Analysis of computer communication systems by use of digital signal processing methods

Abstract

Queueing theory is an effective tool in the analysis of canputer camrunication systems. Many results in queueing analysis have teen derived in the form of Laplace and z-transform expressions. Accurate inversion of these transforms is very important in the study of computer systems, but the inversion is very often difficult. In this thesis, methods for solving some of these queueing problems, by use of digital signal processing techniques, are presented. The z-transform of the queue length distribution for the Mj GY jl system is derived. Two numerical methods for the inversion of the transfom, together with the standard numerical technique for solving transforms with multiple queue-state dependence, are presented. Bilinear and Poisson transform sequences are presented as useful ways of representing continuous-time functions in numerical computations.

Divisions: College of Engineering & Physical Sciences
Additional Information: If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our takedown policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: computer communication systems,digital signal processing methods
Last Modified: 30 Sep 2024 07:36
Date Deposited: 22 Jun 2010 10:30
Completed Date: 1982
Authors: Kanyangarara, Raymond J.C.

Download

Export / Share Citation


Statistics

Additional statistics for this record