent. Then the net performance is approximately the

sum of the separate effects.

3.4 TECHNIQUES OF ANALYSIS

For the analysis of the interaction problem, various
techniques are found in the literature. Two widely
adopted and suitable, particularly for finding the
loading effects on the body (which are of primary concern

in the present work) are

(a) Impedance method

(b) Energy method.

The present analysis being also based on these two

techniques, a brief discussion of them follows:

(a) Impedance method; the concept of mechanical impedance
of a system has been borrowed from electrical circuit

theory. In the latter case the impedance is defined

as voltage divided by current flow., By analogy
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mechanical impedance is taken as force divided by velocity.
Thus in the present case of interaction, the loading
effects on the resonator may be expressed by an impedance
which is the ratio of the €XCess pressure at its surface
to its velocity. Various names of this impedance such

as radiation impedance, mechanical impedance of the fluid
load; are found to be in use in the literature. The
latter one seems to be more appropriate for the present
case. Normally the impedance, expressed in complex
notation, will have a real term RL and an imaginary term
XL corresponding to the in phase and quadrature components
respectively, of pressure and yelocity., Thus mechanical

impedance of the fluid load ZL is

_ excess pressure at the surface_ s A
2.7 velocity of the surface Rp#3x

In parallel to electric circuit theory, RL is the
ohmic part and thus represents the energy dissipated by
the resonator. The reactive part XL represents the
amount of energy fluctuating between the resonator and
the medium. Thus positive X stands for the mass effect
and negative X for the stiffness effect. The magnitudes
of the effects can be found from the values of RL and XL'
For example, in case of a harmonic vibration of angular
frequency w, the added mass (i.e. the apparent

increase in the mass of the resonator) AM is given by

L

AM = — (3,1)



(b) Energy method: ?his is based on the fundamental
principle of the conservation of energy. Thereby an
equation can be obtained relating the change in energy
of the system and the work done on it. Information
regarding the loading effects may be found from this
equation. For example, the change in resonant frequency
of the body due to the inertial loading can be found
from a resultant expression of the energy equation of

the form

H1 H
h

= . (3.2)
T
o) l+Tfm/Tom

where fO = in-vacuo resonant frequency of the body
ff = in-fluid resonant frequency of the body
Tom= in-fluid maximum kinetic energy of the body
Tfm: Maximum kinetic energy of the fluid.

Though comparatively simpler than the impedance method,. a
drawback of the energy method is that it often requires

more idealized assumptions to be solved readily.

3.5 A BRIEF REVIEW OF THE LOADING EFFECTS ON SOME STRUCTURES

-

Because of the complexity of the problem, generally
in the literature, analytical solutions are found for
simple structures of resonators such as spheres, ellipsoids and

circular pistons. Moreover, for simplification, normally

they are analysed under some assumptions and approximations,
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as discussed in section 3.3. A review of some of them is

given in order to have’ a. comparative idea between them and
the present resonator (whose analysis will be given in
Section 3.6). It will also help in making consistent

assumptions for simplifying the analysis of the present

L]

resonator.

Predominant mass effect being the basis of the
density transducer, there is an emphasis on it in the
review. Some important assumptions common to all the

cases discussed are

(a) the oscillation is harmonic,

(b) strains are small enough in both the structure and
the fluid, so that they are linearly related to
the excitation.

(c) both the solid and the fluid media are homogeneous.

3.5.1 An Oscillating Sphere

It is a sphere whose radius remains constant while
the sphere executes a movement of translation as a function

of time. This case is found to be dealt with extensively

(50,53,54)

in both hydrodynamic and acoustic literatures In

the hydrodynamic approach usually the frequency of

oscillation is taken to be zero (an approximation of low

frequencies), i.e. the body is in unidirectional accelerated

motion. Thus compressibility of the fluid is ignored and

for an inviscid fluid the drag force F on the sphere is

given by
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_ 2 3 du
F=3mTRp. ¢ (3.3)

where R = radius of the sphere

pf = density of the fluid

velocity of the sphere, assumed to be low,

SO that no turbulence is produced

t = time

As force is mass multiplied by acceleration, the added

mass AM due to the fluid loading is

2
AM = gﬁRspf (3.4)

Taking viscosity of the fluid into account, the drag
force F is given by

2 ;dU
F = 3ﬂpr IE + 67TRuU (3.5)

where p = viscosity of the fluid
and all other notations have the same meanings

as in equation (3.3).

The first term of the right hand side of equation (3.5)
gives the same value of AM, as given by considering the
fluid inviscid. The other expression being related to
the velocity gives the dissipation of energy of the body

due to the viscous loading (the famous Stokes’ formula).

From the acoustical approach, in which the radiation
of sound is taken into account while viscous loading is

neglected, the mechanical impedance of the fluid load 2.

is given by
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4WRzpfc K*R*+ j(2KR + K3R3)1

L= 5 : (3.6)
4 + K*R* ]
where R = radius of the sphere
°f = density of the fluid
c = velocity of sound

) .
K = =l where w is the angular frequency of

oscillation of the sphere

i = /-1
As already mentioned (section 3.4), the expression with j gives
the reactive part XL (being positive it is mass effect)
and that without j gives the resistive part RL (i.e.
the damping effect due to sound radiation). They are
plotted in Figure 3.1 from which it can be seen that at
low values of KR (i.e. approach to hydrodynamic case) the
mass effect is predominant with very low value of damping

due to sound radiation.

For KR << 1, i.e. approach to hydrodynamic case, from

equation (3.6)

Reactive part of Z
AM - L - % TR0 (3.7)

11

the same as given by hydrodynamic approach (see equation
3.4). It is worth noting from the above expression that

in the hydrodynamicC region AM is almost independent of
frequency of oscillation of the body. This is a significant

criterion for the resonator of the density transducer.
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FIGURE 3,1 The resistive part RL and the reactive
part X_ of the mechanical impedance of the fluid
load of an oscillating sphere. At low values of
KR, RL is negligible, i.e. damping due to radiation
of sound can be ignored when wavelength of sound

in the fluid medium is much larger than the radius

of the sphere.
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3.5,.2 A Pulsating Sphere(54)

It is a sphere whose radius increases and decreases
with time. The motion of the fluid around the sphere will,

like the motion of the sphere itself, take place only in

radial direction (assuming non-turbulence) .

From acoustical approach(with the same assumptions
as in the previous case) the mechanical impedance of the

fluid load ZL is given by

(KR)? +3KR
1+ (KR) 2

Z. = 47R?2

L C

Pr

where all the notations have the same meanings as in

equation (3.6).

As before the expression with j (being positive) corresponds
to the mass loading and that without j corresponds to the
radiation loading. They are plotted in Figure 3.2(a)

which shows the predominated mass éffect at low values of

KR (with negligible radiation loss).

From equation (3.8), the added mass AM is

Reactive part of Z, 4ﬂR3prC .
AM = - = .
v w|1+(KR) ? |

For KR << 1, i.e. when the situation tends to hydrodynamic,

the value of the predominant added mass is

AM = 4WR30f (3.10)
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FIGURE 3.2(a) The reactive part XL and resistive part
RL of the mechanical impedance of the fluid lcad
of a pulsating sphere. At low values of KR 1.e.

when wavelength A of sound in the fluid medium is

much larger than the radius of the sphere, lass

dune to sound radiation is negligible and reactive

(mass) loading is predominant.
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which is independen# of frequency (same as the previous

case) . Values of AM as given by equation (3.10) are
plotted in Figure 3.2(b), which also shows the hydro-

dynamic region. The increasing value of AM as KR

decreases 1s also apparent from this figure.

Fluid On One Side

This was originally studied by Lamb(44). He
assumed the dynamic deflection curve of the plate of

the form

W(r) = A’ (1 - —) (3.11)

where W(r) normal displacement of the plate at r

r = distance from the centre
R = radius of the plate
Al = a function of time

He also assumed the fluid as incompressible and ignored
viscosity loading. With these assumptions he adopted
the energy method (see Soction 3.4b). Thus he calculated

the kinetic energy of the plate To from the formula

R
2
T, = "o H j (%‘g.) r dr (3.12)

O

density of the plate material

Il

where pm

thickness of the plate

1

H
and all other notations have got the same meaning

as in equation (3.11) .
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Hydrodvnamic region
¢/ (approximately)

34

FIGURE 3.2(b) .Added mass AM per unit area (which
is equal to XL/w, see Figure 3.2(a))of a pulsating
sphere. In the hydrodynamic region, AM is largest

and almost independent of KR, hence of the

frequency of oscillation.
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He then worked out the velocity potential of the fluid
at the surface of the plate and with it the kinetic

energy of the fluid Tf by the use of the formula.

T :ip 3¢
£ 2 Ps q>a—;’11ds (3.13)

where og = density of the fluid

%% = normal velocity of the surface (as no
slip condition is assumed at the inter-
face between the plate and the fluid

medium)
ds = elemental area of the plate,

From the maximum values of TO and Tf, he then calculated
the change in frequency of the plate, by using the

relation of equation (3.2) and found to be

£

==
o / Pf R
J 1+.6689— =

pm .

where fo = frequency in vacuum

f frequency in the fluid

b

i

It may be mentioned here that in terms of added mass AM

the change in frequency 1s given by the formula

Hh
|
—

(3.15)

o
H\‘
+ .

o>

2

=
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where M = dyanmic mass of the plate,

A more rigorous analysis than that by Lamk was

i (47
carried out by Lax '~ . He dropped the assumption of

incompressibility and solved the problem by the impedance
method; The added masses evaluated for various
symmetrical modes of flexural vibrations are shown in
Figure 3.3. 2An important feature which is of much

help for the analysis of the resonator of the present
transducer, can bhe found from the figure. Thus it is
seen that at low KR (which is the region of interest

in the present work),the added mass at fundamental
mode is by far greater than that at other modes. Other
common features of mass loading (at fundamental mode),
e.g. its almost independency of frequency in hydro-
dynamic region and largest value at this region,

can also be seen.

3.5.4 A Vibrating Circular Piston in an Infinite

Baffle

This case being directly comparable with the
model via which the resonator of the present density
transducer has been analysed (section 3.6), a
detailed discussion of it is given. Various analytical
procedures of this case using different approaches
and techniques can be found in the literature. The

re is through acoustical approach and

. (48)
following Stephens and Bate .

one discussed he
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FIGURE 3.3 The added mass AM per unit area of a

circumferentially clamped plate with fluid loading
on one side only. Data for the first four
symmetrical flexural modes is given. At low values
of KR, hence at low frequency, the fundamental

mode gives the highest loading.
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FIGURE 3,4 RADIATING FACE OF THE PISTON

It is assumed that the rigid circular piston is
vibrating in an infinite baffle and that each point

on the plane surface may be considered as a source of

hemispherical waves.

In Figure 3.4, B 1s any arbitrary point on the
circular piston face at which 1is located the small

elementary area dA. Suppose that o is the amplitude

of the velocity potential produced éer unit area of
the vibratingvsurface at unit distance away (the

vibrating element belng considered to be vanishingly
small), O is the centre of the circular radiating face,

and through it is drawn the axis of a system of polar
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co-ordinates with the pole located at B. Velocity

tenti .
potential at B due to elementary area dA’ at B’, distant

r' from B is

: - ., dA'" _j(wt-Kr'
By = o Sy el WETRET (3.16)

where w = angular frequency of the harmonic

vibration,
t = time
W
k = P = yave number
c = velocity of sound in the fluid.

Therefore total velocity potential at B is

-jKr'!
= aejwt'J S —— an (3.17)

®g

a can be evaluated by considering the source of hemi-
spherical waves at B' to be a pulsating hemisphere of

radius ros which is finally to be made vanishingly small.

This gives

o = ﬁo/zn (3.18)

where g = velocity amplitude of the piston.

39
At any point the acoustic excess pressure p = ngE,

where o is the eguilibrium density of the fluid.
Hence from equation (3.17) and (3.18)

f

. i ) _]kr'
](Dpfno e]mt §________ da (3.19&)
Pp = —5— T
B 2T

Noting that dA' = r' dr' de and that the maximum distance
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in the direction 6 from da to any point within the circle

of radius r is 2r Cosf, then equation (3.19a)may be

rewritten as

Jwp A +m/2 2rCosH
UG e i
= e de JKr .
Py 57 J e ar (3.19Db)
~T/2 Q

The total force exerted on the shaded ring by all
elementary sources such as dA' within the circular area

of radius r is

de = 2ﬂrdrpB

. +T7/2 2rCost _. .
= Jwp 1 ejwt rdr [ a6 [ e JRr dr'
f'o P
~-T
0
(3.20)

To obtain total force fR on the piston, the forces on the
rings are summed up, integrating from r=0 to r=R, and
multiplying by 2 (because every pair of elements such

as dA and dA' will appear twice, once as an elementary

receiver and the other as an elementary source).

Hence
, R +m/2 2rCose_.Kr!
fR=2jmpfﬁoe3“t rdr as [ e IR gy
o j=m/2 Jo
- Jl(ZKR) ,Kl(ZKR) |
L 2. on eJwE|1o +3 (3.21
= TR7p£CN,® KR 2K2R?
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where Jl and Kl are Bessel functions of first order of
first kind and second kind respectively., Therefore
mechanical impedance of the fluid load
Z = fR
L velocity of the piston
2" Jl(ZKR) Kl(ZKR)
= TIR pr l-—-—K—ﬁ—— + j—'—‘-—'—-—' (3‘22)
2K?%R?

As before the real term represents the dissipation of
energy due to radiation of sound and the imaginary term

represents the mass loading. They are plotted in Figure 3.5(a),

from which the predominant mass leoading and negligible

radiation loading at low values of KR are apparent.

From equation (3.22), the added mass

Reactive part of‘ZL

i

AM m

ﬂpfc Kl(ZKR)

- .2
2K%w (3.23)

In Figure 3.5(b) AM is plotted against KR, from which the
increasing value of AM as KR decreases is apparent. It
also shows that at low KR (i.e. hydrodynamic region)

the effective mass tends to a constant value, independent
of frequency.

From equation (3.23), this effective mass

L 3 (3,24)
AM % % peR
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FIGURE 3.5(a) The reactive part XL and resistive part
RL of the mechanical impedance of the fluid load
of a circular piston in an infinite baffle.
Radiation of sound is very negligible at low value
of KR i.e. at low frequency or for small piston

area. Reactive (mass) loading is predominant

at this condition.
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Hydrodynamic region
{approximately)

AM per unit area + PR

FIGURE. 3.5(b) Added mass AM per unit area of a
circular piston vibrating in an infinite baffle.
At low KR (hydrodynamic region) AM is largest
f KR and hence of

and almost independent O

frequency.
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3.6 THE FLUTD LOADING EFFECTS ON THE PRESENT RESONATOR

The geometrical configurations and typical dimensions
of the structure of the present resonator have already been
shown in Chapter 2 (Figures 2.1, 2.4, 2.5). Of the two
versions i.e, the circular plate tuning fork and the
rectangular plate tuning fork theoretical analysis has
been carried out for the former one. This is because of
the fact that the symmetry in that one helps much to
solve the problem, while the lack of symmetry makes the
analysis of the rectangular one extremely difficult.
However formulation for the latter case can be found
by analogy with the former one, supported by experimental

results.

The complexity of the problem of fluid loading
and hence the normal procedure generaly found in the
literature for simplifying it by consistent assumptions
and approximations, have already been discussed in
section 3.3. Some exemplary indications have also been
given in the review in section 3.5. The present case

being also a very complicated one, some assumptions and

approximations have been made to simplify it. Analysis

has been carried out by both impedance and energy

techniques, with an emphasis on mass loading, an optimisation

of this being the primary object,

3.6.1 An Analysis By Impedance Technique

As already discussed in section 3.4, basically this
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method inVOlVGS-the calculation of the excess pressure

at the surface of the body. Then the quotient obtained

by dividing this pressure by the velocity of the surface
gives the mechanical impedance of the fluid load, from

which the reactive and the resistive loadings can be

calculated.

The assumptions and approximations made in this

procedure are

(a) The frequency of oscillation is low (typically
below 5 kHz) sovthat the wavelength X in the fluid is
much greater than the goemetrical dimensions of the
resonator. Thereby the compressibility of the fluid is
negligible and the situation tends to that of hydro-
dynariics where the mass loading is predominant, highest
and almost independent of frequency. The loss due to
radiation of sound also is negligible at low frequencies.
Thus the analysis has been carried out taking only the mass
and the viscous effectsinto account. The validity of

the above assumptions and approximations is quite evident
from the discussions of sections 3.3 and 3.5, and also has

a support from experimental results (see Chapter 4).

(b) Bearing in mind the results of Lax for circumfer-

entially clamped disk (see section 3.5) and also supported

by experimental results, it is assumed that at low

frequencies the mass effect is greatest at fundamental

flexure mode. So the analysis has been carried out only

for this mode, as it enables to simplify the complex
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situation due to the actual vibration of the resonator, by
an approximate model of two disk vibrating in antiphase
in piston-like motion. The actual resonator and the

model have been shown in Figure 3.6,

(c) It is sufficient to consider the loading due to
the thin layer of fluid between the disksonly (this being
much greatexr than the loadings on other faces of the disks,

as will be shown later in this analysis).

(d) The vibration is harmonic with amplitude, much
much less than the gap between the disks. Both the

solid and the fluid medium are homogeneous.

NOMENCLATURE

r,8,z = cylindrical polar co-ordinates

2hO = initial separation between the disks
R = radius of the disks

H = thickness of the disks

S = density of the material of the disks
w = angular freguency of oscillation of the disks
A = aho = amplitude of oscillation

VO = wpA = velocity amplitude of the disks
t = time

U. = fluid radial velocity, Ur(r,z,t)

UZ - fluid axial velocity, Uz(z,t)

S = fluid pressure, p(r,z,t)

o = fluid density

M = fluid viscosity
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2
wh P

— o — . ‘
Ra = 1 = typical Reynolds number
s = in vacuum frequency of oscillation of the disks

- W . :
ff = 3z =1in fluid frequency of oscillation of the disks.
j =/-1

Cylindrical polar co-ordinates ¥, 8, 2 are so chosen
that the mid-plane between the two oscillating disks is
situated at z=0 (see Figure 3.6b). The position of the
upper disk at any subsequent time is z = ho(l+aSinwt),
(because of the symmetry about the plane through z=0, it

is sufficient to consider any one of the two disks).

Hence the boundary conditions are
oU
r

= :O:..._
at z=0, Uz 37

. (3.25)
at z=ho(l+aSinwt), Ur=0

U_=h awCoswt

z O
The boundary conditions on UZ suggest that it is independent
of r, that is UZ=Uz(z,t). Under this condition and assuming
the flow axially symmetric, Navier-Stokes equations for
the fluid (only that between the disks are considered,

as already discussed in the assumption "c") are

35U 3U 35U U
r r ry - 3P 4y (viy - —5) (3.26)
Pel—E 0570257 sr r?
pU oU 3
z Tz _ _ 3P L7y (3.27)
Pelge TV 3T T 5 T e

2 1 3
where V2 =3 + = T +
sr? T

P

33

(in the above equations absence of body forces are assumed) .
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The equation of continuity is

1 ’U_

C 9
; 'E(I'Ur) + “'jé—g =0 (3.28)
Differentiating equation (3.27) with respect to r

3%p _
3757 O (3.29)

From equation (3.28)

3U
- iz
U, = - 3% =33 (3.30)

From equations (3.26), (3.29) and (3.30)

53U, 83Uz a“UZ
+ U ) = |

(3.31)
3223t Z 323 3z

P gl
Introducing the following dimensionless variables

U= UZ/(hoaw), T = wt, B = z/]ho(l+aSinwt)]
(3.32)

and taking qR_ << 1 (which is the condition in the present
e .

work) equation (3.31) reduces to

2%U _ g 220 (3.33)
© ap%oT
Under the transformation of (3.32), the boundary conditions
(3.25) become
at g=0, =0 =

382 (3.34)

at B:l’ U’:COST,




With these boundary conditions the solution of equation

(3.33) can be shown as (see Appendix 1)

cy = |28CoshK _ 2 Sinh X8| _jT

K > (3.35)
K
where c = 2'C§sh K _ 2 8Sinh K
KZ
K =/JR_

Applying the transformation (3.32) in equation (3.26)

and neglecting terms of order dRe

2 3
sp _ 1 Lawr g 80U _3°U (3.36)
°F 2 p 2(1+asinT)? | SP6OT 0B
Substituting for U from equation (3.35)
op _ uowr K Cosh K ejT (3.37)

r Choz(l+a5inT)3

On the assumption that the variation of p with z is very
negligible (this is a common approximation in hydrodynamic
literature for problems similar to the present one) ,
integrating equation (3.37) with respect to r yields the

pressure p, on the disk at a point distant r from the

centre as
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Excess pressure dF : . .
P r’ on a circular ring of radius r and

width dr of the oscillating disks is

dFr = 27r dr (pr-po) (3.39)

Substituting for (pr-po) from equation (3.38) in equation
(3.39) and then integrating with respect to r, from O to

R yields the excess pressure F on the disks as

jT

TuawR* K Cosh K J
. @ (3.40a)

4Ch _?
O

F =

Expanding C and Cosh K in power series

3mAw?p .R* .
3TuAwR® . O
. [3MRAWRT o T £ | Iut (3.40b)
3 20 h
8h o}
o}
Therefore mechanical impedance of the fluid load
l"\
VA = [P -
L v e]wt
o}
37uRY 3wwpr“
= 2HE2 4 e (3.41)
8ho3 o

As before, the real term represents the energy loss due

\

to viscous loading and the imaginary term, being positive,

represents the mass loading.

Therefore the value of the added mass

imaginary part of equation (3.41)
AM = x

~ ?)TrprL+
20 ho

(3.,42)

In the case of piston-like motion the dynamic mass of the
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disk is equal to its static mass.
So,

= 7R?
M Hpm

Therefore finally,

£ 1
Yt vyTEm
l+fﬁ
1
= /::::::: (3.43)
3p -R?
‘/l+.__£_.__._..
20p_Hh
m (@]

3.6.2 An Analysis By Energy Technique

As already mentioned in section 3.4(b), more idealized
assumptions are often required for a simplified analysis by
the energy technique. Thus in order to enable to solve the
present case (the two piston model of Figure 3.6) in a

simplified way, the following assumptions in addition to

those of "(a) to (d)" of the previous procedure, have been
made:
(a) The fluid is inviscid and so only the mass loading

is present. Thereby the analysis will give a formulation

only for the change in frequency of the resonator (which

is, of course, the primary object of the present work) .

In reality there is strong yiscous effect (see egquation

(3.41) of the previous analysis). However, it can be

ignored while evaluating the change in frequency, on

the basis of the principle (discussed in section 3.3)
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that the consideration of the various effects separately
as if the other were absent, gives a good approximation
of the real situation. Assumption of the fluid as
ipviscid, makes the radial velocity of the fluid Ur

independent of z (see Figure 3.7),

(b) Both the amplitude of the vibration and the gap
between the disks being very small, the calculation of
the kinetic energy of the fluid taking into account
only the radial velocity Ur (neglecting axial velocity

Uz) of the fluid, is a good approximation.

With the above assumptions the change in resonant
frequency of the disks have been formulated from their
maximum kinetic energy and the maximum kinetic energy

of the fluid; as outlined in section 3.4(b).

Let the sinusoidal vibration of the disks be of
angular frequency w and amplitude A. At any time t, the

gap ht between the disks (considering squeezing) will be

ht = 2(ho— A Sinnt) (3.44)

where 2ho = jnitial gap

After a very short time dt the gap will be squeezed to

h = 2(h_-ASinwt - Aw Coswt dt) (3.45)
o]

t+dt

The volume of the fluid within the radius r (see Figure

3.7), at time t 1is
_ 2
Vt =X ht
= 2”2(}10-— A Sinwt) (3.46)
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N

2ho¢

(a) View in section : (b) View from the top.

FIGURE 3.7 The two piston model (same as Figure 3.6(b)).

The two pistons are vibrating harmonically in anti-

phase, in piston like motion along z-axis.

At the time (t+dt), this fluid will occupy the volume

= (wr? + 2mr&)h (3.47)

) v t+dt

t+dt

where £ = distance moved by the fluid at r in the

time dt.

As the fluid has been assumed as incompressible,
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Ve = Visar

2 .
Oxr, 27r (ho—A51nmt)=2(ﬂr2+2ﬂr£)(hO-ASinwt-AwCoswt dt)
(3.48)

Neglecting the very small term (4mrfAwCoswt dt) , equation

(3.48) gives
2(hO—ASinwt)§,= rAnCoswt dt (3.49)
Therefore velocity of the fluid at r is

g = £ _ rAwCoswt
r dt 2(hO-ASinmt)

(3.50)

As A <g ho, maximum value of Ur is

g ~ rAw
r max 2ho

Therefore the maximum kinetic energy of the fluid is

. (R WpfA?wzradr
T=J
fm

2ho (3.51)
o}
where R = radius of the disks
Pe = density of the fluid.

Carrying out the integration of equation (3.51)

T =

2 2k
Tegh W R (3.52)
fm 8h

The maximum kinetic energy of the disks 1is

T = WRZHpmAzwz (3.53)
omnm
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where H thickness of the disks

P density of the disk material,

From equation (3.52) and (3.53) the change in frequency

of the system (see equation (3.2)

/ prZ
‘/l+8p Hh
m o]

where ff = in fluid resonant frequency of the disks

£
o

in vacuo resonant frequency of the disks.

It is interesting to note that by both the techniques,
identical (except the numerical constant) expressions have
been obtained for the change in freguency of the resonator
(equations (3.43) and (3.54)) . The difference in the
numerical constant reflects the various assumptions and
approximations in the procedures. In fact in such a
complicated problem as the present one, normally experimental
determination seems to be the only way to find the constants.
Thus Vennard and Street(SS), while describing a viscometer,

made the comment - "these conditions involve too many

complexities toO allow the constants of the viscometer to

be calculated analytically, and they are therefore usually

obtained by calibration with a liquid of known viscosity".
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3.7 DISCUSSION

The mass loading on a vibrating body due to its
interaction with the surrounding fluid is normally;
predominant, highest and almost independent of frequency,
at fundamental mode of flexural vibration of low frequencies
(i.e. when KR << 1). Thus under these conditions it
can be made a good basis of a transducer for measuring
fluid density, which is directly related with it. The
value of the added mass (under the above conditions)
per unit area for the present resonator (as obtained by
the analysis) and those reviewed in section 3.5, are

gathered below for a comparative picture:

(a) The present resoconator : (AM) . = .15p _R(&=)
(analysed as two piston
model, considering only
the fluid between the

disks).

>
=
|

(b) A circular piston in .85p R

an infinite baffle.

.67p R

>
£
|

(c) A circumferentially
clamped circular plate
with fluid on one side

only.

(d) A pulsating sphere 2 (AM) ; = P¢
immersed in a fluid

medium.
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(e) An oscillating sphere : (AM) . = .160_R
immersed in a fluid

medium.

where (AM) added mass per unit area

U

(under the conditions stated above).
Pe = density of the fluid
R = radius of the resonator
ZhO = gap between the vibrating numbers
of the present resonator.
As R can be made much larger than ho,an inspection
of the above expressions reveals that the present resonator

is a very convenient structure for the magnification in

sensitivity of the fluid density transducer.
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'CHAPTER 4

THE- GAS" DENSITY TRANSDUCER

4.1 INTRODUCTION

The theoretical basis of the transducer for measuring
fluid density has been reported in the previous chapter.
The reasons for dealing with experimental work and thereby
practical designs for the two phases of the fluid (gas and
liquid) separately, have already been mentioned in Chapter
2. This will be more clear from the discussions of this
and the next chapters which deal with the gas density and

the liquid density respectively.

4.2 RESONATOR MATERIAL

From equations 3.43, 3.54 and from the discussion
of Section 3.6, the relationship between fg, the frequency
in a gas medium and f, in the vacuo fregquency of the

circular resonator can be expressed as

g . 1 (4.1)
5 / _P - .
l*Kclngh
m o
where KC - numerical constant whose value 1is
to be determined experimentally
pg = density of the gas
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Py = density of the resonator material

R = radius of the disks of the resonator
H = thickness of the disks
ZhO = gap between the disks

As will be discussed in section 4.7, by analogy with
the above expression and supported by experimental

results, the relationship for the rectangular resonator

can be written as

f
Eg ~ . 1 (4.2)
o ¥ ngZ
l+KR—5—ﬁH_
m o
where KR = numerical constant whose value is to be
determined experimentally
W = width of the resonator

amd all other notations have the same meanings as in

equation 4.1.

From equations 4.1 and 4.2, it is gquite evident
that the lighter the resonator material, the more will
be the sensitivity of the transducer. Preliminary
experiments with resonators made of different materials
such as aluminium, copper, steel have supported the
feature. However, while choosing a light material, the
consideration of its internal friction and temperature

coefficient is very important. As will be discussed in
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section 4.8 minimisation of the loss of the resonator is

a vital criterion for the transducer. Thus a material

with lcw internal friction is to be selected. Again to
overcome the unwanted temperature effect, a material

with very small thermal coefficient is desirable, other-
wise a compensating circuit is to be incorporated. Under
the above facts, the material fused quartz has been chosen
for the present transducer. Fused quartz is made by
heqting high purity naturally occurring guartz crystal

to a sufficiently high temperature to produce an amorphous
condition. It is a light material (density: 2.7 X 103
Kg/m3) with very low internal friction and virtually"
zero temperature coefficient. Due to these favourable
properties it is found in use in various commercially
available transducers. For example, Texas Instruments
Limited(SG) in one of their design of pressure gauge,
utilizes this material. They describe its properties

as - "the high degree of accuracy of the Precision

Pressure gauge is attributable to the fused quartz

Bourdon tube. The low internal friction of fused gquartz
makes it the most perfectly elastic material known.

Bourdon tubes made of fused quartz exhibit lower hysteresis,

creep or fatigue, than +ubes made of any other known

material".

Other suitable materials having the properties of

low internal friction and low temperature coefficient




may also be used. For example Solartron Limited(6) uses

Ni-Span-C902 for both their gas density and ligquid

density transducers.

However the above materials being rather costly,
aluminium has been used in most of the initial experi-
mental work. = Aluminium has low density (near that of
fused quartz), and low internal friction, but has a high
thermal coefficient. However, as there was not much
variation of temperature during the experiments, the
results obtained are quite satisfactory for assessing

final design parameters.

4.3 DRIVING TECHNIQUES

Various techniques can be found in the literature
for driving (and pick up from) a mechanical system. Some
most common methods are electromagnetic, piezoelectric
and electrostatic. A particular technique has its merits
and demerits, depending upon the particular situation.
Coupling efficiency, effect on "Q" factor of the resonator
and mechanical simplicity are some important features which
generally influence the choice. A brief discussion of

them in context to the present resonator follows.

(a) Coupling efficiency: It may be defined as the ratio
of the power picked up from the resonator to the power
utilized for driving it. Thus the more the coupling

efficiency, the less is the power required (hence simpler
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electronics) tomaintain the oscillation. In this respect,

the piezoeleqtric method seems to be the best. Artificially
produced piezoelectric ceramics such as lead zicronate
titanate (PZT) and barium titanate, have very high

coupling efficiency. Vernitron Limited(57), a manu-
facturer of these ceramics, describe it as - "providing

the structructure has a reasonably high mechanical Q factor,
milliwatts of power is all that is normally required to
produce quite large amplitude of resonant vibration".
Moreover the higher the coupling efficiency, the better

is the signal-to-noise ratio. Again piezoelectric
couplings are not affected by stray electric or magnetic

field, and have no mutual effect, even in close lay out.

(b) Effect on Q factor of the resonator: In this
respect both electromagnetic and electrostatic methods
are better than piezoelectric. As in the former two
cases there are no mechanical contact with the resonator,
its Q factor is little affected. On the contrary, in
the latter case the piezoelectric elements are to be
bonded mechnically with the resonator and thereby the Q
factor is affected. However by using piezoelectric

elements, very small compared with the resonator, this
can be minimized.

(c) Mechanical simplicity: In this respect again the

piezoelectric method seems to have advantages. The small

drive and pick up elements can be bonded firmly on the

- 86 -




resonator. 1In case of the electromagnetic and the
electrostatic methods, the drive and pick-up coil assembly

requires much care and space for positioning.

Under the above discussed facﬁs,_the piezoelectric
method has been chosen for the present transducer. PZIT
components manufactured by Unilator Technical Ceramics(58)
have been used. For optimum coupling efficiency the
piezoelectric elements are to be bonded in the position
of maximum dynamic strain occurring within the vibrating
body. Figure 4.1 shows such positions for the present
resonators in the desired fundamental flexural mode and
thereby various drive and pick—-up systems used. In the
case of the rectangular resonator two PZT plates (typical
dimentions: length 5 x 10'3m, width 2.5 x 10’3~m, thick-
ness 5 x lO_4m) have been bonded on the two tines at the
positions of maximum dynamic strain, as shown in Figure
4.1(a). One has been used for exciting the resonator,
and the other for picking up the vibration. This simple
system can also be arranged as shown in Figure 4.1 (b),
for the circular resonator with PZT rings. Rings are
needed for providing facility (i.e. nodal space), for
making mounting arrangement for the resonator (see

the Ficure). However disks have been used as they are

readily available. In this case, for €ase of mounting
facility, one disk has been used (Figure 4.1(c)). Both

the tasks of drive and pick up are performed by the




Drive or Drive or

pick up \l: | ]%)ick up PZT

Threaded hole for making
mounting arrangement

(a) Two PZT plates have been used, one for
drive and the other for pick up.

Drive or pick up
PZT ring

Drive or////

pick up Threaded hole for making
PZT ring making mounting arrangement.

(b) Two PZT rings drive and pick up

FIGURE 4.1 (a) and (b) various drive and pick up techniques.
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PZT disk

( — Y

P ——

( 1 ]

Threaded hole for making
mounting arrangements

(c) Both drive and pick up are performed by a single
PZT disk by placing it in one arm of an active
bridge (Figure 4d).

.

AANNY -
o— V41 —
~ +
3
Input acting 1 Outpgt acting
as drive ] as pick up

l 44;\\\\\ PZT disk
o_-

of Figure c

(d) An active bridge

FIGURE 4.1 (¢ and d) . various drive and pick up techniques.
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single disk by placing it in one arm of an active bridge
as shown in Figure 4.1(d). The input and the output of

the bridge serve as the drive and the pick-up terminals

respectively.

In all the above arrangements, in manual operation,
the resonator is excited with a signal from a variable
frequency oscillator, By observing the pick-up signal on
an oscilloscope the resonant frequency is determined.

At resonance the pick-up signal is maximum and there is
a phase difference of m/2 between it and the drive

signal (as discussed in Section 1.2).

Various designs for automation will be presented

later in Section 4.10.

4.4 EXPERIMENTAL SET-UP

For obtaining variation of density of the gas,
the transducer has been located in a pressure vessel.
This was constructed for a past project and for its
suitability it has been used for the present work.
Figure 4.2 shows the vessel and associated set-up.
The length and the diameter of the vessel are 65 x lo”zm
and 10 x lO_zm respectively. It can withstand pressure
up to 17 x 105 pascal. There are facilities for locgting
the transducer in different positions in the vessel

(thereby effect of the wall can be examined), and for

bringing out electrical connections. The vessel can be
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evacuated by a vacuum pump and there are provisions

for controlled inlet and outlet of different gases.
Investigations have been carried out with three gases
having a wide density range, namely argon, nitrogen and
helium. The pressure has been measured by a Bell and
Howell strain gauge pressure transducer (type 4-306-
0221-01MO). From the pressure the density of the gas

has been calculated for calibrating the density transducer.

4.5 DYNAMIC CLAMPING

Ease of clamping of the resonator by the phenomenon
of dynamic balancing is an important virtue of the
transducer, as already discussed in Chapter 2. In this
section is reported an experimental verificétion of this
feature. According to Karlmarczie's solution (see Section
3 of Chapter 2), the tines of the rectangular resonator
in the desired fundamental flexural mode, can be taken
as clamped automatically at the boundary, as shown in
Figure 4.3. The apparent increase in length of the

tines is 0.68H, where H is the thickness of the tines.

Karlmarzie derived the solution by considering the
tines of the resonator as platas. As for rectangular
plates with boundary conditions other than simply
suppcrted, exact solutions are not known, to calculate

the frequency, he had to use a numerical method which is

quite an involved work. However, for the geometrical

- 92 -




r'd ‘\
PI /// \\N

| Aprarent
increase in
length of the tine

(a) Rectangular resonator. (b) Circular resonator,

The vibration at the analgous to the fork
base is very small
indeed.

FIGURE 4.3 The vibrating tines are in automatically
clamped condition at the boundary shown by the

dotted lines, by the phenomenon of dynamic balancing.

dimensions used in the present resonators, the two tines
can be regarded, with a fair approximation, as rectangular

bar. As in this case exact formulation is readily avail-

able, the solution is much simplified. The in vacuo

fundamental natural frequency in flexural mode of a

(59)

rectangular bar clamped at one end is given by

fo = I (.597)° H c, (4.3)
2 LZT / 12
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where LT’ length of the bar

o
1

thickness of the bar

- /E
Co:f/: = the rod velocity

P
E = Young's modulus
0 = density

Resonators of different length and different thickness
were made and their in vacuo frequencies were measured.
The theoretical frequencies were calculated using
equation 4.3 with and without Karlmarczie's correction
of 0.68H. Some typical results are shown in Table 4.1.
The fair agreement between the measured frequencies and’
those obtained theoretically with length correction,
supports well the phenbmendn of dynamic clamping. The

small discrepancy may be due to:

(a) the very approximate approach to the problem,

(b) uncertainties in the measurement of the geometrical
dimensions,
(c) slight dimensional differences (due to the limitation

of machining) between the two tines.

Measurements with the circular version of the

-

resonators also support well the phenomenon (see Figure
4.3b).

4.6 EXPERIMENTAL SUPPORTS FOR VARIOUS ASSUMPTIONS

(a) Mass effect vs stiffness effect: as already discussed

in Chapters 2 and 3, of the two reactive effects, i.e.
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Length of Theoretical frequency Measured

the tings : (Hz) ‘ frequency
(m x 10%) Wlthout. With (Hz)
correction © |correction
2.54 3308 2900 2975
2.00 5335 _ 4520 4480
1.90 5911 4967 4860
1.70 7384 6085 6164
H : thickness of the tines = .254 x 10 %n

W : width of the tines 1.905 x 10~ %m

Thickness. Theoretical frequency Measured
of the (H2) frequenc
tines Without With - ?Hz) Y
2 correction correction

(m x 107)

.254 3308 2900 2975

. 300 3907 3347 3290

.356 4636 3964 4018

. 400 5209 4250 4380

. -2
LT : length of the tines = 2.54 x 10 ™m

1.905 x 10 °m

1

W : width of the tines

TABLE 4.1 Measured and theoretically calculated (with
and without Karlmarczie's correction) frequencies
of the rectangular resonator.
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the mass effect and the stiffness effect, the former
lowers and the latter raises the natural frequency of
the resonator. The net effect depends upon their
relative values. As the mass effect is directly related
with the density of the surrounding gas, the conditions
under which it is predominant (negligikle stiffness
effect) is desirable for the present transducer.

In the analysis of the present resonator (Chapter 3), it
was assumed that this is fulfilled at low frequencies

(typically below 5 KHz).

A fluid medium can be taken as incompressible (i.e.
the condition for negligible stiffness effect) when the

following relations are satisfied(SO)

y << C (4.4a)

and

X >> geometrical dimensions of the body (4.4Db)

where V = Velocity of the body

I

cC velocity of sound in the medium

A wavelength in the medium

li

The maximum value of V is 2mfA, where f is the

frequency and A is the amplitude of vibration. . As in

the present case A is less than a micron, a value of £

pelow 5 kHz satisfies the condition 4.4a very well.

To verify the condition 4.4b a series of measurements
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has been carried out. The relative values of A and

the geometrical dimension of the body can be varied by

three factors:

(1) frequency of vibration of the resonator
(2) gases of different molecular wejights
(3) geometrical dimensions of the resonator.

(1) Table 4.2a shows some typical results with the variation
of fregquency (obtained by varying radius or length
of the resonators). From the table it is apparent
that stiffness effect is negligible at low

frequencies.

(2) Velocity of sound ¢ in a gas medium is
PY
c=/ —= (4.5a)
p

where P 1s pressure, Yc is the ratio of specific
. _ PM
heats and pgiS density. As c¢ = £} and °g= =T
(assuming perfect gas) where M = molecular weight
of the gas, T is absolute temperature and R is
the gas constant, equation 4.5aAgives
T¥ .

=/ < (4.5Db)
£13 T

Thus for certain geometrical dimensions of the
resonator there can be a net mass effect for a gas
with low molecular weight but a net stiffness effect

for a gas with higher molecular weight. This
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interesting feature is demonstrated in the selected
results of Table 4.2b. The effect is mass like for

helium, while stiffness like both for argon and

nitrogen.

(3) Table 4.2c shows some typical measurements from which,
it is apparent that stiffness effects become
significant with the increase of geometrical dimensions
of the resonator. The increases have been made in
W (the width) rathexr than LT (the length), thus
keeping A constant.

All the above experimental results support the

assumption that at low frequencies the reactive loading

is predominantly inertial.

(b) Fundamental mode and sensitivity

In Chapter 3, in the analysis of the present
resonator, it was assumed that in flexural vibration
the low frequency predominated mass effect is highest
at the fundamental mode. In the case of a circumferent-
ially clamped plate Lax has proved this feature

theoretically, (see Section 3.5.3). However, for the

present resonator, because of much complexity of the problem,

only experimental results had to be relied on for this

important feature. In fact it has been found that while

for the fundamental mode the change Of frequency is quite

significant, at other modes the effects are very small.

Table 4.3 shows such a typical set of results.
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FREQUENCY QF VIBRATION
Mode (Hz)
In vacuum In air at atmospherig
pressure
Fundamental 975 931
1st harmonic 4565 4562
2nd harmonic 14614 14614
TABLE 4.3 : Change of frequency due to reactive loading.

The change is most significant at fundamental mode.

4.7 GEOMETRICAL DIMENSIONS AND SENSITIVITY

(a) The circular resonator:

As already mentioned, it is the geometrical
configuration o% the resonator by which a most
significant virtue of the transducer, i.e. a high
sensitivity with even a robust structure, has been
achieved. The theoretical basis of this feature for the

circular resonator has been presented in Chapter 3. From

equation 4.1

pmHhO fO 2 )
KCR g
ﬁo : 1 (4.6a)
=D (=) - t 1.
ol fq4
o_Hh
where p_= MmO = gscale factor (4.6b)
° KR
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and all other notations have the same meanings

as in equation 4.1.

From equation 4.6a, it is quite evident that the lower
the‘po,ﬁhe more is the sensitivity of the transducer.
Thus this expression is the basis for obtaining optimum

sensitivity within the limit of a practically realisable

unit.

A series of measurements was carried out to verify
the above theoretical expression. Figure 4.4a shows
the wvariation of s with the variation of H (the thick-
ness), for a typical set of values of other factors of
the equation 4.6b. The experimental results agree well
with the theoretical prediction that ° should be a
direct function of H. Thus sensitivity can be increased
by reducing H to the limit set by the choice of having

a robust structure.

The typical experimental results as shown in Figure
4.4b, supports the theoretical conclusion that Py is a
direction function of ho‘ Thus with the decrease of the
gap between the two tines of the resonator, the sensitivity
increases. As already mentioned this is a main design
criterion of the present transducer. However the
sensitivity can be increased by this technique to the

limit set by the loss of the resonator, which will be

discussed in the next section.
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a9 T

R = 2.54 x 10 %n
ho= 1.9 x 1074

= 3 3
P 2.7 x 107 Kg/m

265¢ Rp= 2.3 x 10 °m

e s
i)‘ A

Scale factor Py (Kg/m3) >
3

6.5 1

\4 " ‘ | ¢
2.5 3 3.5 4 4.5

Thickness H (m x 103) >

The variation of 0o’ +he scale factor as
the thickness of the disks of the
r a typical set of values of

FIGURE 4.4a
a function of H,
circular resonator fo
other parameters as shown.
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Scale factor Py (Kg/mB) >

201 H = 2.54 x 1073 e
= 3 3
Dm— 2.7 x 10 Kg,/m
Rp= 2.3 x lO—3m
19 -
7+
‘S.‘.,
134
R
) : : : : ‘ '4 ié ;8
1.2 {.4 1.6 (. 2 2.2 2. - . .

Half the gap between the disks ho (m x 107) -

FIGURE 4.4b The variation of p_, the scale factor,
as a function of h_, half tRe gap between the

disks of the circular resonator, for a typical
set of values of other parameters as shown.
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According to the theoretical expression 4.6b, o
o

should be an inverse function of R?. The typical

experimental results of Figure 4.4c agree well with
this feature. Again this method of increasing the
sensitivity by the increase of R, is limited by the

loss of the resonator (see next section).

The role of P in o, has already been discussed
in Section 4.2.

The value of the numerical constant Kc,as calculated
from experimental results is approximately .l4. The
theoretical analyses reported in Sections 3.6.1 and
3.6.2 gave the value as .15 and .125 respectively. The
small discrepancy between the theoretical and experimental

values reflects the approximate nature of the theoretical

analysis.

(b) The rectangular resonator:

The difficulty for a theoretical solution for the
rectangular resonator has already been mentioned in
Chapter 3. However formulation for it can be done by

analogy with the circular one, supported by experimental

results. Thus a series of measurements has been carried
out with different geometrical dimensions of the
rectargular resonator.

As expected from the circular case H and ho have

similar effects on pg-
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as a function of R, the radius of the disks of

the circular resonator, for a typical set of values
of other parameters, as shown.
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The parameter LT (the length of the tines) has been
found to have no effect on Por Thus the size of the
unit can be reduced by decreasing Lp. without affecting
sensitivity. However this is limited by the stiffness
effect which becomes significant with the increase of

frequency due to the decrease of LT (see Section 4.6).

Figure 4.5 is a typical plot of the variation of
Py with the variation of W (width of the resonator). It
can be seen that Py is an inverse function of W?. Thus
sensitivity can be increased by increasing W. Again
this is limited by the stiffness effect as

discussed in Section 4.6, and by the losses of the

resonator as will be discussed in Section 4.8.

From the above experimental results and by analogy
with the circular resonator, the formulation for the

rectangular version can be expressed as

6] Hh f 2
o_ = © ‘(—59.) —ll (4.7)
g K W g
where K. = numerical constant
W = width of the tines

and all other relations have the same meaning

as in equation 4.1.

The value of the numerical constant KR has been found

to be approximately .06.
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4.8 LOSS AND Q FACTOR

The transducer is essentially an electronic oscillator
using the mechanical resonator as the frequency controlling
element. Therefore to keep the Q (a measure for sharpness
of resonance) of the resonator at a reasonable value, (say

more than 10), i1s an important factor in the design.

An expression for Q is

enerqgy stored
energy lost per cycle

10
Il

Thus the lower the loss, the higher is the Q. The factors
responsible for the loss may be classified into two

broad divisions:

(a) Losses due to the presence of the gas

(b) Losses in the mechanical and electromechanical

system.

(a) Losses due to the presence of the gas

There are two causes for this loss -

(1) 1loss due to acoustic radiation,

(2) viscous loss.
The former phenomenon has been widely studied in the

literature. It is a well-established fact that the

acoustic energy radiated by a resonator decreases as

the ratio of its geometrical dimension to the wavelength

!

of sound in the fluid decreases. As already mentloned,
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this ratio has been designed to be small, making

the losses minimal.

As a thin layer of gas is set into motion there is
considerable viscous loss. In fact it has been found that
this loss is a dominant factor in determining Q of the
present resonators. The resistive part of equation 3.41
gives the theoretical expectation of the effects of
different parameters on the viscous loss. For convenience

the expression is repeated here:

R, = 3muR* | (4.8)
8ho3 :

A series of measurements has been carried out to
yverify the above expression. The input of the active
bridge (Figure 4.1d) has been supplied with a constant
amplitude signal at the natural frequency of the
resonator, from a variable frequency oscillator and
the output amplitude has been measured by an oscilloscope.
When there is no gas, 1.e. in vacuum, there is no viscous
loss. Thus the decrease of the output of the active
bridge in presence of gas relative to that in'vacuum; can

be taken as a measure of the yiscous loss (assuming
negligible radiation loss) .

In considering geometrical dimensions of the

resonator, from eguation 4.8, it is expected that the loss

. 1 3
will increase directly with R* and inversely as h,”.
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Resonators of different radii and gaps between the disks

have been made and measurements with them agree fairly well

with the above expectations.

Similar results have been obtained for the rectange~
ular version of the resonatérg The viscous loss increases

with the increas& of both W and LT and decrease of ho‘

The effect of pressure on viscous loss is an inter=

esting feature. From the kinetic theory of gases

L1z
Mo o3 pgc% (4.9)

where pgiS density of the gas, C is mean speed‘and %

is mean free path of the gas particles., For a particular
gas, except at very low pressure (determined by the mean
free path phenomenon(Sl)),E and the product pglare constant
at constant temperature. Hence from equations 4.8 and 4q9?
it is expected that except at very low values, viscous

loss should be almost independent of gas pressure. A
typical experimental result is shown in Figure 4.6. The
curve has been drawn automatically by an X~Y plotter.

The circuit used is shown in Figure 4.7. The phase~
locked loop and the active bridge maintain the resonator
at the desired flexural fundamental natural frequency

(details will be described in Section 4,10), which

varies with the density of the gas due to variation in

pressure. The output signal of PLL and hence input of

the active bridge is constant in amplitude irrespective
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of the input of the PLL. Thus the resonator is excited

by a constant amplitude signal and the output amplitude
of the active bridge varies with the loss of the
resonator. Thereby, as already explained; the output
in the presence of the gas relative to that in vacuum
can be taken as a measure of the viscous loss. The two

inputs of the X~Y plotter are,

(1) the analog output of the pressure gauge (see
Section 4.4) and

(2) the rectified output of the actiye bridge.

As can be seen from the plot, the experimental results
agree well with the theoretical expectation. At very
low pressurerange there is large variation of viscous
loss, but thefreafter it is almost constant. The slight
variation may be due to acoustic radiation loss (which

increases with the increase of pressure).

(b) Losses in the mechanical and electromechanical

systems:
These losses are due to
(1) the internal friction of the resonator material
and the PZT elements,
(2) Signal loss due to coupling.
As already discussed in Section 4.2, materials

with very low internal friction have been used in the

KD

designs, thus having negligible effect on the overall
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factor. Diff ;

erent grades of PZT elements are avallable(ss),
with Q typically ranging from 60 to 1200. Thus loss due
to internal friction of the PZT elements can be made

small by choosing those of high Q and using gauges much

smaller, compared with the resonator plates.

Signal loss due to coupling has been minimized by using
piezoelectric drive and pick up as already discussed in

Section 4. 3.

4.9 OPTIMAL DESIGN AND CALIBRATION

The choice for a material of the resonator has
already been reported in Section 4.2. From the
discussions of Sections 4.7 and 4.8, the opposing
conditions for maximization of sensitivity and
maximization of Q are gquite evident. Thus for an
optimal design compromises are to be made in selecting
geometrical dimensions of the resonator. By decreasing
the gap (2ho) petween the two members of the resonator,
sensitivity can be increased up to the limit set by a
minimum satisfactory value of Q (say 10). By increasing
radius (R) or width (W), as the case 1s, sensitivity can

be increased, again limited by the above factor.

The thickness (H) of the members of the resonator

can be decreased for increasing sensitivity, to the limit

set by a choice for a robust structure. Again while

choosing geometrical dimensions of the resonator, due

- 116 -




consideration’is to be given to have the reactive
loading in the predominated mass effect region, as

discussed in Section 4.6,

Figures 4.8a and 4.8b show photographs of a final
design of the rectanguiar version and a final design
for the circular version respectively. Their geometrical
dimensions are also shown in the Figures. The sensitivity
of the former one is about a 25% change of frequency
for density change from O to 20 Kg/m3. For the latter
one the corresponding change is about 35%. The Q of
the former one, just above the mean free path phenomenon
(see Figure 4.6) is about 72, the resonator being in
argon (there are small variations of Q due to gases
of different viscosities). (See equation 4.8). The
value falls slowly (see Section 4.8), to 64 at a
pressure of 17 x lO5 pascal. This being well above the
least satisfactory value, a high stability (about 1 in
lOS) of the transducer has been obtained. For the

circular resonator Q (and hence stability) is of the
same order.

Figures 4.9a and 4.9b show two calibration curves
of the transducers using the resonators of Figures 4.8a

and 4.8b respectively. In these manually drawn curves,

three gases having a wide density range, namely argon,

nitrogen and helium have peen used. Variations of

densities of the gases have been obtained by locating
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the transducer in a pressure vessel (see Section 4.4).
Irrespective of Yc the results for all the gases lie
on the same curve. It may also be noted that time
period (inverse of frequency) has been used, rather
than frequency, because of its advantage of being
measured more quickly(3’7)at these comparatively low
frequencies. Figures 4.l1la and 4.11b show two auto=-
matically drawn (using X~-Y plotter) calibration curves
for the transducer using the resonator of Figure 4.8a,
The former is for the gas argog and the latter for

helium. The arrangement used is shown in Figure 4.10.

The two inputs of the X-Y plotter are

(1) the analog signal obtained by a D-A converter
using the digital output (time period) of the

transducer as input,

(2) the analog output of a pressure gauge which
measures the pressure of the gas and from which

the density was calculated.

Both the Figures have two overlapped curves — one
traced with increasing density and the other with
decreasing density. From the overlapping very low

hysteresis of the transducer is guite evident.

4.10 ELECTRONIC SYSTEMS

The reliability and economy of the electronic

circuitry, in which integrated components have been
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FIGURE 4.lla. A calibration curve drawn by a X-Y plotter
(Figure 4.10) for the gas density transducer using
t+he resonator of Figure 4.8a. The gas is argon and
variation of its density has been obtained by
locating the transducer in a pressure vessel. There
are two overlapped curves = One with increasing
density and the other with decreasing density.

Very low hysteresis is quite evident from the

overlapping.
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FIGURE 4.11Db A calibration curve drawn by a X-Y
plotter (Figure 4.10) for the gas density
transducer using the resonator of Figure 4.8a.
The gas is helium and variation of its density
has been obtained by locating the transducer
in a pressure vessel. There are two overlapped
curves - one with increasing density and the

other with decreasing density. Very low
hysteresis 1s quite evident from the overlapping.
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used throughout, is an important feature of the present
density transducer. The drive and pick up arrangements
of the rescnator by highly efficient and mechanically
very simple piezoelectric ceramics have already been
deglt with in Section 4.3. Manual determination of

the resonant frequency was also discussed there. Its

automation is reported in this section. As the principles

used are quite standard, only a brief outline is given.

Figures 4.12a and 4.12b show the block and detail
circuit diagrams respectiyely, using the frequency
tracking phenomenon of a phase locked loop. An excellent

(60)

discussion of PLLs 1is given by Gardner and by a

number of integrated circuit manufacturers(6l—63). The
one used here is the National LM 565. Basically the PLL
has a free-running frequency determined by a timing
resistor RT and capacitor CT. These components are so
chosen that the desired (i.e. fundamental flexural)
natural frequency of the resonator is within the capture
range of the PLL. Then the PLL will lock onto the
resonator frequency and thus will follow the density

of the gas. Although a triangular waveform is used as
the driving signal, because of the high selectivity of

it responds only to the fundamental Fourier
(64)

the resonator

component of the driving signal

An alternative circuit is shown in block and in

detail in Figures 4.13a and 4.13b respectivly. Basically
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it is a feedback oscillator where the resonator acts as
the frequency cantrolling element. Thus £he frequency
of the oscillator follows the density of the gas.  The
fundamental flexural mode (i.e. the desired one) is well
separated from other modes and the gain of the closed
loop is sufficient to exXcite self oscillation only for

this mode. The a.g.c. system is required to limit the

amplitude of oscillation.

4.11 DISCUSSION

The thin layer phenomenon has made it possible to
develop a high sensitive gas density transducer while
retaining a robust structure of the sensor. Ease of
clamping, virtual digital output, simplicity, compact-

ness and moderate cost are also its advantages.

In addition to its conventional uses, it shows a
promising devyelopment for a special use as the detector
stage of a gas chromatographic system. Gas chromato-
graphy is an important technique which has applications
in various fields such as process control, laboratory
analysis of chemical compounds. This technique involves
in anlysing a mixture of gases or vaporisable liquids
by segregating it on a time bésis into its components and
measuring the concentration of each component. The deﬁector
stage carries out the latter function after the former is

performed by the rest of the system which in a conventional

unit comprises a controlled carrier gas supply, a sampler
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and a column (Figure 4.14), Presently used detectors

are based on complicated phenomena such as effect of

gas on thermal loss of a hot wire, flame ioﬁization and
electron capature(65). It is hoped that this density
transducer being a highly sensitive absolute device

for detecting very small change in gas density can be
developed as a good simple detector stage. It will

also have éll the adyantages of the frequency modulating
technique. The rectangular sensor seems to be particularly
suitable for this purpose. A schematic diagram of the
proposed system is shown in Figure 4.14. The very narrow
end of a conventional column can be made an integral
part of the base of the sensor as shown in the figure.

As in a conventional éystem carrier gas will continuously
emerge at the end of the column and flow through the thin
gap between the tines of the sensor. When segregated
component gases will come out. with the carrier gas; they
will be detected by the sensor due to variation in

densities. Preliminary experiments show a promising

situation.
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CHAPTER §

THE LIQUID DENSITY TRANSDUCER

5.1 INTRODUCTION

°

Typical geometrical dimensions of a practical design
of the resonator for the liquid density transducer has
been shown in Figure 2.5. An accuracy of about 1% was made
the initial object. It can be seen that while all other
dimensions are of the same order as for the gas density
transducer, the gap between the two vibrating members is
considerably greater. This feature gives the necessary
practical requirement for the free movement of the liquid
surrounding the resonator and also maintains a sharp
resonance. Though the wider gap lowers the scale factor
(see equations 4.6 and 5.8), the sensitivity is sufficiently
high, considering the relatively higher densities of
liquids. As based on the same principle and a similar
structure of resonator, most of the design criteria for
the case of gases (discussed in detail in the previous
chapter) are also applicable to liguids. The particular

considerations required for the latter case are dealt

with in this chapter.

5.2 THEORETICAL CONSIDERATIONS

In the analysis of the two piston model (section
3.6), the added mass AM due to the loading effect of
. 7

the thin layer of fluid was obtained as
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y
AM = _3...1T.. pr
o ho (5.1)

where_pf = fluid density

R

radius of the disks

2h
o

~gap between the disks

The mass loading on the other face of a disk of the two
piston model, can be taken approximately as that on a
circular piston vibrating in an infinite baffle. This,

as discussed in section 3.5.4, is

aM = 8 p R (5.2)

wl

In the case of the resonator for the gas density transducer,
only the added mass due to the thin layer was taken

into account (neglecting that on the other face of the
disk). From equations (5.1) and (5.2), it is quite

evident that this is a reasonable approximation as (R/ho)

of the resonator for the gas density transducer is typically
about two hundred. But due to the requirement of a wider
gap, in the case of the liguid density transducer, AM of
equation (5.2) becomes comparable to that of equation

(5.1). Thus in calculating the change in frequency due

to the mass loading of the surrounding liquid, both the

expressions should pe taken into account. By combining

the two expressions, the added mass due to the loading

of the surrounding ligquid on a disk of the two piston

model 1is
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p,R*
37T ) 8
AM = =— ° 3
20 h_ T3 PR
o)
where pl =

In the above expression, the
circulating from one side of
_some contribution to AM) has
done, as from the discussion

evident that it is extremely

(5.3)

density of the liquid

effect due to the liquid
the disk to the other (making
been ignored. This has been
of Chapter 3 it is quite

difficult to include such

a phenomenon in a theoretical analysis of vibrating body-

fluid interaction. However,

equation (5.3) gives useful

information of the effects of different parameters for a

practical design of the transducer.

From equations (5.3) and (3.15), the expression for -

the change of frequency of the two piston model, due to

mass loading of the surrounding liquid is

£

a1
fo / 1 + AM
Y M
- ~ (5.4)
2 R
// 1+ o 1 £ 8 2
20 H
20 pmHho 3Py
where fo = frequency in vacuum
f2 = frequency in a liguid medium
p_ = density of the material of the disks
m
H = thickness of the disks.
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From the fabrication point of view and also from other
practical considerations such as the mounting and driving,

the rectangular version of the resonator has been found

to be more suitable. As discussed in Chapter 3 a complete

theoretical analysis for this version is extremely
difficult if not impossible, due to lack of geometrical
symmetry. However, as in the case of the gas density
transducer, formulation can be obtained by analogy with
the circular version. Experimental results as discussed
in Chapter 4, gave good support for this analogy. Thus
following the procedure of section 4.4, the expression
for change in frequency of the rectangular resonator

can be written as

th

L L (5.5)
£
o // pzwz pQ,W
+ K, + K
Y L Klp Hho 2p H

where W = width of the resonator

K ,K2 = numerical constants whose values
are to be determined experimentally,
and all other notations have the same meanings

as in equation (5.4).

From eguation (5.5)

£ 2
Pri” (=) -1
P, = - £,
Ky N 4 K,W
"ll‘h 2
o]
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Or}

f 2
= 9y o
Py = P% (fl) 1 (5.6a)
OmH
where po = W2 = gcale factor (5.6Db)
K, — + KW
1 ho 2

5.3 EXPERIMENTS AND CALIBRATION

From equations (5.6b),

Klgi+K2W=i§E (5.7)
o
Thus measuring frequencies in vacuum and in a liquid of
known density, of resonators having different widths (W)
or gaps (2ho), from equations (5.6a) and (5.7) the values
of Kl and K2 can be obtained. With this object, two
series of measurements - one with resonators of different

widths, and the other with resonators of different gaps,

have been carried out. The values of the constants have

been found as

K. = .05 and K, = .13 approximately.

1 2

Putting these values in equation (5.6b),

m (5.8)
o W- 3W
05 g + .1

Equation (5.8) shows effects of different parameters

on scale factor and hence sensitivity of the resonator.
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Thus this expression is the basis for designing the
transducer, guided by practical requirements. It can

be seen that it is similar to the expression 4.6b for
the gas density transducer, except the term (.13W) in
the denominator. However this term also supports the
feature that the scale factor should decrease with the
increase of the width of the resonator. Therefore the
design criteria as discussed in section 4.9 are also
applicable to the present case. Experimental results
support well this conclusion. Thus by decreasing the
gap (ZhO) between the two plates of the resonator,
sensitivity can be increased to the limit set by the
requirement of free movement of the surrounding liquid.
By increasing width (W), sensitivity can be increased
limited by the decrease of quality factor Q (as discussed
in section 4.8 for the case of the gas density transducer).
The thickness of the plates (H) can be decreased for
increasing sensitivity to the limit set by a choice for
a robust structure. Again while chocosing geometrical
dimensions of the resonator, due consideration is to be
given to have the reactive loading in the predominated
mass effect region (similar to the case of the gas

density transducer as discussed in section 4.6).

Under the above discussed criteria, a final design

of the resonator is shown in the photograph of Figure

i bout 240. The frequency
5.1. Its scale factor s is a

reduces by 55% from vacuum to water (i.e. for a density
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- 3
span of 0-1000 Kg/m ). The quality factor Q in water is

about 50. This is well above the least satisfactory

value (see section 4.8), giving a high stability (about

1 in 104). Figure 5.2 shows a calibration curve for
the liqdid density transducer using this resonator.

The liquid is a solution of sugar in water. Variation
of densities have been made by varying the amount of
sugar. Again time period (inverse of frequency) rather
than frequency has been used in the calibration as
discussed for the case of the gas density transducer

in section 4.9. Figure 5.3 shows a calibration curve
for the liquid density transducer using a resonator
whose gap is 3.8 x lO—3m and all other dimensions are

same as the resonator of Figure 5.1. Its scale factor

is about 340.

5.4 DISCUSSION

Due to the relatively higher visqosity of a liquid (in
comparison to a gas) the damping of the resonator 1is
higher (see section 4.8). Thus a driving voltage
amplifier is needed in the electronic system of Figure

4.9. Figure 5.4 shows such a system. The alternative

circuit of Figure 4.10 can also be used.

Similar to the case of the gas density resonator,

PZT plates have been used for drive and pick-up arrange-

ments for the advantages discussed in section 4.3. Dueto

the very mechanical simplicity of this system, the present
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transducer can be built in the form of a simple convenient
probe (as shown in Figure 5.5) in addition to the

conventional use of such a device in the pipe line of

a process control unit. However a most significant

consideration needed for the piezoelectric drive system,
is the requirement for electrical insulation of the PZT
plates. 1In the laboratory development, readily available
insulating materials such as lacquer (aerosols), glue
(araldite, super glue) have been used. These have given
satisfactory results. However it is thought that in the
case of commercial production of the transducer, a better
method of insulation will be required. For example,
during the manufacture of the PZT elements, a suitable
insulating material can be sputtered on the surfaces
(with connecting leads coming out). Literatures of PZT

(57,58)

manufacturers support this idea.

An alternative drive system is to use thin length
of magnetostrictive metal sheets. This avoids the
problem of insulation and has the advantage of removing
the electrical drive from the liquid. This would require

considerable effort to reach a good practical device.
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r’ Output cable

- Case to be removed
when the resonator

is to be immersed in

a liquid for measuring
its density

0
2
Ligui
85ﬁ — iquid proof case
o3
0o
QY
— -~
MmO
|
Insulated {
PZT plates
P — |
l
|

FIGURE 5.5 The liquid density transducer
in the form of a convenient probe
(view in section).
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CHAPTER ¢

THE TENSION TRANSDUCER

6.1 INTRODUCTION

In a simple beam a longitudinal stress will increase
or decrease the stiffness depending on whether the stress
is one of extension or compression. This will give rise
to a corresponding increase or decrease in a natural
resonant frequency of the beam. This principle is the
basis of the tension transducer described here. With the
increasing demand for digital instrumentation, this type
of tension transducer having virtually a digital output
is becoming widely used. A number of such devices have

(21-26)

appeared within the last two decades Both wires

and beams have been used as the sensing resonator. How-
ever in these designs major difficulties have been

encountered regarding an important requirement, an efficient

(21) .
clamping arrangement for the resonator. Thus Wyman in

his force transducer says - "It is particularly important

to terminate the wire efficiently, so that no relative

movement exists between the wire and any part of the

clamping arrangements. Furthermore no work hardening

or embrittlement should occur at the termination".

In the case of the resonators for the fluid density

transducers (discussed in Chapters 4 and 5) a successful
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and easy clamping arrangement, using a type of double
resonator giving dynamic balancing was achieved. The
principal object here is to show that a similar double
resonator can be used in a tension transducer to give an
easy solution to this clamping problem. The double
resonator, a pair'of rectangular beams, designed for the

purpose has been shown in Figures 2.1 and 2.6 (can also be

seen in the photograph of Figure 6.3).

6.2 pvraMIC CLAMPING

The basic principle of this phenomenon has been discussed
in section 2.3. TIts experimental verification for the case
of the tuning fork like resonator for the fluid density
transducer has been reported in section 4.5. The present
resonator may be thought of two tuning forks end to end.

Thus from the discussions of sections 2.3 and 4.5, it is
expected that the two rectangﬁlar beams of this resonator
in flexural vibration can be taken as in clamped state

at the boundaries shown in Figure 6.1.

Because of the two clamped boundaries, the apparent
increase in length should be double that of the tuning

fork like resonator of the fluid density transducer.

Thus L, the length of the beams, in dynamic condition (in

fundamental flexural mode of vibration), is

L = & + 2 x .68H

length in static condition

1]

where 2

H thickness
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FIGURE 6.1 The two beams of the resonator while vibrating
in flexure, are in clamped state at the boundaries
shown by the dotted lines (view in section).

A series of measurements has been carried out to test
this assumption. Resonators of different lengths and
different thicknesses have been made and their resonant
frequencies (in fundamental mode) under no- tension have

been measured. Theoretical values of these freguencies

have been calculated from the formula(sg)
2
£ _ T (1.5056) .E_ Co (6.2)
10 2 L2 /i3 ¢

fundamental frequency in flexural vibration

where flo =
of a clamped-clamped beam under no tension.
L = length of the beam
H - thickness of the beam
C =/"E = rod velocity
o / o
E = Young's modules
o = density of the material
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A good agreement between the measured and theoretically

calculated (with length correction as given by equation

6.1) frequencies has been found.

The dynamic clamping condition has also been verified
by a vibration detecting magnetostrictive probe. By
lightly touching a vibrating surface with the very sharp
tip of this probe, the vibration can be observed on an
oscilloscope (for a detailed description of the probe
see reference 66). The beams have indeed been found in

clamped state at the boundaries shown in Figure 6.1.

6.3 THEORETICAL FREQUENCY OF THE RESONATOR UNDER TENSION

A single beam of the resonator can be approximately

represented as shown in Figure 6.2, below

Y
N
T T T T — > X
% {:\\ ”'—/}’mE
x=L
X=0
Figure 6.2
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Under a tension T its equation of motion 1559)

2 .
oy ESH? 3%y _ s 3%y 3
<2 12 N (6.3)
RS 3 3t 2
where S = WH = area of cross section
t = time
and all other notations have the same meanings
as in equation 6.2.
Assuming a simple harmonic motion the freqguency fnT
(where n=1 denote fundamental, n=2 first overtone and
so on) 1s given by the equation
£ o = 1 COHU/Eﬁ";fjg? (6.4)
3
here g2 3T
whe = —
s 2m2ESH?
and

for n=1, 3, 5 ...., WU is given by the equation

utan(TLu) = -/u° + 28%tanh (TLY/u2 .+ 28%) (6.5)

for n =2, 4, 6 «.a.- ’ is given by the equation

vy 2 2 ]
¢ + 28% tan(mlup) = ytanh (1L/u® + 287) (6.6)

To find fnT’ equations (6.4), (6.5) and (6.6) are to be

solved numerically. Such a solution using a computer

program is given in Appendix 2.
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6.4 DESIGN CRITERIA

Though there is no explicit expression for the frequency
fnT’ to show effects of different parameters in the design,
an approximate equation can be fitted (for a certain range)
using the numerical values. Thus equation (6.7) gives an

approximate expression for the fundamental mode (for the

range of L8 from O to .5).

1.015 HC
O

£ = . .25 ST (6.7)
L? /own

From equation (6.7)

£

=1+ .o49rn./ L

10 /  EWH® (6.8)
where £ = fundamental frequency under no tension

10
Equation 6.8 gives an approximate basis for designing the
resonator within the limit of a practically realisable unit.
Thus it can be seen that the sensitivity of the transducer
will increase with the increase of length L. By choosing
a material of lower Young's modulvs E, sensitivity can be
increased. However choice of material is limited by such
factors as low temperature coefficient and low hysteresis
(discussed later in this section). Egquation (6.8) shows

an interesting feature that for a certain cross sectional

area WH (giving a certain maximum allowed stress and hence

tension), sensitivity can be increased by decreasing
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thickness H with the proportional increase of width W

(to keep the certain value of WH). For the first

overtone an expression corresponding to that of equation

(6.8) for the fundamental mode, is

hil —
2T
F—= = 1+ .027L /T (6.9)
20 /' Ewe?
v
where sz = frequency of first overtone under a tension T

fZO = frequency of first overtone under no tension.

Comparison between eqguations (6.8) and (6.9) shows that
sensitivity is higher for the fundamental mode. In fact

this mode has the highest sensitivity.

Under the above discussion, a resonator designed for
the range of O to 5'kN is shown in Figure 6.3. Its
calibration curve (at fundamental mode) 1is shown in
Figure 6.4. Choice of material for the resonator of such
a frequency domain tension transducer mainly depends on

such factors as
(a) Low temperature coefficient
(b) Low hysteresis

(c) High eleastic limit

A low temperature coefficient is generally achieved by choosing

a material in which the elastic changes can be balanced

against dimensional changes over a specified temperature

range(6'23) Some favourable materials are titanium,

steel P18, ground stock steel, steel GK40, steel 35 khGSA.
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CHAPTER 7

CONCLUS IONS

A study of currently available frequency domain

transducers has been carried out. 1In general they consist

of mechanical resonators which respond to the parameter
being measured (temperature, density, pressure or

tension).

A contribution made in the present work is the use
of dynamically clamped units enabling the vibrating
region to be isolated from the supports while retaining
high mechanical strength. In the development of the
density transducers the concept of magnifying the
inertial loading by trapping a lamina of fluid between
the two members making up the dynamic clamping has been

used.

A variety of designs have been examined. For gases
it was found that a high sensitivity can be achieved
using a thin lamina while retaining a robust structure.

Gas viscosity sets an upper limit to this sensitivity.

For liguids the energy 10ss which reduces the sharpness

of resonance is a major problem. A design has been

achieved which gives an acceptabily sharp resonance

while maintaining a high sensitivity. Simplicity and

low cost are significant advantages of both the transducers.

For tension measurement a double beam unit has been




developed. Detailed analysis has shown that the sensitivity

1s controlled by the thickness to width ratio. Thus for
a certain cross-sectional area (defining the maximum

tension) a pair of thin wide beams gives best performance.

A variety of drive and pick-up techniques with their

associated electronics have been examined. No completely

perfect solution is apparent but a number of methods are

satisfactory for particular applications.

Some further work in the case of the fluid density

transducers should be

(1) to examine other suitable materials for the resonators

(see Section 4.2).

(2) to develop the gas density transducer as the
detector stage of a gas chromatographic system (see

Section 4.11).

(3) to examine alternative driving techniques for the

case of liquids ({see Section 5.4).

(4) to look for rigorous theoretical solutions for the
phenomenon of dynamic pbalancing (see Section 2.3) and”

for the conflicing offects of added mass and added

stiffnesss (see Section 4.6).

Some further work in +he case of the tension transducer

should be

(1) to examine other suitable materials such as

titanium, steel P18 and steel GK 40 (see Section 6.4).
4
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(2)

(3)

to examine the possibilities of using it for
constructing devices for measuring other physical
variables such as pressure and material level
(see Section 6.5).

tO carry out a rigorous theoretical analysis for
the dynamic balancing condition, possibly using

a finite element computer analysis.
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LIST OF PRINCIPAL SYMBOLS

amplitude of vibration

L3

velocity of sound in fluid, constant
rod velocity

Young's modules

exponential

drag force, excess fluid pressure
frequency in vacuum

frequency in a fluid of density O
frequency in a gas of density pg
frequency in a liquid of density 0
frequency under tension T
fundamental frequency under tension T°
fundamental frequency under no tension
thickness

half the initial gap

gap at time t

/=1

wave number, stiffness

constants

constants

length

mass, molecular weight, Lu
added mass

mass per unit length
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pressure

quality factor

radius, gas constant

Reynolds number

resisti?e part of ZL
cylindrical polar co-ordinates
Cross sectional area, stiffness
tension, wt

time

velocity)Uz/hOaw

radial velocity

axial velocity

velocity amplitude

volume at time t

width

reactive part of ZL

dx
dt

d®x

dt?
mechanical impedance of the fluid lead

© . ?ZﬂSHZ)%
z/lho(l+a51nwt) |, (3T/2n°E

viscosity, given by €q
3.14159

density

scale factor

fluid density
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gas density
liquid density
angular frequency

angular frequency in vacuum

distance

ratio of specific heats.
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APPENDIX 1

SOLUTION OF EQUATION (3.33)

Equation (3.33) is

8°U _ 5, _3°U

38" © 3g3aT (AL 1)
Let us look for a solution of the form

U =o(g)elt (A.1.2)
Eguation (A.l1.1l) then reduces to

[N 2

d ¢ —jReM=O (A.1.3)

as* as?
The solution of equation (A.l1.3) is

eKB e-KB
¢ =C, +Cc,B+C, — +C (A.1.4)
' 1 2 3 g2 4 K2

where K = /]Re

and Cl’ C2, C3, C4 are constants whose values

are determined by boundary conditions.

Under the assumption of equation (A.1.2), the boundary

conditions of eqguation (3.34) become

azs
at B = 0O, ¢ = O = .(;g;
(A.1.5)
Noo= _CE.(E = 0
at B = 1, o = 1, &
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With these boundary conditions,

the values of Cl' C2, C3 and C4 are found as

C = QO = 2COSh K
1 ’ C2 —~?E_——
1 1
€3 = ¢ C4=-2
where C = 2 Cosh X 2 Sinh X
K Ki
With these values of Cl, C2, C3, C4,

(A.1.2) and (A.l1l.4)

28 Cosh K _ 2 Sinh KB eJT
K K2

CU =
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APPENDIX 2

NUMERICAL SOLUTIONS FOR THE’RESONAN& FREQUENCY

OF A BAR UNDER TENSION

By putting,

Iu=M

LB = B (A.2.1)
in equations (6.5) and (6.6),

M tan(mM) = =-yM? + 2B? tanhmvM? + 2B? (A.2.2)

/M? + 2B? tan(mM) = M tanh mwvM? + 2B? (A.2.3)

Under the transformation of (A.2.1), equation (6.4) can

be written as

or K = My/MZ + 2B? (A.2.4)

T
no3

1.2 ) )
= Y _ = frequency function
where Kn = fnT cH q Y

Solving equations (A.2.2) and (.2.3) numerically using

values of K_ have been calculated from
al n

a computer program,
equation (A.2.4). These values, for B from O to 1 at step

of .05, are given in Table A.2.1.
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B Kl K2> K3

O 1.028 2.834 5.557
.05 1.031 . 2.837 5.560
.1 1.038 2.847 5.571
.15 1.051 2.864 5.590
02 1.068 2,887 5.615
.25 1.089 2.917 5.648
.3 1.114 2.953 5.688
.35 1.144 2.995 5.735
.4 1.176 3.042 5.788
.45 1.212 3.095 5.849
.5 1.251 3.153 5.915
.55 1.292 3.216 5.988
.6 1.336 3.283 6.066
.65 1.382 3.354 6.150
.7 1.429 3.430 6.240
.75 1.478 3.510 6.334
.8 1.529 3.591 6.434
.85 1.581 3.676 6.538
.9 1.634 3.765 6.647
.95 1.688 3.856 6.760
1 1.742 3.949 6.877

values of frequency function Kn

2.1 =
TABLE & £ tansion functlon B.

for values ©
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