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Queueing theory is an effective tool in the analysis of camputer
cammmication systems. Many results in queueing analysis have been
derived in the form of Laplace and z-transform expressions. Accurate
inversion of these transforms is very important in the study of camputer
systems, but the inversion is very often difficult. In this thesis,
methods for solving same of these queueing problems, by use of digital
signal processing techniques, are presented.

The z-transform of the queue length distribution for the M|GY|1
system is derived. Two numerical methods for the inversion of the
transform, together with the standard numerical technique for solving
transforms with multiple queue-state dependence, are presented.

Bilinear and Poisson transform sequences are presented as useful
ways of representing continuous-time functions in nurerical computations.
These transforms permit digital signal processing technicques to be used
in queue analysis. Systematic methods for inverting Laplace transforms
using bilinear and Poissan transforms are obtained. The Poissan
transform is also used in the analysis of the M|G|1 queue.

The inversion of Laplace transforms by use of bilinear and Poissan
transforms requires the ability to campute bilinear and Poissan
sequences fram continucus-time functions and these functions fram
the sequences. Efficient camputational methods are developed.

Bilinear and Poisson transfcmms are then used in: the inversion
of the Laplace transforms of the waiting time distributions for the
M|G|1 and G|G|1 queues, inversion of an irrational Laplace transform
expression, and the camputation of the busy period distribution for
the M|G|1 queue. Bounds for the waiting time distribution in the
G|G|1 queue are obtained using Skinner's method. The distribution for
the mumber served in the M|G|1 queue busy period is camputed using
recurrence relations.

A method is derived to calculate the link delay estimate used
in routing decisions in camputer camunication networks.
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CHAPTER 1

INTRODUCTION

1.1 COMPUTER COMMUNICATION SYSTEMS

In computer communication systems, users are connected
to computers by communication links. Computers can also
be connected to other computers, which can be at geographically
distributed locations, through communication links. Computer
communication systems range from the various forms of
teleprocessing used in the data processing industry, the
time-sharing systems between collections of terminals and
central computers, to the large scale computer-to-computer
communication networks. Many large scale networks have
been developed and are now in operation. Examples of these
are the ARPANET, the trans-Canada telephone system, the
multipurpose data network set up by the British Post Office.
Other systems are in operation and they include airline
reservation systems, medical data systems, banking networks,
military networks, educational networks and information

service systems.

There are several important issues in the analysis
and design of computer communication systems. These issues
include performance evaluation, routing and flow control,
link capacity assignment, topological design, buffer size
allocation. For a cost-effective design, one must have
systematic methods for predicting gquantitative relations
between the system input parameters, system performance

measures and system workloads.
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1.2 QUEUEING ANALYSIS

The class of systems that generally lends itself to
queueing analysis is one in which customers compete for
access to a resource which can perform work at some
finite rate, i.e., a finite~capacity resource. Resources
that customers compete for include terminals, communication
lines connecting these terminals to the computer system,
storage capacity in the main memory and in the secondary
memory devices and processing capacity of both the central
processing unit and the input/output processor that controls
the flow of data between the main memory and secondary
devices. Customers can be for instance, terminal users,
data packets, speech and other computers. Queueing theory
is an effective tool for studying the throughput, response
and other measures of performance for computer‘systems.
There are other disciplines of applied mathematics, like
graph theory, mathematical programming, optimization
techniques and reliability theory, which must augment the
queueing analysis in order to cope with the overall

analysis and design issues.

Three different stages can be identified in the analysis
and modelling of computer communication systems(l). At
the first stage, a suitable gueueing model for the system
igs developed. The second stage involves the identification
and investigation of the basic process underlying the
whole model. It is at this stage that quantitative relations

between system input parameters, system workloads and
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measures of system performance are derived. The third
stage involves obtaining numerical results from the derived
quantitative relations. Approximations can be introduced
at any one of these stages. If an exact or an
approximate queueing model, or process Or numerical

solution cannot be obtained, one resorts to simulation

of the system. This can be very costly, and it is therefore
preferable to obtain functional relations from suitable

queueing models wherever possible.

There are several performance measures for a queueing
system. These include server utilization or utilization
factor, throughput, the time a customer has to wait in a
queue, the total time a customer must spend in the system
or end-to-end delay, the duration of the busy and idle.periods,
the number of customers in the queue, the number of
customers served in the busy period. Percentile performance
specifications are also important in the design of a
computer communication system. These percentile specifications
are obtained from the detailed distribution functions of
the system variables. Foxr example, a performance
specification for a computer communication network can be
that the end-to-end delay for a data packet must be 3 seconds

or less, 99% of the time.

In order to specify the type of a given queueing
system, Kendall's shorthand notation AXIBY|m|N is used.

A and B describe the interarrival time distribution and the

-3~



service time distribution, respectively. X and Y represent
the distributions of the sizes of the arriving groups and the

service batches,respectively, m represents the number of

parallel servers of the servicing system. N is the maximum

number of customers that can wait in the queue.

The following is a list of distributions used or

referred to in the subsequent sections and chapters.

M Exponential distribution,

D Deterministic variable, i.e., interarrival times/

service times are constant values.

E k-stage Erlangian distribution.

k-stage hyperexponential distribution.

G General distribution.




1.3 REVIEW OF EXISTING LITERATURE

There is a large literature on queueing theory and
queueing models for computer communication systems(2-38).
Many useful results for performance measures, and
parameters of interest have been obtained as averages,
variances, moments, Laplace and z-transforms. The
numerical evaluation of the derived expressions is not
always easy. Some work has been done in the development
of numerical methods for the solution of these gqueueing
problems(29’39769). However, this forms only a very small
proportion of the total literature on queueing theory.

In the present age of computers, there has been a

surprising concentration on deriving analytical results

rather than numerical solutions,

The solution of queueing problems can involve the
approximation of the actual queueing models by simpler
models for which solutions are available. Results for the
simple M|M|1l queue have been used extensively in the
transit delay andlysis for computer communication networks.

Kleinrock(3l

has used these results in predicting the
delay of messages flowing through a network. Sometimes
the basic process underlying the mathematical model can
be so complex that a direct analysis for the model is not
worthwhile. The system model can be simplified.
Alternatively, a simpler process whose analysis is known

can be identified and used. Fluid approximation(3'38),
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a first-order approximation, and diffusion approximation(3,39,402

a second-order approximation, have been used in process

approximation.

Numerical approximation is also useful in the solution

(41) obtained an approximate

of queueing problems. Bear
method for calculating the waiting time distribution in an
M|G|1 queue. The method computes the approximate
distribution from the first two moments using standard

delay curves for the M|M|l and M|D|l queues. A class

of approximations for the waiting time distribution in the
G|G[Lqueue are presented in Reference (42). The distribution
is obtained as exponential approximations. Cosmetatos(43)
considers the multiserver system G|M|m. Approximate
formulas are developed for evaluating the steady-state
average dqueueing time for the system with hyperexponential
interarrival and exponential service times. Data to
represent the different distribution functions are often
obtained by measurements or statistical observations.

For numerical calculations, it may be necessary to
approximate the measured data by some distribution function.

(44) presented an algorithm for determining

Bux and Herzog
a phase-type distribution function which fits the actual

measured data with a prescribed accuracy.

In certain situations, it is easier to obtain
numerical results for discrete gqueueing systems than for
continuous—~time systems. When discrete solutions are used

-6-




to approximate continuous solutions, the continuous-time
distributions are replaced by discrete distributions

(45,46) has used

obtained by periodic sampling. Ackroyd
this technique to compute the waiting time distribution
function for the G]G]l gueue and the busy period distribution
for the M|G|1l queue. Sampled discrete distributions have
also been used in the exact formulations of the continuous

solution. Molloy(47) (48)

and Wong computed the waiting time
distribution for the continuous G|G|1l gueue, by replacing
the continuous~time distributions with their sampled

versions in the exact formulation of the continuous system.

Bounds on the mean, the moments and distribution
functions are sometimes derived. This approach is more

useful than having approximate results whose accuracy is

(16)

not knowrn. Raychaudhuri and Rappaport derived the

z-transforms of the queme length distribution for the
sampled, multiserver G|D|m queues. From the transforms,
they derived upper and lower bounds on the average waiting

(49)

time. Skinner developed an algorithm for computing,

numerically, upper and lower bounds on the waiting time
distribution function for the M|G|1l queue. Skinner's

method was shown to be applicable to many other problems(SO'Sl).

(52)

Bagchi and Templeton presented an algorithm for

computing, numerically, the time-dependent probabilities
for discrete variables in a sizeable class of bulk queues
and gqueues with non-stationary input and service conditions.

(29,30)

Holman, Grassmann and Chaudhry derived the z-transform

- -




of the number of elements in the system, for the bulk
arrival, multiserver system Ei]M]c and they also presented

a numerical method for the inversion of the derived transform.

A common problem in the analysis of gueueing systems is
the inversion of the Laplace transform. Some numerical
methods for inverting this transform have been developed(53—59).
Some of the methods have been used in the analysis of computer
communication systems. The busy period distribution for an
M|G|1|N type queue occurring in a time—sharing computer
system was computed in reference 60 using some of these methods.
An IBM disk storage facility was modelled as an M|G|1 queue(6l),

and its response time was computed by the numerical method

in reference 58.

Digital signal processing technigues have recently been

applied in the solution of gueueing problems(45-47’62_68),

The fast Fourier transform (FFT) algorithm was proposed as
a means of inverting the z-transforms of probability density

(67)

functions in queueing analysis by Caver The FFT algorithm

and the complex cepstrum were used in the computation of the
waiting time distribution for the G|G|1 queue(45’47). The
various distributions for the M|G|l queue were computed in
references 46, 62-66. The solution for the M|M|l transient-
state occupancy probability is given in reference 2 as a
series summation of the modified Bessel functions. Stern(69)
obtained a simple approximation to this transient solution.
However, Ackroyd(ss) used the inverse discrete Fourier

transform (DFT) to compute the transient-state occupancy

probabilities.




1.4 OQUTLINE OF PRESENT RESEARCH

Digital signal processing techniques have been used
in the processing of radar, speech, brain and communication
signals. 1In queueing theory, the signals are probability
density and distribution functions rather than waveforms.
The task of numerically evaluating the results derived in
queueing analysis is often difficult. Therefore the
numerical solution of queueing problems is important in
the analysis of computer communication systems. This
research involves the development of systematic methods
for solving the queueing problems by use of digital

signal processing techniques.

In Chapter 2, the z-transform of the queue length
probability density function for the bulk service M[GYIl
queue 1is derived. The inversion of the derived transform
is difficult because each queue state depends on several other
queue states.In sections 2.3 and 2.4, two methods for
the inversion of the transform by use of digital signal
processing techniques are presented. The standard
numerical solution for transforms with multiple queue-state
dependence is outlined in section 2.5. Solutions for
some queueing systems are obtained in section 2.6. To test
and assess the accuracy of the computational methods, the
methods were tried for these gqueues and details of the
comparison are given in section 2.7. The chapter concludes
in section 2.8 with a discussion of bulk service and multiserver
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queues in computer communications.

Chapter 3 deals with the application of the bilinear
and the Poisson transforms in queue analysis. The Poisson
transform interrelates the various distributions of the M|G|1
queue. These relationships, together with the inversion
of the Pollaczek-Khinchin transform equation for the
number of customers in the system , are discussed in section
3.2. The theory of representing continuous-time functions
by digital sequences is discussed in section 3.3. The
bilinear and Poisson sequences are then presented in
section 3.4 as useful discrete function representations
suitable for numerical calculatiens. An approximate
Laplace transform inversion procedure by use of the
bilinear transformation is outlined in section 3.5 and
this method is used in the computation of the waiting time
distribution for the M|G|l queue. A systematic procedure
for the computation of the inverse Laplace transform by
use of the bilinear and Poisson transforms and digital
signalprocessing techniques is presented in section 3.6.

The procedure is used in the inversion of the Laplace
transform of the waiting time distribution for the G|G|1

queue.

In Chapter 4, several methods for computing the
bilinear and Poisson sequences and their inverses are
presented. The sequences are generated from digital filters

derived from analogue filters by use of the impulse
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invariance and numerical integration design procedures.

The first inversion technique involves the use of Laguerre
polynomial series expansions and the second technique
involves the use of digital filters obtained by the

numerical integration design procedures.

Some probability distribution functions are computed

(49) is outlined and used

in Chapter 5. Skinner's method
in the derivation of bounds on the waiting time distribution
for the G]Gll queue. The bilinear transform is used in

the inversion of a transcendental Laplace transform. The
bilinear and Poisson transforms of the busy period

probability density function for the continuous M|G|1l queue
are derived. A procedure for the computation of the busy
period distribution function from these transforms is

outlined and used in obtaining numerical solutions for the
M|M[1 and M|E,|1l queues. To test the computational method, the
exact solution for the M|M|l queue is rearranged into a set of
recurrence relations, and results from the two methods

are compared. A recurrence procedure for computing the
distribution of the number served in the busy period for

the M|G|1l queue is derived. The chapter concludes with a

discussion of the application of the computational methods

in the analysis of computer communication systems.

In Chapter 6, an algorithm for computing an estimate
of the link cost, for a computer communication
network, is developed. In making routing decisions, a node
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must have an estimate of the delay a packet can experience
along all possible routes té a particular node. The
information about the delay a packet can experience along
a given link between two nodes is stored in the link cost
table. The algorithm was developed speciﬁically for the

Pilot Packet-Switched Network(70).

Finally, the conclusions are to be found in Chapter 7,

together with suggestions for further work.

-12-




CHAPTER 2

COMPUTING QUEUE LENGTH DISTRIBUTION

FOR BULK SERVICE M|G> |l SYSTEM

2.1 INTRODUCTION

In the next section of this chapter, the z-transform
of the queue length probability density function for the
M‘GYII queue is derived. This queue has an exponential
interarrival time probability density function, a general
service time distribution, and a single server capable of
serving a random number of customers. The inversion of
the derived transform is difficult because each gueue state

depends on some of the other gueue states.

A common numerical procedure for inverting transforms
with multiple-state dependence involves the use of a
root-finding routine and a routine for solving a system
of linear equations. In the absence of an exact solution
to this problem, it is desirable to experiment with several
numerical technigues. 1In sections 2.3 and 2.4, two
methods for inverting the derived z-transform are presented.
These methods use digital signal processing techniques.
The first method is a frequency domain iterative scheme.
The second is a direct computational method which uses
the complex cepstrum. The common procedure for inverting such
transforms 1is briefly described in section 2.5. 1In
section 2.6, the solutions for the queues M|MYll and
MlEgll with constant, binomial and geometric service

capacities are obtained by use of a root-finding procedure.

The solutions for these queues are used to assess the
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performance of the two computational methods presented,
in section 2.7. The computational methods are also
applicable in the inversion of transforms for some

. (16,20) .
multiserver queues . The chapter concludes in

section 2.8 with a discussion of bulk service and

multiserver systems in computer communications.
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Y
2.2 Z-TRANSFORM OF QUEUE LENGTH DISTRIBUTION FOR M[G |1 SYSTEM

The MlGYIl gueue with a constant service capacity, m,
is considered in references 2 and 10. The system operates
as follows: service is instantaneous, but is only available
at service instants. The interval between successive
service instants is independently and identically distributed
with probability density function b(t). If there are g
customers waiting in the queue just before service instant
n, min(an,m) customers are served at service instant n,

where m is the service capacity.

Consider the same system, but with the service capacity
of the server at any service instant a random variable.
This system corresponds to the M|GY[1 queue(52'9q Let S
be the service capacity of the system at service instant

n. At service instant n, min(§n, @n) customers are served.

Let Gn be the number of customers arriving during the
time interval between the (n-1l)th and nth service instants.
The basic equation of the system,giving the number of

customers in the queue, just prior to the (n+l)th service

. . (52)
instant 1is
- N e 1
9n+1 ~ (qn Sn) Vhn+1 (1)
+
where the notation (i) denotes max (0,i). The following

discrete probability density functions and their z—-transforms
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are defined:

qn(k) = pr(§n=k) with z-transform Qn(Z)’
sn(k) = pr(sn=k) with z-transform Sn(z), and
vn(k) = pr(vn=k) with z-transform Vn(z).

To derive the z-transform of qn+l(k) from Eqn (1),

the following facts are used:

z)%Sz), where I(.)

~
(a) The z-transform of (xn) is H(Xn(
denotes the operation of "sweeping values on the
negative axis to the crigin", and where Xn(z) =

Tpr (X =k)z-k.
n

(b) The z-transform of the probability density function

. ~ . 1
of a wvariable -x, 1is Xn(E)'

(c) The variables Gn and §n are independent of ﬁn, and of

each other.

Using these facts,and the z-transforms of the
probability density functions of the variables g , S

and v , Q

n (z) the z-transform of qn+l(k)’ is

n+1

0., (2) = T[o(2) s, (3] v, (2) (2)

Expanding this equation and performing the II(.) operation,

Egn. (2) becomes
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1 N -j+k
Q .(z) =g (z)s () - £ s (k) I q_(j)z +
n+l n n-'z k=1 n 5=0 n
N k-1 1
L s (k) £ g (3) (z) (3)
k=1 n =0 n n+1l

where N is the maximum service capacity of the system.

Expanding the right side of Egn. (3) in ascending powers

-1 1
z

of , and matching them to similar powers of z ~ on

the left side, qn+l(k) is found to be

k N
qn+l(k) = E Vn+l(l) E sn(m)qn(m+k—i) +
=0 m=0
N i-1
Vn+l(k) _Zq sn(i) X qn(m), k=0,1,2,...
i=1 m=0

In the steady-state, the subscripts n and n+l can be
dropped in Egns. (3) and (4). Solving Egn. (3), the
z-transform of the steady-state gqueue length probability
density function for the M{GYll queue is

k-1 .
V(z) s(k) T qg(i)(1-z 17Ky
0(z) = k=1 120 (5)

1 - Viz) 5(3)

nm 2

The average queue length, g, is obtained from the condition
dQ(z)/dz'l; _, _/with the help of 1'H8pital's rule. This
z =1

is given by the equation




N n-1
Z s(n) I (i-n) (i-n-1)g(i) - = _ 5
g = b=l ifO- _ Lv+f—f(v) 1.
2(v+s) 2(v+s)
N n-1
L s(n) % (i-n) g(i) (6)
n:-l j_:o
where
- 2
5 = dv(z) = _ dv(z)
v = ———q ’ v = -
dz Z—l=l dz . l:l
S - —dSEi)‘
dz z-]____1
- dZS(Z) ds (z)
s = - t 2 =T -1
dz dz =1

Equations similar to (4) and (5) were obtained in reference
20, for a multiserver system with general interarrival time,
constant service time, several servers ,but with the number
of servers available at any service instant being a random

variable.

To obtain the detailed queue length distribution,
Egn. (5) must be inverted. Unfortunately, the explicit
solution of this equation is difficult because of the

multiple dependence of the gueue states. To obtain the density

g (k) reauires a knowledge of the values of several other
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elements. Even to compute the average queue

length from Egn (6) requires a knowledge of the values of
the first N elements. As N becomes large, the problem
is further complicated. Other reasons that would make
the inversion of this transform, Egn. (5), complicated

are discussed below.

If V(z) and S(z) are irrational functions the task
of analytically inverting this transform becomes more
difficult. For Poisson arrivals, it is sometimes sufficient
to specify the service time distribution without specifying
v (k) ,the probability of k arrivals in a service period.
For this arrival process, one has to generate the density
v(k) from the service time density b(t). wv(k) is the
Poisson sequence of the service time density for this
2)

arrival process( The problem of generating this sequence

from a continuous-time function is discussed in Chapter 4.

The common numerical method for inverting z-transforms
(like Egn. 5) with multiple-state dependence is by
solving for the roots of the denominator and then solving
a system of linear equations generated by use of these roots.
In the absence of an exact solution, experimenting with
several numerical methods provides a mutual check on the
agreement of the computed results as noted in references
1, 55 and 60 . Afterall, the performance of a method
depends on the nature of the function which is being

computed.
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2.3 ITERATIVE COMPUTATIONAL SCHEME

Time-domain iterative methods for solving bulk
systems have been considered in reference 52. Equation
(4) gives a direct recurrence relation for the transient
gueue length distribution and this can be used to compute
the steady-state solution for this distribution. If L
elements of this distribution are computed per iteration,
then at least NL2/2 multiplications per iterations are
required. Most of these multiplications are contributed
by the first term which involves convolutions.
Convolutions in the time-domain correspond to multiplications,
in the frequency-domain. Therefore the frequency-domain
iterative procedure can reduce the number of multiplications,

considerably, for certain values of N and L.

Equation (4) can be transformed into a frequency-
domain recurrence relation by obtaining its discrete
Fourier transform (DFT). If x(k) is a finite sequence,

its DFT is, by definition(72_74)

L-1 .2Tkm
X(m) = I x(k)exp(—jL )y m=0,1,...,L-1 (7)
k=0
The inverse DFT is
L-1
1 . 27mk
x(k) = T T X(m)exp (] Lm ), k=0,1,...,L-1 (8)
mn=0

where 7 is used in its usual context of w=3.141....
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Efficient algorithms for computing X{(m) from x (k) and

vice-versa have been developed. The most commonly used

are known as the fast Fourier transform (FFT) algorithm5(72_74).

Let the DFT's of the probability density functions

qn(x), sq(k) and Vn(k) be, respectively, Q;(Q), sg(z) and

4

V;(Q). Using Egns. (7) and (4), the DFT of g (k) can be

n+l
obtained. This would be a laborious process. However,
this DFT can be obtained from the z-transform of qn+l(k)
which is given in Egn. (3). To transform the z-transform

to a DFT, z is replaced by exp(32ﬂ£)<67 72-74)

. Using
this transformation, the frequency-domailn recurrence
relation for the DFT of the transient gueue length

probability density function is

N k-1
0%, 1 () = {0p(RISx(=2) + T s (k) I qp(i)x
k=1 i=0
ZTT,Q/(l ]\ -T _ _
[1-exp (- =1} Vi, (), 2=0,1,...,L-1
(9)

When the steady-state solution is to be obtained from
Egqn. (9),the steady-state probability density functions
s(k) and v(k) are usually known,and the subscripts n on

these functions in Eqn. (9) can be dropped.

The M!GY]l queue with a constant service capacity was
considered. The probability density function of the

service capacity for this gqueue is s(k)=¢ (k-m) where m
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is the service capacity of the system and &(n) is the

delta function. The frequency-domain recurrence relation
Egqn. (9), for this system reduces to
m-1

+ 3z qn(i){l—wéi-m)zj}v*(l),
i=0

oy -m%

2=0,1,...,L-1

n=0,1,... (10)

where W =exp(—j%£). To start the iteration by use of

Egqn. (10), an idle queue, i.e.,qo(k) = §(k) is used.

The procedure for computing the steady-state queue length
probability density function by use of the frequency-domain
recurrence relation Egn (10) is summarised in the steps

below:

Step O

—— e

0.1) Compute V* (&), the DFT of v(k),using Eqn. (7).

*
0.2) Compute QO(Q), the DFT of qo(k). For qo(k)=6(k),

Qg(s&)=1 , for 2=0,1,...,L-1.

Step n for n=1,2,3,...
— 14

*
n.l) Compute the inverse DFT of Qn(i),to obtain the
elements qn(O), qn(l),...,qn(m—l). This should
be done using a non-in-place FFT algorithm so

that the DFT Q;(Q) is not lost.
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n.2) Compute the DFT of qn+l(k),using Eqn. (10).

n.3) Obtain qn+l(0) by computing the inverse DFT at
~zero time only, i.e.

L-1

X Q*
2=0 n+l

TS

(0) = (2).

9n+1
n.4) Repeat from Step n.l) until ]qn+l(o)—qn(o)]<T,

where T is a small number to test for convergence.

n.5) Compute the inverse DFT of Q;+1(Q),to obtain
qn+l(k)'
Care must be exercised in choosing the FFT block size L.
The choice must be such that aliasing does not cause much
error. Thus, one can begin the iterations with a block
size of L. If the block size is not adequate at the end
of the iterations, it is doubled and the iterations performed
again. The process is repeated until a suitable block

size is obtained.

In reference 62, Ackroyd computed the queue length
distribution for the M|G|l queue, iteratively. This
computational procedure just outlined is an extension of his
method to the case of the bulk service MIGYll queue with
constant service capacity m, For m=1, the computational
procedure outlined reduces to that in reference 62. The
procedure can be extended to the M}GY[l queue with a

general service capacity distribution, by use of Eqn (9).
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2.4 DIRECT COMPUTATIONAL METHOD

The direct method involves rearranging Egn. (5) into

a product of a maximum phase function (function with all

its poles and zeros outside the unit circle) and a

minimum phase function (all poles and zeros inside the

unit circle). Digital signal processing methods(72_74)

can then be used to extract the queue length probability

distribution from the product. Root-finding methods for
(75)

polynomials can also be used to obtain this distribution .

However, there may be problems with high-order polynomials.

The denominator of Egn (5) can be shown to have
N zeros outside or on the unit circle in the z-plane by
use of Rouché's theorem. Because the function Q(z)
converges inside the unit circle, these N zeros must
cancel with the N zeros of the numerator which are outside
or on the unit circle. The N zeros of the numerator of
Egqn. (5) result from the polynomial function

k-1 )
s(k) I q(i)(1-z 17K (11)

1 i=0

H(z) = z

([ e =

k

This is a polynomial of order N and it has N zeros, of
which (N-1) are outside the unit circle and one is at the
point z=1. The function H(z)/(z—l—l) is thus a maximum
phase function as all its zeros lie outside the unit

circle.
The denominator of Eqn. (5) consists of a product of

-24-




H(z) and a function R(z) which has all its zeros inside
the unit circle. Using Egn (5) and (11), the function(z_l_l)x

Q0(z)/H(z) is then

-1 -1
_l-l) Q(z) _ (z -1) _ (z -1)v(z) (12)

i(z) - B2 Rl N[ y(p)s 3]
. V4

(z

If V(z) has some zeros* outside the unit circle, then the
function (z—l—l)Q(z)/H(z)V(z) igs formed instead. If V(z)
has no zeros outside the unit circle, then the function
(z-l—l)Q(z)/H(z) is a product of a minimum phase function

l—l). As the

Q0(z) and a maximum phase function H(z)/(z
z-transforms V(z) and S(z) are known, the right side of
Eqn. (12) can be obtained. All the zercs of the
denominator of the right side of Egn. (12), inside the
unit circle, are the zeros of the denominator of Q(z).
Therefore 0(z) can be obtained by root-finding procedures

(75) (72-74)

for polynomials or by the complex cepstrum .

A method for extracting a minimum phase function from
a mixed phase function by use of the complex cepstrum is
described in Reference 45. The complex cepstrum of a

sequence x(k),is a sequence x(k), whose z-transform is the

complex logarithm of the z-transform of x(k). t can be

* The z-transform of a discrete probability density function

can have zeros inside or outside theunit circle in the z-plane.
However, because it must converge inside the unit circle,
all its poles must lie inside this circle.
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shown that, if x(k) is a minimum phase sequence, then

;(k) = 0,for k<O. If ;(k) is a maximum phase function,
then x(k)=0, for k>0. Thus, for a mixed phase function,
the complex cepstrum of the function corresponding to the
minimum phase part will be zero for k<O,and that
corresponding to the maximum phase part will be zero for
k>0. To obtain the sequence ;(k), the DFT X*(m) of x(k)

is computed. The complex logarithm of X*(m) is then
obtained. The inverse DFT of the result gives the cepstrum

N

sequence x (k).

The procedure for computing the probability density
function of the queue length, from Egn(l2), by use of the
complex cepstrum, is described below. The sequence
corresponding to the right side of Egn. (12) can be
computed by digital filtering or by the use of the FFT
algorithm. However, digital filteriné is simulated in
software as recursive relations. These relations involve
convolutions resulting in large numbers of real
multiplications and additions or subtractions. The
numbers of multiplications and additions or subtractions

are reduced by using the FFT algorithm.

To use the FFT algorithm to obtain the sequence
whose z-transform corresponds to the right side of Egn (12),

2T . . . .
z 1is replaced by exp(j—Tm) in this equation. The DFT of

(z1-1)0(2)

= is
H(z)

the z-transform function D(z)=
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r'
1 , -0
S'(1)+v' (1)
.2Tm .
P[exp(J—f—)I=< Ym + Jem ’ m=1,2,...,
2V (-1) , = L
S(-1)v(-1);-1 2
where
_ nIm
Ym = 2
m
=4I
6 =
m + 2
Im
fm - OcmOm_Bm(pm
Im ~ +BmOm
21 2
a = o [l cos (—EE)] - o 51n(—ﬂm)
_ ., 2Tm _ 2ﬂm
C, = © 51n(-z—) + @m[l cos (5==)
- ”m 1
o, = Re{S[exp(-3=—) 1}
8 = Im{S[ex (- 2rm)1}
.2Tm
o, = Re{V[exp(j—z—)J}
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2mm

o, = Im{V[exp(j—f—)]}
1
dS (=)
S'(1) = — = ds(-f)l
dz Z—l 1 dz z—l=l
and
v (1) = dv{(z)
az~t -1_
z =1

The sequence whose z-transform is S(%) will be on the
negative-time axis. Therefore the array used to store
this sequence is divided into two halves. The lower
half holds the positive-time part which will be zero,and
the top half holds the negative-time part. The DFT of
this sequence can then be computed. Alternatively, the
DFT of the sequence with z-transform S(z) is computed.
The imaginary parts of the result are then negated,to
obtain the DFT of the sequence with z-transform S(%).
Because the sequence corresponding to the right side

of Egn (12) has both positive-and negative-time parts,
the FFT block size should be twice the normal size. The
choice of the block size must be such that the magnitude of
the last element of the computed gueue length density is

negligible.

The procedure for computing the queue length

GY{l queue,

probability distribution function for the M
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from Eqn. (12), by use of the DFT Eqn (13) is summarised

in the steps below.

1.

10.

From the probability density functions of service
capacity s(k) and number of arrivals in a service

period v(k), compute S'(1l), s(-1), V'(1l), v(-1).
Obtain the DFT's of sequences s(k) and v(k).

Compute the DFT of the sequence whose z-transform
is the right side of Egn (12) by use of Eqn. (13)

and results from steps 1 and 2.
Obtain the complex logarithm of this DFT.

Compute the inverse DFT, to cbtain the complex cepstrum
of the sequence whose z-transform corresponds to the

right side of Egn (12).

Set the negative time part of the cepstrum to zero.
Compute the DFT of this modified cepstrum.

Obtain the exponential of this DFT.

Compute the inverse DFT and normalise,to get a total
probability of unity,and hence g(k), the queue length

probability density function.

Obtain the cumulative distribution of the queue length

by passing the density g(k) through a digital filter

with transfer function ——i—:j—

(1=-z 7)
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The solutions for some queues were obtained by a
root-finding procedure and details are given in section
2.6. A comparison of numerical results obtained from
the cepstrum method and results obtained from these

solutions is provided in section 2.7.
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2.5 SOLUTIONS BY ROOT FINDING AND LINEAR EQUATIONS

The z-transform of the probability density function
of the queue length Egn. (5) consists of N unknowns.
These unknowns can be computed by an auxiliary system
of linear equations. The coefficients of the auxiliary
system depend on the roots, outside the unit circle in the
z-plane, of the denominator of Egn (5). Thus to invert
this equation,using a root-finding procedure and a system
of linear equations,one proceeds as follows. The roots
of the denominator outside or on the unit circle are computed.
By substituting these roots into the numerator polynomial
and equating to zero, a system of linear equations is
obtained. These equations are then solved, to obtain the

N unknowns, from which the remaining g(k)'s are obtained.

The roots of the denominator of Egn (5) are obtained

from the equation

2"V (2) s(%) -z N_o (14)

Let the roots, outside or on the unit circle, be located
at 2=0 for n=1,2,...,N. One of these roots, 04 is at

z=1. The system of linear equations is then obtained by
substituting these roots into the numerator of Egn (5)

to obtain
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N-1 N

D qk) T s()1(L=027%) =0, for n=2,3,...,N
k=0 i=k+1
and
N-1 N
r qg(k) I (i-k)s(i) = V' (1) - s'(1)
k=0 i=k+1
where
s' (1) = ds(f{
dz Z-l=l
The root at z=1 does not produce a linear equation. The

Nth eguation is obtained from the condition Q(1l)=1l,with
the help of l'ngital's rule. The N unknowns, i.e.,q(i),
i=0,1,...N-1, are then computed by numerical methods for
solving simultaneous linear equations. Most computer
subroutine libraries have programs for solving linear
equations(75). The remaining g(i)'s are then obtained

from Eqn. (5) by use of digital filtering or by use of

the FFT algorithm.



2.6 SOLUTIONS FOR QUEUES M|M®|l AND Muz:gu

Three methods for computing the probabiliy density
function of the queue length for the M{GY[l system have
been outlined. To assess the performance of these
numerical methods, specific service time and service
capacity probability density functions have to be assumed

in order to obtain the queue length distribution.

Fortunately, some functions V(z) and S(z) yield
denominators, for Egn (5), which are finite polynomials
of orders greater than N. If this denominator (see Egn (14)) is a
polynomial of order say Nl,where N1>N, then this denominator
will have Nl-N zeros inside the unit circle of the z-plane.
With appropriate normalisation, these zeros give Q(z). The
N zeros of the denominator polynomial outside or on the
unit circle then cancel with all the N zeros of the
numerator polynomial Eqn(ll). Therefore when this happens, there
is no need of solving the system of linear =quations. The
problem is easily solved by computing the (Nl—N) zZeros

of the denominator which are inside the unit circle.

(2)

For the M[GY[l system, the arrival process is Poisson .
Two service time distributions and three service capacity
distributions were considered. The service time determines
the number of arrivals in a service period. The Poisson
sequence,v(k) ,of the service time density is the probability

density function of the number of arrivals in a service
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(2)

period . To obtain the Poisson transform of the service
time probability density function b(t), the Laplace
transform of b(t) is obtained. When s is replaced by
A(l—z_ll in BL(s), the z-transform V(z), of the distribution
of the number of arrivals v(k), is obtained. The Poisson

transform can also be computed from b(t) by use of

(66,78)

digital filters These methods are described in

full in Chapter 4. For the exponential service time density

b(t)=ue-ut, the z-transform of the distribution of the

number of arrivals in a service period is V(z):il:gl:I—,
(l=az )

where a= and A and u are the average arrival and

A
(u+a)
service rates,respectively. For the Erlangian (E2) service
2ut

~ 2
I v(z) = E———:—_—-l r

time density b(t) = 2u(2ut)e
1
(l+a=-z 7)

where o=2y.

The three service capacity probability density functions

which were considered were: constant, binomial and geometric

service capacities. The z-transform of the constant service
capacity density is S(z) = z-m, where m is the service
capacity. For stability, the average service capacity per

service period must exceed the average number of customers
served per service period, that is m > % . With the binomial
service capacity, the probability of the service capacity
being k is derived as follows. Let the probability that
service is available to one customer at the beginning of

a service period be p, and let the probability that it

is not available be (l-p). Provided these are independent
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events, then the probability that service is available

to k customers,at the beginning of a service period, is

binomial(S'ZD) and this is given by
N
k N—~
s(x) = () o (=P %, k=0,1,...,N
k

where N is the maximum service capacity. The z—-transform

of s(k) is thus

5(z) = (1-p)Y [1+ B 271 (16)

1l-p

The utilization factor for the M[Gﬁ 1 queue with binomial

service capacity distribution and a service rate U is

where Np is the average service capacity s. For the
geometric service capacity distribution, the probability

that the servicecapacity is k is (l—y)yk and its z-transform

(1-7Y)
(1-yz™ 1)

is

These arrival and service capacity distributions
result in denominator polynomials of finite degree for
Egqn (12). Each denominator polynomial will have, say k.
zeros inside the unit circle. 0Q(z), after normalization,

is of the form
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(17)

whera Oy r i=1l, ..., k are the zeros inside the unit circle

1Y
The denominator of Eqn. (12),for the solution of the MM |1 queue
with constant service capacity m,is

l+z—l+z—2+ .o +z-m+2+z—m+l- I%E z M (18)

2
(A+u)

inside the unit circle. Using Egn. (17), g(k),the queue

where o = . Only one zero of this polynomial is
. . ) k .
length density is given by (l-c)o where 7 1is the only
v
zero inside the unit circle. The solution for the M|E; |1
queue with constant service capacity m results in the

denominator polynomial

-m-1
Lez " Lag T2y, TR LE2e oz (19)
(04 a

where a= 2U. Two of the zeros of this polynomial lie
inside the unit circle. If these roots are located at

gq and Oy then by solving Egn (17), g(k) is given by

(1-0,) (1-0,)
L 1 2 K+l _ k+l
q(k) = (61-05) 91 oy 1.
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The denominatcor polynomial for the solution of the

MlEgll queue with a binomial service capacity 1is

-N-2

z 2(l+a) _-N-1_ 1 2 N 27 =N
- = + 5 2 - 5[ (Q+a) - (1-p) @ 277 +
a a a
N N n -N+n
(-p)™ I oy (551 2 (21)

where o= 2u, and the coefficients ¢, are obtained

recursively from

®n+l = H:T @n 7 n=O,l,...,N

This polynomial of order N+2 has a total of N+2 zeros in
the entire z-plane. Two of the zeros lie inside the unit
circle and these are the zeros of the denominator of Q(z).
If these two zeros are located at z=04 and Oo then g (k) ,
the gueue length density 1is obtained from Egn. (20). For
the M[Eggl queue with a geometric service capacity density,
S(z) = _U=Y)  ang viz) = [___g__:T_12. The two zeros

(1-vz 1) (l4a-z 1)

of the denominator of Egn. (12),which lie inside the unit

circle, are located at

4o (1+a)

1+2a+y£ (1l-v) /l+ 1=y

2y(l+a)2
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q(k),the queue length probability density function,is

obtained from Egn. (20). For stability, YZTT%HT for A=1.

The foregoing results enable the probability density
function of the queue length to be computed,to provide
a comparison with the iterative computational scheme and
the cepstrum method. A comparison of these methods is made

in the next section.
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2.7

ACCURACY AND LIMITATIONS OF COMPUTATIONAL METHODS

To access the frequency-domain iterative method, the

queue length probability density functions for the M]MYIl

and M[Egll queues with constant service capacities were

computed. For comparison, the queue length densities were

also computed from the roots of 0(z). The roots of the
denominator polynomial of Egn. (12) were computed using
(75)

the NAG library subroutine C@2AEF Mark 5

500

on the Harris

computer. Tables 1 and 2 show the location of the

zeros for constant service capacities m=2, 15, 30 and 50

and

utilization factors p~0.l1 and 0.9. Tables 3 and 4

compare the number of digits in agreement for the g(k)

computed by the iterative method and that computed from

the

roots of the denominator of Egn. (12). The accuracy

of the roots computed by the subroutine C@2AEF is good for

well-behaved polynomials. From experience, the denominator

polynomials for these examples are well behaved. Therefore

the

zeros, and hence the queue length density, were computed

to good accuracy.

for

the

and

for

Tables 3 and 4 show how the number of digits in agreement
the computed results depended on the utilization factor,
FFT block size L, the number of iterations performed
the service capacity m. The convergence criterion

the iterations was |qn+l(o) - qn(o)l 510—7 .

From these tables, the following conclusions were

drawn about the iterative method. For small utilization
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TABLE 1

Root of Denominator of Q(z) for M[MY[l

Queue with a Constant Service Capacity m

Utilization Service Reciprocal of
Factor Capacity o Root ¢
1
= = m
P U
~0.9 2 0.642857 1.0732127318
15 0.9310345] 1.0134686809
30 0.964286 1.0069362908
50 0.978261 1.0042125217
~0.1 2 0.1666667] 5.8541007402
15 0.6 1.6663523217
30 0.75 1.333273726
50 0.833334 1.1999770422
~ _ m
For 0~0.9, = m
m
For p~0.1, () m




TABLE 2

Roots of Denominator of Q(z) for MLEgli

Queue with a Constant Service Capacity m

Utilization] Service Reciprocal of | Reciprocal of
Facior Caﬁécity o the root oy the root gy
" u
~ 0.9 2 1.11111111 2.547302398 1.11111111111
| 15 0.14814814815 1.1886735059 | 1.0254512433
30 0.0740740747 1.0934648024 | 1.0134687156
50 0.04444444 1.0558633534 | 1.0082744608
~ 0.1 2 10 11.844288771 9.999999999%4
15 1.3333333 2.3356342662 2.3309978535
30 0.666666666 1.6669797298 1.6663518350
50 0.4 1.4000907889 1.3999089289
For p~0.9, a= %%
p~0.1, a= 2%
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TABLE 3

Comparison of Results from Iterative Method and

Root-Finding Methaod for the Queue M[MYQ

With a Constant Service Capacity m

Utilization | Service FFT Block | Number of Number of
Factor o Capacity | Size L Iterations | Digits in
m N Agreement

~0.1 2 64 7 7

128 7 7

15 64 4 9

128 4. 9.

30 64 3 8

128 3 9

256 3 9

50 128 3 9

256 3 9

~ 0.9 2 1024 1033 4

15 1024 556 4

30 1024 408 3

50 1024 230 3

2048 393 3
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TABLE 4

Comparison of Results from Iterative Method and

Root-Finding Method for M[ngl Queue

With a Constant Service Capacity m

" Utiljzation | Service FFT Block | Number of Number of
Factor p Capacity | Size L Iterations | Digits in
m N Agreement

~0.1 2 64 6 8

128 6 8

15 64 3 10

128 3 10

256 3 10

30 64 3 7

256 3 7

512 3 7

50 64 2 8

128 2 9

256 2 9

<0.9 2 512 733 4

1024 733 4

15 512 415 4

1024 417 4

2048 417 5

4096 417 4

30 1024 312 4

4096 313 4

50 4096 248 5
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factors, small block sizes are adequate for a given

service capacity, and the number of iterations performed
before convergence are relatively fewer than for high
utilization factors. This follows from the fact that
relatively small queues are formed and these are cleared
quickly by the server, and hence steady state is rapidly
achieved. For systems with large service capacities

under a constant utilization factor, fewer iterations need
to be performed, compared to systems with small service
capacities. A server with a large service capacity clears
a queue much faster than one with a small service capacity.
Systems with high utilization factors require large FFT
block sizes as large gqueues are formed. Furthermore, more
iterations need to be performed to satisfy a given
convergence critericn, compared to systems with gmall
utilization factors. Provided the block size is sufficiently
large to minimise errors due to folding, greater accuracy
can be achieved by performing more iterations. For example,
the queue length density for the M!Egll queue, with a
constant service capacity m=2, was computed for a utilization
factor 0=0.9,using a block size of 2048. About 2500
iterations resulted in an agreement of the computed results

of about 6 digits.

To summarise, the agreement of the computed results
was at least 7 digits for queues with small utilizaticn
factors. A block size of 64 was adequate and in all cases,
the number of iterations that were performed to achieve
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this accuracy were less than 10. For gqueues with
utilization factor p=0.9, large block sizes (e.g. 1024,
2048, 4096) were required. The numbers of iterations
resulting in accuracies of about 4 digits were up to
several hundreds for all the service capacities m

considered.

The direct method was used in the computation of the
queue length distribution for the M|MYll and M[E§|l queues
with constant service capacities. Tables 5 and 6 show
how the accuracy of the computed results depend on the
utilization factor p, the service capacity m and the FFT
block size L. As observed for the iterative method, for
small utilization factors, small block sizes are adequate.
The accuracy is higher at small utilization factors and

small service capacities.

A comparison of Tables 3-6 shows that in general,
for small utilization factors, the frequency iterative
method requires smaller block sizes than the direct method.
As mentioned before, the direct method requires half the
block size for the positive-time samples and the other
half for the negative-time samples, whereas the iterative
method just requires the block size for the positive time
samples. The iterative method is computationally expensive
because, for high queue utilizations, several hundreds of
iterations are performed to achieve the same accuracy as

that obtained by use of the direct method.
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TABLE 5

Comparison of Results from Direct Computational

Method and Root-Method for M[MY[l Queue

with a Constant Service Capacity m

Utilization | Service Block | Number of
Factor p Capacity | Size Digits in
m. L Agreement

~0.1 2 256 9

512 8

1024 8

15 512 4

1024 6

2048 8

30 1024 4

2048 6

50 4096 7

~0.9 2 256 5

512 8

1024 8

15 512 3

1024 5

30 2048 5

50 2048 4

4096 7
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TABLE 6

" Comparison of Results from Direct Computational

Method and Root-Method for ML@%{l‘Queue

With a Constant Service Capacity m

Utilization >Service Block | Number of
Factor o Capacity | Size Digits in
m L Agreement

~0.9 2 256 6

. 512 6

2048 5.

15 512 {5

1024 5

2048 | 4

30 512 3

1024 4

2048 4

4096 3

50 1024 5

2048 4

4096 3

0.1 2 64 5

128 8

256 8

15 1024 6

2048 6

30 2048 6

4096 5

50 2048 4

4096 5

ﬁ8192 5




The gueue length probability density functions for
the M]Egll queue under different service capacity
densities were computed by use of the direct method. Using
the computed results and Egn. (6), the mean queue length
was also computed. The computed results were compared
with the g(k) obtained by use of the zeros of the
denominator of Eqn (12). The mean service capacity for
the different service capacity densities was set at s=24.
Table 7 shows how the accuracy of the computed results
vary with the utilization factor p, the service capacity
density and the FFT block size L. The accuracy of the
computed mean queue length Egn (6) is also shown.For the MlEg}l
queue with constant, binomial and geometric service capacity
densities, the computed gueue lengths were accurate to at least
6 digits and the computed means were accurate to about 5 digits.
Graph 1 shows a plot of the queue length densities for these

systems for a utilization factor p=0.1.

One point to note is that the standard numerical
method for solving Eqn (5) by use of root-finding and
solution of linear equations in section 2.5 will not
necessarily produce more accurate results than the two
methods presented. Although the root-finding procedure
can produce results whose accuracy is comparable to that
of the computer used,for well behaved polynomials, this
procedure can present problems for high-order polynomials

which may be less-well behaved. These problems can reduce

the precision of the computed roots. There are several
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TABLE 7

A Comparison of Results from the Direct

Computational Method and the Root-Finding Method

for the MJE;( Il queue with Different Service

Capacity Distributions

Utilization | Service Capacity | FFT Block | Accuracy of | Accuracy of
Factor p Density Size L Carputed Camputed
q(k) Mean g
0.1 Constant m=24 2048 6 4
Binamial p=0.5 2048 7 5
N=48
Geametric y=0.96 | 2048 7 5
0.9 Constant m=24 4096 7 5
Bincomial p=0.5 4096 7 4
N=48
Ceanetric y=0.96 4096 8 5
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problems associated with the solution of linear

equations. If the magnitudes of the coefficients of the
linear equations vary over a wide range, there is loss of
precision in computing the solution to these equations.
Secondly, the computation time associated with the solution
of these simultaneous linear equations using say the

(751}

subroutine F@4ADF is roughly proportional to N3 where

N is the maximum service capacity.
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2.8 CONCLUSION AND APPLICATION TO COMPUTER COMMUNICATIONS

The transient- and steady-state z-transforms of the
queue length probability density function for the M|GY|1
queue were derived. Two numerical procedures for the
inversion of the derived transforms were presented. These
methods made use of digital signal processing techniques.
The standard numerical methods for inverting transforms
with multiple-state dependencies was outlined. For the
queues MIMYIl and M{Egll under constant, binomial and
geometric service capacities, the standard numerical
solution reduced to just a root-finding procedure. The
queue length probability density functions for these
systems were computed using the three procedures. The
agreement of the computed results was good for all the
systems considered, for utilization factors p=0.1 and 0.9.
The two methods which use digital signal processing
techniques can also be used in the analysis of multiserver

10,16,18,20
systems( ,16,18,20)

Bulk service and multiserver gueues are systems where
customers (data messages, speech sources, batch jobs, etc.)
are served in bulk by a server or by several servers.

These types of queues arise in many aspects of computer

communication systems. They arise in the asynchronous

multiplexing of low-speed buffered data terminals in time-
(15,16)

sharing cocmputer communication systems , in store-

and-forward computer networks with integrated digital
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. 18-20 .
voice-data systems( Zand in stored-program-control

(SPC) telecommunication systems, 1In a time-sharing
computer system, slow terminals input data into a buffer.
The data messages are then asynchronously multiplexed and
transmitted to a central processing unit (CPU) at a
faster speed. If each time frame for the multiplexer

has m time slots, and there are 5 data messages in the
buffer,at the beginning of the frame, min (m,q) data
messages are transmitted to the CPU during the frame. For
a large number of terminals, the arrival process to the
buffer will be close to Poisson(lS). This system then
corresponds to the bulk service M}DY|1 queue with a constant

service capacity m, or the multiserver M|D|m queue.

In integrated digital voice-data systems and stored-
program-control systems, the transmission facility 1is
shared by real-time speech sources (or calls) and non-real
time data messages which are buffered. The unbuffered
speech sources have priority over the data messages to
prevent degradation of the speech quality. The speech
is synchronously multiplexed onto the channel while the
data is asynchronously injected into the idle time slots
which arise during speech silences. The idea of
integrating speech and data stems from the fact that speech
is only active for about forty percent of the conversation
time(76). Transmitting the speech alone under-utilizes

the channel capacity by about sixty percent. Thus by
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synchronously multiplexing the speech sources and
asynchronously injecting data messages into the idle

time slots, the channel capacity utilization is greatly
increased. This scheme is an important part of store-and-
forward computer communication and telecommunication
networks(18—2l)-In this scheme, the service capacity
(number of data messages injected into the idle slots) of
the server (the transmission facility) is not fixed, but
depends on the number of idle slots. The buffering process

of the data messages is thus modelled as a bulk service

or multiserver queue.
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CHAPTER 3

BILINEAR AND POISSON TRANSFORMS IN QUEUE ANALYSIS

3.1 INTRODUCTION

Frequently, probability distribution functions used
in performance evaluation and design of computer
communication systems are derived in the form of Laplace
transform expressions(2’3’23’36’60). Unfortunately,
the inversion of these transforms is often difficult even
for simple systems. One thus resorts to the numerical
inversion of these transforms. A problem encountered in
doing this is the handling of continuous-time functions.
For the purpose of numerical computations, only a finite
number of samples can be used, whereas the continuous-time
function consists of an uncountably infinite number of
samples. Periodic samples of the function can be used for
bandlimited functions. However, most probability functions
in queue analysis are not bandlimited and in some cases
the Laplace transforms of the functions can not be replaced
by the z-transforms of their periodic samples. Furthermore,
if periodic samples are used, a question to answer is how
does one take into account the missing data between the
samples? Some numerical methods on the inversion of the

Laplace transform(53—59) have been developed.

(77-80)

The Poisson transform is useful in the analysis

G|1 queue(63’65’°6). Section 3.2 briefly

of the M

discusses the uses of the Poisson transform in the M|G|1
queue analysis. The Pollaczek-Khinchin transform equation

for the number of customers in the queue is inverted by use
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of digital filtering. Section 3.3 reviews the theory
of representing continuous-time functions, for the
purpose of digital filtering, by discrete sequences. The

bilinearLSlL

and Poisson transforms are presented in
section 3.4 as suitable discrete function representations.
An approximate Laplace transform inversion method is
outlined in section 3.5. The method makes use of the
bilinear transformation. This method is applied to the

inversion of the Laplace transform of the waiting time

distribution for the M|G|1 queue.

In section 3.6, a method for the inversion of the
Laplace transform by use of the bilinear and Poisson
transforms is presented. 1In the method, analogue filtering
is replaced by digital filtering. The method is then used
in the computation of the waiting time distribution, for
the G|G|1l queue, from its Laplace transform. The chapter
concludes with a discussion of the application of these

methods to the analysis of computer communication systems.



3.2 POISSON TRANSFORM IN M!G|1 QUEUE ANALYSIS

The M|G|l system is a gueue with an exponential
interarrival time probability density function, general
service time and a single server. The Poisson transform
and its inverse have an application in the analysis of

3 .
(6 '65'66). This transform and its inverse, inter-

this queue
relates the various distribution functions for this queue.
Fig. 1 illustrates the inter-relations between these
distributions. The following probability density functions
can be derived from the service time(zl: the number of
arrivals in a service period v(k), the number in the

queue g(k), the waiting time w(t), the response time (the
total time spent in the system) r(t), the number served in

the busy period £(k), and the busy period g(t), as shown

in Fig. 1.

The analysis of the M|G|l queue requires the ability

(a) compute the Poisson transform of a function
(Chapter 4),

(2)

(b) invert the Pollaczek-Khinchin transform equation '
(c) compute the inverse Poisson transform (Chapter 4).

The queue length distribution function is obtained by

inverting the Pollaczek-Khinchin transform equation.

The Pollaczek-Khinchin transform equation for the

-57-



service time probability
density

Poisson transform
of busy period

Poisson transform

number of arrivals in a service
veriod

v[z'l—l+<;p (2)]

Inverse Poisson
transform

Y equation

number served
in the busy
period

busy period

Inverse Polisson
transform

Inverse Poisson
transform

response

waiting time
time

Fig.l Diagram showing how the Poisson transform and its

inverse interrelates the various probability density

functions for the M|G|1l queue
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number in the M|G|l queue is given by(z)

_ _.~1
0(z) = (l-p) (1-2z ZlV(z) (1)
v(z) - z

where V(z) is the z-transform of the sequence vi{k) which

is the Poisson sequence of the service time density, b(t).

o is the utilization factor. Eqn (1) can be inverted to
obtain g(k)sthe probability of having k customers in the gqueue,
by digital filtering. The basic components of a

digital filter are described in Appendix 1. The transfer
function of a digital filter which can be used to invert

Egn (1) is

-1
1~-0 1-z 7)
H(z) =( =) — (2)
v (o) l+hlz—l+h22_2+h3z 3+,,,
where
v(l)-1 —
-( (0 ) , for k =1
hk =ﬁ
- XE];; , for k > 1
_

such that Q(z) = H(z)V(z). By passing the sequence v (k)
through a digital filter with transfer function H(z)

Egqn (2), the sequence g(k), the probability of k customers
in the queue,is obtained at the output of this digital
filter. The recursive digital filter with transfer

function H(z) is shown in Fig. 2. Alternatively, Ean (1)
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can be inverted by use of the FFT algorithm or recursive

equations as in reference 64.

Using the digital filter method, and the sequences
v(k) given in reference 2, the queue length probability

density functions for the queues M|M|1, M|E2|l and M[Hzll (with

service time density b(t)=%e—t+ %e—Zt) were computed for

utilization factors p=0.1 and p=0.9 and A=1l. TFor the

M|M|1 queue, the exact queue length density is (l—p)pk, for

k=0,1,2,.... For the M|E2|l queue, g(k) is given by

_ 4u(u=)) , k+l _ k+l _
qg(k) = 7?T§ﬁr_ (Ol 9, ), k=0,1,2,...

where a4 and o, are obtained from the equations

_ A+4u+v/A+8yu and 0, =

8u2

A+4u-vA+8u
2
8u

1

For the M|H,[l queue considered, with A=1, and 0=2, the
sequence q(k), is

3 2k .9 2k B
g(k) = 37 (g) + 33 (3) ’ k=0,1,2,...

On the ICL 19 computer, the accuracy of the
computed results compared to the exact solutions,using
double precision arithmetic was at least 17 digits for the

queues considered. The double precision arithmetic on the
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ICL 1904 computer has an accuracy of about 20 digits(82).

In this present section, the sequences v{k) which are
the Poisson sequences of the service time densities b(t),
were assumed to be known. In fact as shown in Fig. 1,
the Poisson transform and its inverse interrelates the various
probability distributions,in the analysis of the M|G|1
queue. Equations giving the Poisson sequence xp(n) in
terms of the inverse Poisson transformx(t),and vice-versa
are given in section 3.4. Methods for computing the
Poisson sequence xp(n) from x(t) and vice-versa are
presented in the next chapter. These methods will enable
the sequence v(k) to be obtained from b(t). In addition,
the waiting time density w(t) and the response time
density r(t) can then be obtained from the queue length

density g(k).
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3.3 DISCRETE REPRESENTATION OF CONTINUOUS-TIME PROBABILITY

FUNCTIONS

A continuous-time function x(t), can be represented

as a series expansion of the form

x(t) = xnhn(t) , tz0 (3)

0

I ™~ 8

n

where X, are the coefficients of the series expansion.
hn(t), n=0,1,... are a set of functions which can be

. . . . . (83)
polynomials which are used in approximation theory P
complex exponentials or sine and cosine functions as in

the case of the Fourier transform(72).

The coefficients x  are unique for each function x(t)
and the functions hn(t) chosen. It is thus possible to

use the coefficients x_ in place of x(t),in numerical

n
calculations,by choosing certain functions hn(t). If
these coefficients Xn become insignificant in magnitude

for large n, then a finite number of these elements can

be used to represent the function x(t).

To use digital signal processing methods and these
discrete sequences in the solution of queueing problems,
it is desirable to select the functions hn(t) which enable
certain conditions to be satisfied(Sl). The first

condition is that these functions must permit a linear

time-invariant continuous-time system to be mapped to a
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linear shift-invariant discrete system. A second
condition is that the mapping from the continuous function
to the discrete function must preserve convolution . This
means that if a function x(t) is obtained by convolving
y(t) with w(t), and if X r Y, and w, are the discrete

representations of these functions,respectively, then X

must be obtained by the discrete convolution of Yn and W .

(81)

Oppenheim and Johnson have shown that the second
condition corresponds to the mapping of the Laplace transform
of the continous-time function to the z-transform of its
discrete representation by a substitution of variables.

If XL(s) and Hn(s) are the Laplace transforms of x(t) and
hn(t),respectively, then using Eqn. (3), XL(s) is

XL(S) = X Hn(S) (4)

n

i ™ 8

n=o

By definition, the z-transform Xd(z) of the discrete

sequence X, is

X3(2) = E X Z (5)
The requirement that the mapping of the Laplace transform
XL(S), to the z-transform Xd(z), be achieved by a substitution

of variables, implies that Hn(s) must be of the form

H (s) = LHl(s)Jn such that

z = [H,(s)] B m(s) (6)
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A third condition is that a stable system in the s-plane
must map into a stable system in the z-plane. 1In other
words, the transformation Eqn (6) must be such that the

left half of the s-plane maps into the interior of the

unit circle in the z-plane.

For bandlimited functions, periodic sampling meets
all these conditions. The discrete representation of

the function x(t) is a sequence x_,consisting of equally

n 14
spaced samples of the function,such that X, = Tx (nT),
where T is the sampling period. Periodic sampling can
then be viewed as an expansion of the continuous-time

function x(t) in the form of Egqn (3) with the functions

{h (t),n=0,1,...} given by

1 . rm

Zsin [z (t-nT) ]
h (t) = T T = isinc[-—l~(t—nT)], n=0,1,.. (7)
n m T T

'T' (t—nT)

The Laplace transforms of these functions converge only

on the jw-axis. On this axis, their transforms are(81’83)
[eij]"n . JuT] €7
H (Gw) =
0 , |uTl > T
n=0,1,... (8)

The advantage of a discrete representation based on periodic

sampling is that the coefficients Xn’in the expansion Eqn (3)



are easily obtained. The major disadvantage is that it
requires the function x(t) to be bandlimited. Unfortunately,
most probability density functions in queue analysis are

not bandlimited. Another disadvantage is that the under-
lying processes by which the Laplace transforms of
probability density functions are derived, do not always
permit the Laplace transforms of these functions to be
replaced by the z-transforms of their sampled versions.

It is thus desirable to obtain other discrete function
representations which are suitable for numerical

calculations in gueue analysis.
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3.4 BILINEAR AND POISSON TRANSFORMS OF FUNCTIONS

Two discrete function representations which meet
the conditions required for digital filtering are the

(81)

bilinear transformation (77_80).

and the Poisson transform
The bilinear transform corresponds to a mapping from the

z-plane to the s-plane by the transformation

-

where o is a real parameter. This parameter will be
referred to as the bilinear parameter. This transformation
maps the jw-axis in the s-plane onto the unit circle in

the z-plane and the left half of the s-plane into the

interior of the unit circle as shown in Fig. 3(a).

The bilinear sequence of a function x(t) which is

zero for t<0O is defined as(8l)
[ »
[, ®(t)h (t)dt, n=1,2,3,...
¥ (n)=4
- I (-1) % (m), n=0 (10)
_ m=1
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where

S (t), n=0, t30
o, (t) =
Zd(-l)ne_atLél)(2at)+(-l)n6(t), nzl, t30
dL_(y)
v, V) = —S— n=0,1,2,... (12)
no (- )k
L, (y) = I () -F— , n=0,1,2,... (13)
k=0 :

Ln(y) are the Laguerre polynomial functions, and L(i%y)

are their first derivatives. x(t), the inverse bilinear
transform of xb(n), is obtained from the expansion Eqn. (3),
with X, = xb(n) and the functions hn(t) given by

Egn (11). The inverse bilinear transform of the sequence

xb(n) is(8i)
[ o
20 (-1)"n %,_(n)
b ! £=0
n=1
x(t) =4
20e %t Z(-l)nxb(n)L(l)(Zat), £>0
n
n=1
(14)
where the functions Lél)(y) are given in Egn. (12).

A second discrete function representation meeting

the conditions necessary for digital filtering is the
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Poisson transform. The function M(s) from Egn. (6) resulting

from this transformation is z=-—" (81)

=357 - , where v is a real

parameter which will be referred to as the Poisson parameter.

is straightforward to verify that the jy-axis in the
s-plane maps to a circle in the z-plane with radius %
and centre at 2=%. This circle passes through the

points z=0 and z=1 and thus it is enclosed within the unit
circle. The left half of the s-plane maps into the
interior of this smaller circle as shown in Fig. 3(b).
However, a function with poles and zeros in the right-half
of the s-plane can be mapped into the interior of the unit

circle but outside the smaller circle. This does not

make the Poisson transform invalid for digital simulation.

The Poisson sequence of a function x(t), which is zero

for t<0 is given by(77—8o)

x(t) dt, n=0,1,2,... (15)

x(t), the inverse Poisson transform, is cbtained from the

(80)

Poisson sequence xp(n) through the eguation

x(t) = L xz(n)ln(yt), t20 (16)
n=0
where
n 2 n k .
x, () = Y2y (-1)7 I () (=2)"x (k), n=0,1,2,...
k=0

It



jw axds

S plane z plane

unit circle

-

Fig. 3(a) The mapping fram the s plane to the z plane corresponding
to the bilinear transformation.

/// o o
_

Fig. 3(b) The mapping fram the s plane to the z plane corresponding
to the Poisson transformation.
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_ n -yt
b (ve) = V2Y (1)UL (2yt)e Yt n=0,1,2,...

The Laguerre polynomial functions Ln(y) are given by

Egn (13). The inverse Poisson transform is obtained by
use of the Laguerre transform sequence xz(n), because the

n -yt
Poisson kernel functions ilE%TE——— do not form orthonormal

functions which can be used directly in a series expansion.
However, the Laguerre functions Rn(y) are orthonormal.
The inverse Poisson transform can also be obtained by use

of the bilinear transform and this is discussed in the next

chapter.

To obtain a discrete representation of a continuous-
time function x(t), based on the bilinear transformation,
one uses Eqn (10). The elements xb(n) can be used in place
of the function x(t) in numerical calculations. The
probability function x(t) can be recovered from the bilinear
sequence xb(n) by use of Egn. (14). To obtain a discrete
representation based on the Poisson transformation, Egn (15)

is used. To recover the function x(t) from the sequence

xp(n), Egqn. (16) is used.

The sequence xb(n) can also be used to approximate

the function x(t) in the inversion of the Laplace transform

as shown in the next section.
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3.5 APPROXIMATE LAPLACE TRANSFORM INVERSTION

The approximate Laplace transform inversion method
approximates the continuous-time function by sampled data
using the classical numerical integration formulas. The
relationship between the Laplace transform of a
continuous-time function and the z-transform of its periodic

samples is given by z=eST, where T is the sampling period.
(4nz)

— 7 -
(72,84)

s, the Laplace variable, is then This function

can be approximated by a power series

-1 -1
- = . _2_|- 1-z 1 1-z 3
s =gln z = (=) + 35" + ... ]

1+z 1+z

for z>0. Truncating this series after the first term
results in the bilinear transformation

-1
ii:ﬁ—il (17)

s = 2
T (1+2™%)

This corresponds to the numerical integration rule, the

trapezoidal rule.

To show how this transformation can be used to compute
probability distribution functions in queue analysis, the
waiting time distribution function for the M|G|l gqueue was
used as an example. The Laplace transform of the waiting

(2)

time density for this queue is given by

s(l-p)
S=A+A BL(S) (18)

WL(S) =
where BL(s) is the Laplace transform of the service time
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probability density function, p and A are the utilization
factor and arrival rate,respectively. The following
procedure can be used to cbtain the approximate waiting

time distribution for this system:

(a) Divide Eqn (18) by s,to obtain the Laplace
transform of the waiting time cumulative

distribution function.

(b) Substitute the transformation Egn (17) into the
result,to obtain the z-transform of the approximate

waiting time distribution.

(c) Invert the resulting z-transform,to obtain the

approximate waiting time cumulative distibution.

If BL(S) is not a simple function, - then numerical

methods like the FFT algorithm or digital filtering may

have to be used to obtain the inverse in (c).

M
(s+u)’

solution of the approximate waiting time cumulative

For the M[M|1 queue, By (s) = and the analytic

distribution function can be obtained easily. This is

given by the equation

a l+0, O-8, k _ _
Wa(t) = l—(ig—)(itg)g ’ t—kT, k 0,1,2,... (19)
where
G = 2=T{(u=A) and B= (2-HT)
2+T(U_X) 2+HT
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For this system, the exact solution of the cumulative

distribution of the waiting time is given by

Wt) = 1- Zexo[-(u-M1t], €30 (20)

Table 1 shows computed results from the approximate solution
in Egn (19) and the exact solution in Egqn (20) for values
of T=0.1, 0.01, 0.001,and p=0.1. As can be expected, as T
is decreased, the approximate solution approaches the
exact solution. For very small values of T, there can be
a loss of significance if the approximate solution is
computed directly from Egqn (19). To avoid this, the
equation can be rearranged, or extended precision arithmetic

can be used.

If the z-transform,obtained by substituting Egn (17)
into(18), is inverted numerically, then the computed
approximate solution will not be identical to the
approximate solution due to computational errors. In
turn, the approximate solution will not be identical to
the exact solution,as revealed in Table 1. As T 1is
decreased, the accuracy improves. However, if the
approximate solution is computed,numerically,by either
the FFT algorithm or digital filtering or recurrence
equations, a reduction in T would result in more samples

being needed in computing the high-order terms of the

distribution function.

Some of the advantages of this approximate inversion
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TABLE 1
Comparison of approximate and exact waiting time
distributions for the M|M|1l queue with A=1, p=0.1,

and different values of sampling period T

i Wa(t) for Wa (t) for Wa (t) for ?xact.

f T=0.1 1=0.01 T=0.001 %&Tﬂd}

0.0 | 0.8746082 | 0.8997971 | 0.8999980 | 0.9000C00
0.1 | 0.9524376 | 0.9592853 | 0.9593425 | 0.9593430
| 0.2 | 0.98195%0 | 0.9834567 | 0.9834700 | 0.9834701

0.3 | 0.9931569 | 0.9932781 | 0.9932794 | 0.9932794
0.4 | 0.9974043 | 0.9972687 | 0.9972676 | 0.9972676
0.5 | 0.9990154 | 0.9988902 | 0.9988891 | 0.9988891
0.6 | 0.9996265 | 0.9995491 | 0.9995483 | 0.9995483
0.7 | 0.9998583 | 0.9998168 | 0.9998164 | 0.9998164
| 0.8 | 0.9999463 | 0.9999255 | 0.9999253 | 0.9999253
| 0.9 | 0.9999796 | 0.9999698 | 0.9999696 | 0.9999696




method are

(1) the method is easy to implement because the
mapping from the s-plane to the Zz-plane is achieved

by a substitution of variables, and

(2) the inversion of the resulting z-transform
can be done efficiently by use of digital signal

processing methods.
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3.6 LAPLACE TRANSFORM INVERSION BY USE OF BILINEAR AND

POISSON TRANSFORMS

A method for the inversion of the Laplace transform
by use of the bilinear and Poisson transforms is presented.
Suppose a continuous-time probability function x(t) is

given as a function of other probability functions

py(t), p2(t),..., and parameters Gir Opr wen .x(t) is then
given by
x(t) = £[py(t), py(t)y weuy 074 Opyee] (21)

where f[.] is the functional operator relating the functions
pl(t), pz(t),... and parameters O17 Ogrens to x(t).
The Laplace transform of x(t), from Egn (21),will be of the

form

X (s) = F[py(s), Py(s)suvey 01y Oprnns] (22)

where Pl(s), P2(s),..., are the Laplace transforms of the
probability functions pl(t), Py(E)seeny respectively.
F[.} is the Laplace domain equivalent of the functional

operator f[.].

In gueue analysis, the probability functions pl(t),
P, (t),... and parameters Oy, Ops ««-v would in general be
known or they could be determined. The more complex is

the functional operator F[.] and the functions P (s), the



more difficult it is to invert the Laplace transform XL(S).
Thus numerical inversion techniques for the Laplace

transforms of probability functions are of great interest

in queue analysis.

To invert XL(sl by use of digital signal processing
methods, it is desirable to be able to compute the bilinear
and Poisson sequences from the continuous-time functions
or from their Laplace transforms. It is also desirable
to be able to compute the continuous-time functions from
their bilinear and Poisson sequences. Methods for
computing these sequences from the continuous-time functions
and vice-versa are discussed in the next chapter. With
the knowledge that these computational methods have been
developed, it is sufficient to illustrate how these
transforms can be used to compute the bilinear and Poisson
sequences of probability density functions from

Laplace transform expressions.

To obtain the bilinear transform from the Laplace

-1
transform, s is replaced by gil——_Z;T—);,using the transformation
(1+z )
Eqn (9). To obtain the Poisson transform from the Laplace
transform, s is replaced by Y(l—z_l). The inverse z-transforms

of the resulting functions are the bilinear and Poisson
sequences ,respectively. The following procedure is used
to invert the Laplace transform XL(S) Eqn (22) by use of

the bilinear and Poisson transforms:
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. a(l—z-ll : -1
(a) Obtain P [*>=—=—=] and p [y(1-z"7)], for n=1,2,3,... .

(l+z ™)
This can be done in two ways. If Eh(s) is available as
-1
an expression, then replace s by gli:zjil and y(l-z—l),
(1+z ™)

respectively. If pn(tl is available as an expression

and P (s) cannot be obtained analytically, then the
bilinear and Poisson sequences of the functions pn(t) can
be obtained by the digital filter methods in the next
chapter. The z-transforms of the resulting sequences are

then the required transforms.

(b) Substitute these transforms into the right side of
Egqn (22),to obtain expressions for Xb(z) and Xp(z),the
z-transforms of the bilinear and Poisson sequences of the

function x(t).

(c) Obtain the inverse z-transforms of Xb(z) and Xp(z)
from the expressions,to get the bilinear and Poisson
seqguences xb(n) and xp(n),respectively. This can be done

by use of either the FFT algorithm or digital filtering.

(d) Obtain the inverse bilinear and Poisson transforms
of the sequences xb(n) and xp(n), to get the required
function x(t). Computational methods for obtaining x(t)

from either xb(n) or xp(n) are given in the next chapter.

As an example, the bilinear transform was used in
the computation of the waiting time distribution for the
G|G|1 queue. The Laplace transform of the probability

density function of the waiting time for this queue is
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given by(2)

K

Wy, (s) = [AL(-S)BL(S)-I (23)
S +

where the notation [.]+ denotes the process of taking the
minimum phase part (a function with all its zeros and
poles in the left half of the s-plane) of the function
inside the brackets. AL(S) and BL(s) are the Laplace
transforms of the probability density functions of the
interarrival time and the service time, respectively. K
is a normalising factor, obtained from the condition

Wy (0) =1.

The function Egn (23) involves the process of
separating functions which converge in opposite halves

of the s-plane. To use the bilinear transform to invert

-1
Egn (23), the transformation s~ Eii_ﬁ:il
(1+z 7)

inverse z-transform of the result is the bilinear sequence

is used. The

of the probability density function of the waiting time

for the G|G|1 gqueue.

The z-transform of the bilinear sequence of the

waiting time density is then
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Wy (2) Ko (1-z "+

H, () B

)

(AL (2)B, (2)-1] [1+z7 1]

(24)

where Wb(z), A;(z), and Bb(z) are the bilinear transforms
of probability density functions w(t), a(-t) and b(t),
respectively. The function Hb(zl has all its zeros and
poles outside the unit circle. The zeros and poles of

this function must cancel with all the zeros and poles

of the function (A;(Z)Bb(z)—l) which are outside the unit
circle. Wb(z) is the minimum phase part (all zeros and
poles inside the unit circle) of the right side of Eqn (24).
As can be expected, the analytic inversion of Egn (24)

is difficult except for very simple cases. Numerical

technigues for inverting this equation are therefore

desirable.

To compute the bilinear sequence of the waiting time

density from Egn (24), the following procedure is used

(a) Compute the bilinear sequences of the probability
density functions of interarrival time and service time,
a(-t) and b(t). These can be obtained by use of digital

filter methods in the next chapter, or by replacing s by

-1
Qllifﬁfl. in the Laplace transforms of these functions.
(1+z™ ™)

Let the bilinear sequences of these probability density

functions be, respectively, a;(n) and bb(n).

(b) Convolve the sequences ab(n) and bb(n),to form

the z-transform A;(Z)Bb(z)-
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(c) Remove the zero at z=-1 from the right side of

Egn (24). The zero at z=1 in the numerator will cancel

with that of the denominator.

-1
(d) Compute the DFT of the transform ol )

' (Z)B (z)-1)
by replacing z by exp(jg%m), for m=O,l,2,..., E
(e) Compute the complex natural logarithm of this

DFT.

(f) Compute the inverse DFT,to obtain the complex

cepstrum corresponding to the sequence with z-transform

a(l-z"1)

(] (2)B, (z)-1)

(g) Set the negative time part of cepstrum to zero,
to remove the contribution to the cepstrum due to the

maximum phase function Hb(z).
(h) Compute the DFT of the modified cepstrum.
(i) Compute the complex exponential of this DFT.

(j) Compute the inverse DFT. This gives a sequence

whose z-transform is, to within a scale factor, Wb(z).
(k) Normalise to obtain Wb(kL with Zwb(k)=l

The resulting sequence is the bilinear sequence of
the waiting time density. The waiting time density can
then be computed from the sequence wb(k) by the methods

in the next chapter. The normalisation in (k) is necessary
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because the bilinear transform is derived from the Laplace
transform. The Laplace transform of a probability density
function, evaluated at s=0 is unity. This corresponds to
the evaluation of the bilinear transform at z=1, and
evaluating a z-transform at z=1 corresponds to a summation

of the sequence elements.

Starting with the bilinear sequences of the probability
density functions a(-t) and b(t), the bilinear sequences
of the probability density functions of the waiting time
for the queues M|M[1l and M|H,|l were computed by use of
the procedure outlined in steps (a) to (k). For both
these queues, the interarrival time density is exponential
with A as the average arrival rate. The bilinear sequence

of the function a(-t) is ap(n) = 6(n+l), n=0,*1, *2,...,

where §(n) is the delta function.

The service time density for the M|M|l queue is
exponential with u as the average service rate. The

bilinear sequence of this function is

-
U , k:o
a+u
b, (k) =
b ) , k-1
O‘-UZ (&oHy , k=1,2,3,... (25)
o+
(otu)

The service time density for the Minll queue considered

was b(t) = ie-t+ %e—zt, and the corresponding bilinear

4
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sequence for this density is

-
1 3

Ity T Z@¥ 2) K0

5,00

kK , k

o o--1 30 o -

( ) + ) 7 k=1’2,3’o~0 (26)
k2((1+l)2 RES] (a+2)2(a )

The probability density function of the waiting time for

the M|M|1 system is

w(t) = (1-p) 8(t)+A(l-plexp[-u(l-p)t], t30

where p is the utilization factor. The bilinear sequence

corresponding to this function is given by

[(p=1) (a+n) _
U (otu=-2) ! k=0
wb(k) =4 .
A (u=-24) o=u+A _
Za(_) ( - ) 4 k"l,2,3,---
_ u (a+u—k)2 o+u=A (27)

The probability density function of the waiting time and
its bilinear sequence for the Mlell system considered are

given, respectively, by

3 9 t
w(t) = %6(t)+ %Eexp(— St)+ Zmexp(- 3), £30
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and

(3, _3 . _ 9 _
8 " T6(20+3)1 ' Te(2asy + KO
wy, (k) =4 )
3 203 9 2q-1.K
( )+ ( ), k=1,2,3....
4(20+3)2 2073 4(20+1)2 20+1 o
L (28)

The bilinear sequences of the probability density
function of the waiting time for these queues, computed
from the procedure in steps (a) to (k) , were compared
with the results from the analytic expressions for wb(k).
The computations were performed for A=1. The accuracy
of the computed results for the M|M|1l queue was up to 9
digits for the utilization factor p=0.1, using the Double
Precision * 6 arithmetig which has an accuracy of 11 digits(zl)
and DFT block sizesof L=128 and 256. For a utilization
factor p=0.9, the accuracy of the computed results was up
to 7 digits when block sizesof L=128 and 256 were used.
For the M]Hzll queue, the accuracy was about 9 digits for
L=128. It is worth noting that the convergence of the
bilinear sequencesof the service time and waiting time
probability density functions can be improved for some
of these functions by a proper selection of the bilinear
parameter ¢. This can be verified by looking at the
equations for the exact bilinear sequences in Egns (25)-(28).
An improved convergence results in fewer bilinear transform
elements with significant magnitude and these few elements

will adequately represent the continuous functions b(t)

# On the Harris 500 computer.

_85_



and w(t) along the real time line Ogt<», The use of

fewer elements will in turn result in a reduction in

the computation time.

The Poisson transformation can map zeros and poles,
which are in the right half of the s-plane, into the
interior of the unit circle of the z-plane, but outside
the circle with centre at z= % and radius %, as shown in
Fig. 3(b). Therefore the Poisson sequence of the waiting
time density, obtained by use of Eqn (23) can be incorrect.
The use of the bilinear transform does not result in this
because the jw-axis in the s-plane is mapped onto the unit

circle in the z-plane, and a stable function in the s-plane

results in a stable function in the s-plane and vice-versa.

A computer program for computing the bilinear sequence
of the probability density function of the waiting time
for the G|G|1l queue, using the procedure outlined, is given

in Appendix 3.
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3.7 APPLICATION TQO ANALYSIS OF COMPUTER COMMUNICATION

SYSTEMS

In section 3.2, a diagram showing how the Poisson
transform interrelates the various distributions for the
M|G|1 queue was given. The Pollaczek-Khinchin transform
equation for the number of customers in the queue was
inverted by use of digital filtering. The bilinear and
Poisson transforms were presented as suitable discrete
function representations for the purpose of numerical
calculations in queue analysis. A unified approach to
the inversion of the Laplace transform by use of the
bilinear and Poisson transforms was presented. Examples
showing how these transforms can be used in computing
the waiting time density for the M|G|l and G|G|l queues

were given.

As continuous probability distribution functions
used in the analysis of computer communication systems are
often derived as Laplace transforms, the usefulness of
these transform results depends on whether they can be
inverted. Accurate inversion is very important in studying
computer systems especially those with dedicated real-time
applications. Frequently, performance criteria are specified

=5 42 s
in the 10 ° probability range( ), e.g. the probability

-5
of delay greater than T seconds shall be less than 10 .

These methods will therefore find applications in the

computation of some probability distributions like the
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busy period and the waiting time for computer communication

(3)

systems with priority ; the busy period for time-sharing

(60}

computer systems + the waiting time for systems in which

R 2
customers require a random number of servers( 3)

. In fact
the methods will have applications wherever there is a

need for the inversion of the Laplace transform.
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CHAPTER 4

COMPUTING BILINEAR AND POTSSON SEQUENCES

,AND THEIR INVERSES

4.1 BILINEAR AND POISSON SEQUENCES AND THEIR INVERSES

BY ANALOGUE FILTERING

Bilinear and Poisson transforms can be used in the
inversion of Laplace transforms of probability functions.
The sequences generated by these transformations are
suitable discrete representations of continuous-time
probability functions. It was shown in the last chapter
that these sequences can be used in place of the continuous-
time functions in numerical calculations. The Poisson
transform is also useful in the analysis of the M|G|l gueue.
In this chapter, methods for computing the bilinear and
Poisson sequences, from continuous-time functions, are
presented. Methods for computing the continuous-time

functions from these sequences are also given.

The digital computational methods presented are derived
from analogue filters. The transfer functions for these
analogue filters are given in this section. From these
transfer functions and the corresponding unit impulse
responses, digital filter designs for generating the bilinear
and Poisson sequences are deriyed in sections 4.2.1 and
4.2.2, Examples of functions computed by use of these digital
filters are given in section 4.2.3. 1In the same section,

problems encountered are discussed and possible sources

of computational errors are discussed. In section 4.3,

methods for computing continuous-time functions, from their
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corresponding bilinear and Poisson sequences, are
presented. Examples of functions computed by use of these
methods, problems encountered, and possible sources of

errors are also given.

The nth element of the bilinear sequence is given by

@«

xp(n) = ({ x(t)h (t)dt, n=0,1,2,... (1)
where the functions h_(t) are (811
exp (-at), n=0
h (t)= .
202 (-1 exp (-t LM 2at)+ (-1 Es(v), n=1,2,3,..

(2)

Lél)(y)are the first derivative of the Laguerre polynomial

function
o on (=y)
Ln(Y) = z (k) '—'Y_" ’ 1’1=O,l,2,... (3)
The nth element of the bilinear sequence can be obtained

as a convolution of the function x(t), time-reversed, and

a system's impulse response function hn(t).

The Laplace transforms of the functions h_ (t) in

Egn (2) are(Sl)
r
1
O+s ’ n=0
i, (s)=9 n-
20, a-s -
( ) , n=1,2,3,... 4
(ot s) ots )
\
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Hn(s) is the transfer function of a chain of analogue
all-pass filters shown in Fig. 1. When a function x(t},

is time-reversed, and passed through this filter chain

then, at t=0, xb(n) the nth element of the bilinear sequence,

is obtained at the output of the (n+l)th stage.

The continuous-time function x(t) can be recovered
from the bilinear sequence xb(n) by use of an analogue

filter. x(t) is obtained from the bilinear sequence

xb(n) using the series expansion(8l)

n

x(t) = xp (n)h () (%) (5)

il o1 8

n=0

where the functions hn(t) are given in Eqn. (2).

The Laplace transform of x(t) from Egn (5) is(8l)
> a-5, "
XL(S) = I Xb(n)(a—_*_—g) (6)
n=0

The continuous-time function x(t) can be obtained from its
bilinear representation Xb(n), as the unit impulse response

of the all-pass analogue filter chain shown in Fig. 2.

. . 77
The nth element of the Poisson sequence 1s given by( )
? ()"
x (n) = j x (t) Yn' exp(-yt)dt, n=0,1,2,... (7)
P o .

The Laplace transform of the Poisson kernel functions
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Fig. 1

20
a+s

0~=s

a=-s

=S

a+s

a+s

v

x(t)

All-pass network for conversion of a continuous-time function
x(t) to its bilinear renresentation xb(n)(:ﬁn(o))

Fig. 2 The all-pass analogue filter chain for recovering a continuous-

time function x(t) fram its bilinear representation x (n).
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(Yt)nexP(;It)
n!

is

v n+1l
Ho(s) = (5=) n=0,1,2,... (8)

Y+s
The analogue low-pass filter chain corresponding to this
transfer function is shown in Fig. 3. When a function x(t)
is time-reversed and passed through this filter chain,
then at t=0, Xp(nl is obtained at the output of the (n+1)th

stage.

The function x(t) is obtained from the Poisson

sequence Xp(n) by use of the Laguerre elements Xg(n), from

(80)

the series expansion

x(t) =
n

5 xg(nlﬁn(Yt) (9)

Il o1 8

The Laguerre elements xg(n) are related to the Poisson

elements xp(n) by

n
x, (n) = V2¥ -7z (2)(—2) x,(k), n=0,1,2,...  (10)

The nth order [Laguerre function Zn(yt) is related to the

Laguerre polynomial function L (2Yt), of order n, by the

equation(8o)

o (ve) = /2y (-1)"L_(2yt)exp (-yt), - n=0,1,2,... (11)
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Y+s

Fig. 3 Analogue filter chain for

conversion of a continuous-time
function x(t) to its Poi

ssan elements xp(n)(=§n(0)).

1 =S Y=-s Y-s
St o—o L : |

X (t)

Fig. 4 Analoqgue filter chain for recovering a cantinuous-time function
. i ici n).
x(t) fram its Laguerre series coefficients XQ( )
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The Laguerre polynomial functions Ln(ZYt) are given by
Egn. (3). It can be shown that the Laplace transform of
x(t), by use of Egqn (3) and Egn (11) in Egqn (19), is given

by

- : y-s;n 1
X, (s) = /2y I () G307 G59) (12)

The analogue filter chain for recovering x(t) from xg(n)

is shown in Fig. 4.
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4,2 DIGITAL COMPUTATION OF BILINEAR AND POISSON SEQUENCES

Because of the availability of computers and efficient
algorithms in digital signal processing, it is advantageous
to use digital simulation to replace analogue filtering.
The analogue system impulse response hn(t),must be approximated
by a causal-discrete-time impulse response hn(k). The
analogue input function x(t) must also be transformed into
a digital signal, and this is conveniently done by periodic
sampling. In transforming the analogue system, with a
transfer function Hn(s), to a discrete system, one must
obtain hn(k) or Hn(z) from the analogue filter design.In such

transformations, it is required that the essential properties

of the analogue frequency response be preserved in the
frequency response of the resulting digital system(72—74).

These essential properties are:

(1) the imaginary axis in the s-plane must map onto

the unit circle of the z-plane.

(2) a stable analogue filter must be transformed to

a stable digital filter.

The second property means that the transformaticn must

map the left half of the s-plane into the interior of the

unit circle in the z-plane.

Three procedures for transforming an aalogue filter

design to a digital filter design are described in
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references 72 to 74. The procedures were used to obtain
digital filter transfer functions Hn(z) from the unit
impulse response h (t) and the transfer function H, (s) of

the analogue filters described in section 4.1.

4,2.1 IMPULSE~-INVARIANT DIGITAL FILTER DESIGNS

In the design of an impulse invariant digital filter,
the impulse response hn(t) of the analogue filter is obtained.
This is periodically sampled to obtain hn(kT), where T is
the sampling period and k is an integer. The z-transform
of the resulting samples is then taken as the transfer
function of the digital filter. The relationship between
z, the z-transform variable, and s the Laplace transform
variable, 1is z:eST. To accurately represent the analogue
filter by the digital filter, the sampling rate must be
greater than the Nyquist rate to avoid aliasing effects.
Put in another way, to avoid aliasing, the analogue transfer
function Hn(s) must be bandlimited. From Egns (4) and (8),
it can be seen that the transfer functions are not bandlimited.
It is thus desirable to use a very small sampling period, T,

to minimise the effects of aliasing.

8)

Bolgiano and Piovoso(7 " derived the transfer function

of a digital filter for generating the Poisson sequence,
n

. (yt) exp(=yt)
using the Poisson kernel functions { n!P ! and the
impulse-invariant digital filter design procedure. The

o . . (78)
transfer function of this digital filter 1is



[ T , n=0,1,2,..
m=0 l-exp (=yT)z (13)

where T is the sampling period. The coefficients ¢ (n,m)
are generated recursively by the formula
o, m>n+1 and n,m<0
¢ (n+l,m) =

mé (n,m-1)-(m+1l)¢(n,m), l<mgn+l and m=0

(14)

where ¢(0,0) = 1. The digital filter with transfer function
Hn(z) is shown in Fig. 5. The filter is realised as a
weighted sum of the outputs of the first (n+l) stages in

a chain of filters with identical transfer function
1

-1
[1-exp (-YT)z 1
the time-reversed, periodically sampled function x(kT),

. To obtain the Poisson sequence of x(t),

is passed through the digital filter. When the last sample
x (0) is processed, the output of the first (n+l) stages
weighted appropriately and summed, give the nth element

of the Poisson segquence.

The transfer function of the impulse-invariant digital

filter for generating the bilinear sequence is derived as
follows:

i 1
(a) Differentiate L (y) in Eqn (3) to get Lé )(y).

(b) Replace Lél)(y) in Eqn (2) by the resulting

expression.
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(c} Obtain periodic samples of h (t) in Eqn (2) by

replacing t by kT, to get hn(kT).

d Obtain the z-transf .
(d) nsform of h_(kT) to get H(z).

The resulting z-transform Hn(z), is

z exp(fakT)z-k, n=0
k=0
H (z) =4
n n n j=-1 o
( i) z (?) (=20T)° " 1 5 xJexp(-akT)z” %, n=1,2,3,..
j=1 (3-1)! k=0

(15)

To simplify the transfer function Hn(z) for n>0, the one-
sided z-transform mentioned in reference (78) is used.

The z-transform is

[m] - m+1
Z{lEi%%—— exp (-okT) } = L L

-1 (16)
l-exp (-aT)z ~-

where (k+l)LmJ denotes the mth ascending factorial power

of kil defined as (k+1) (k+2)...(k+m). k7 can be represented

. 8
as a factorial polynomlal( )
k- = ¢ ¢(3,m) —(r (17)
m=0

Substituting Eqn (17) and then Egn (16) into Egn (15), the
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expression for the transfer function Hn(z) simplifies to

L o n=0
l-exp (-aT)z
1, ) -4
n 7 - 1 m+1
I 80,3 T o(,m 1} n=1,2,3,...
9=l m=0 l-exp (-aT)z

(18)
where coefficients 6(n,j) are obtained from the equation

)n

(-1 (—ZQT)j

Sy n
o(m,3) = TG) —— G=D)

’ 1<j<n (19)
The coefficients ¢ (j,m) are generated recursively from

Egqn (14).

To simplify the realisation of the digital filter
with transfer function Hn(z) in Eqn (18), weighting
coefficients I'(n,m) are obtained from the coefficients 0(n,j)

and ¢ (n,m) using the eguation

~

n
I 6(n,k)o(k+l,1l) , m=1 and n>1
k=1
n
T(n,mj=< I 6(n,k)¢(k+l,m), m=2,3,..., n and nzm
k=m-1
0 , m>n31 and m,ng0 (20)
L

The transfer function Hn(z) in Eqn (18) is obtained as a

function of the coefficients I'(n,m) and it is then given by
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H (z) =9

(21)

The digital filter with transfer function Egn (21), for n>0
is shown in Fig. 6. The filter is realised as a weighted

sum of the outputs of the first (n+l) stages in a chain of

filters with identical transfer function L .
- -1
[l1-exp (-aT)z ~]

To obtain the bilinear sequence xb(n), the periodic samples

of x(t), time-reversed, are passed through the digital
filter. When the last sample x(0) is processed, the outputs
of the first (n+l) stages, weighted appropriately and summed,
give the nth element xb(n). The first elements xb(O), is
obtained as the unweighted output of the first stage of the

digital filter.

4.2.2 TFILTER DESIGNS BASED ON NUMERICAL INTEGRATION TECHNIQUES

Numerical integration of differential equations is used

in the design of digital filters(72_74). In the numerical

integration methods, the analogue transfer function Hn(S)'

. . 1
is rearranged into a form involving terms of the form ;ﬁ .

H (s) need not be factored, so it is not necessary to find
n

the roots of the numerator and denominator polynomials.

Since L implies an mth order integration in the time
m
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domain, the integration operator in the z-domain is

then substituted for the lﬁ term in the analogue transfer
function Hn(sl. The digiial filter transfer function is
the Hn(z) that results from such a transformation. The

two types of numerical integration techniques considered

were the rectangular and trapezoidal integration rules.

In rectangular integration, it is assumed that the
integrated function is piecewise constant, and corresponds

to the recursive relation(72)

In+1 = In ¥ Tfn (22)

where f is the function which is being integrated and g

is the value of the integral. The forward difference

Ip+1"9p 1is related to Egqn (22) by the relation
d (9h+179n
@g v Tt - ¢
dt T n

Therefore Egn (22) corresponds to the pulse transfer

function
I(z) = ——— <> 2 (23)
(l-z )
(1-z71)
This corresponds to replacing s by ———= 1in the expression

for the analogue transfer function Hn(s).

The higher order numerical integration formulas can

0|

also be used to approximate the integration process
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Trapezoidal integration,which assumes the integrated
function is piecewise linear,corresponds to the recursive

relation(72>

_ T
9np = 9p-1 T 2 (fn-l+fn)

where g is the value of the integral and £ is the integrated

function. This corresponds to the trapezoidal integrating

operator
(1424 1
I(z) = ————- 7 3 (24)
2(1l-z ) =
2 (1-2" 1
By replacing s by —1 in the expression for the analogue
T(1l+z 7)

transfer function Hn(s), the digital filter design based on
the trapezoidal integration rule is obtained.

Using the rectangular integration rule and substituting

-1
(l-; ) for s in Eqn (4), the transfer function of the digital

filter for generating the bilinear sequence is obtained as

~

8T o
- -1 n=
1-Bz 1
Hn(z):4
5T -1 n-1
2u{ BT_1J210+BZ — ] , n=1,2,3,...
1-Bz - 1-Bz
(25)
where g= T:%T
o= oBT -
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Using the rectangular integration rule and Egn (8), the
transfer function of the digital filter for generating

the Poisson sequence is obtained as

5 n+1
Hn(z) = [__—_"—l} 7 1'1=O,l,2,... (261
1-Bz
where
_ 1
B = 1+yT
o = y@8T

The digital filter structures corresponding to transfer
functions Egns(25) and (26) are shown in Figs. 7 and 8.

By passing a periodically sampled version of the function
x(t), time-reversed, through the digital filters, the
bilinear and Poisson elements,xb(n) and xp(n),are obtained
at the output of the (n+l)th stage of the filter chains

when the last sample, x(0), is processed.

The digital filter designs based on the trapezoidal

integration rule are obtained by using Egn (24) in Egna (4)

2(1-z"h

T(1+z 1)
function of the digital filter for generating the bilinear

and (8). Replacing s by in Egn (4), the transfer

sequence is

. -1
r U(l'*'Z—l) , n=0
(1- z 7)
Hy (z)=<
T -1.12 r_x -lin-1
g3tz ) |ZPtz T , n=1,2,3,...
(1-iz D! g
- r (27)
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where B = STaT
o’:..__T___
2+aT

The transfer function of the digital filter design,
based on the trapezoidal integration rule, for generating

the Poisson sequence is

. -1 n+l
o(1l+
H (z) = [—(——ET—)J , n=0,1,2,... (28)
1-B8z .
_ 2=yT
where B = ST
c _ YT
2+yT

The digital filters with transfer functions in Egns (27) and
(28) are shown in Figs. 9 and 10. When a sampled version
of the function x(t) is passed, time-reversed, through

the digital filters, the bilinear and Poisson elements,
xb(n) and xp(n),are obtained at the outputs of the (n+l)th

stages, when the last sample x(0o) is processed.

4.2.3 PERFORMANCE AND COMPARISON OF COMPUTATIONAL

METHODS

The digital filter designs for computing the bilinear

and Poisson seguences were simulated in Fortran 77 on the
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Harris 500 computer. There were no computational problems
encountered in using the digital filter designs based

on the numerical integratign rules. However, there were
some problems encountered in using the impulse invariant

digital filter designs.

The impulse invariant digital filter design can result
in overflow and underflow problems. The contents (see
Figs. 5 and 6) of delay unit n, at clock instant i, are a
sum of the contents of delay unit n-1, at instant i, and
the contents of delay unit n, at instant i-1. The contents
of the delay units thus accumulate, For large n, this can
result in overflow, especially if many samples of the function

x(t) are processed.

In using the impulse invariant digital filter designs
to compute the bilinear and Poisson sequences, the
coefficients ¢ (n,m) in Egn (14) must be evaluated. The
coefficients become large in magnitude for large n and m.

The evaluation of these coefficients for large n and m can

result in overflow problems.

The weighting coefficients I'(n,m) in Egn (20) are used
in computing the bilinear sequence. The evaluation of the

coefficients I'(n,m), involves the multiplication of the

coefficients ¢ (k,m) and 6 (n,k)and the summation of the

products. As already mentioned, the coefficients ¢ (k,m)

become large in magnitude for large k and m. The

coefficients 6 (n,k) in Egn (19) tend to zero for large n and k

and small T.
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The product of the coefficients ¢ (k+1,m) and 6(n,k) can

be significant in magnitude and its contribution to the
summation in Egn (20) will then be significant. Thus, if the
evaluation of the coefficients 6(n,k) suffers from underflow
problems, then the significant contributions to the summation
are lost, resulting in errxors in the valuesof the coefficients
(n,m). On the other hand if the evaluation of the
coefficients ¢ (k,m) results in overflow problems, the

coefficients I'(n,m) may not be obtained.

The bilinear and Poisson sequences of some service
time densities for the MlG|l queue were computed using
the digital filter methods. The service time density

functions considered were the exponential b(t)=ue_ut, the

-2t

hyperexponential b(t)=O.25e—t+l.5e and the Erlangian

Ez)b(t)=4p2te_zut. The computed results were compared with

results from exact solutions .

The Double Precision *6 arithmetic on the Harris 500

R, C 71
computer gives an accuracy of 11 significant dlgltS( ).

The accuracy of the computed results was about 6 digits,
for all the service time densities considered,
For comparison, the bilinear and Poisson sequences

Of the exponential service time density with rate

10

6] were computed by wuse of all the digital

U =
filter designs. 105 time-samples and a sampling period of

T=0.000162 were used. The sequences computed using the

impulse invariant designswere accurate to 6 digits. The
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digital filter designs based on the rectangular integration
rule produced a similar accuracy. The filter designs

based on the trapezoidal integration rule produced an
accuracy of 8 digits. 1In general, the sequences computed
by use of the filter designs,based on the trapezoidal
integration rule, were more accurate than the sequences

computed by use of the other two designs.

The use of the Double Precision *12 arithmetic, which has

an accuracy of 20 digits(7l)

on the Harris 500 computer,
only improved the accuracy by one or two digits. The value
of the average service rate y did not affect the accuracy
of the computed results. The number of periodic samples
used did affect the accuracy. Too few samples results

in poor accuracy, and too many (say Tore than 105) does

not improve the accuracy. Truncation errorsalso affect

the computed results. The last sample of the function x(t)

must be insignificant in magnitude, to minimise the

truncation errors.

The filter designs based on the numerical integration
rules do not require the computation of the coefficients

6 (n,m) and 6(n,m) in Eqms (14) and (19), as required by the

impulse invariant filter designs. These coefficients have

large and small magnitudes, respectively, for large m and n.

This can result in overflow and underflow problems.

Because all the digital filter designs developed were
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approximations t i
o analogue filters, there were inh
nherent

errorsin the
computed results, due to the approxi
Ximations.
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4,3 INVERSION OF BILINEAR AND POISSON TRANSFORMS

The bilinear and Poisson transforms are related to
the Laplace transform hy substitution of variables.
As a result, their inversions are closely related. The
bilinear and Poisson transforms of a function x(t) are
obtained from the Laplace transform X

-1
. 1- -
the variable s by Ei__%i_l and vy (l-z l), respectively.

(1+z ™)
The inverse z-transform of the resulting expressions then

r(s) by replacing

give the bilinear and Poisson sequences, xb(n) and xp(nb
respectively. It is thus apparent that by obtaining x(t)
from the elements xb(n) and xp(n), the Laplace transform
is inverted. Methods for computing the inverses of the
bilinear and Poisson transforms are discussed in this

section.

4.3.1 INVERSION BY USE OF LAGUERRE POLYNOMIAL EXPANSIONS

Tn the inversion of the transforms, the function x(t)
must be obtained from the bilinear and Poisson elements,
Xb(n) and x_(n), or from their respective z-transforms.
The method for computing the inverse Poisson transform
by use of Laguerre polynomial expansioné63) is described
first. To compute x(t) from the Poisson sequence xp(n),
Eqns (10), (3), (11) and (9) are used. The following

procedure is used to compute the function x(t) from XP(n):
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(a) Compute the Laguerre series coefficients X, (n),
from the Poisson elements xp(n), by use of

Egn (10).

(b) Compute the Lagquerre polynomial functions L (2vt),

using Egn (3).

(c) Compute the Laguerre functions Rn(yt) by use of

Egn. (11).

(d) Then compute the function x(t) from Egn. (9).

The computation of the Laguerre series coefficients
xl(n) and the Laguerre polynomial functions L (y) from
Egns (10) and (3), respectively, involves the evaluation
of factorials. For large n, this will result in overflow.
More efficient methods for computing Xz(n) and Ln(2yt),

which avoid the evaluation of factorials, are given in

reference 63.

The operation of computing the Laguerre series

coefficients xz(n) from the Poisson elements xp(n)

(63)

is carried out efficiently by a multistage process

This is equivalent to the use of a chain of first-order

digital filters as shown in Fig. 1ll. The first N Laguerre

series coefficients are generated by applying the first N

Poisson elements in reverse order, at the input to the

first stage of the filter chain. As the last element,

X (o), is applied at the input, the Laguerre series

p
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coefficients Xz(n), n=0,1,...,N-1, appear at the tapping
output numbers n=1,2,.,.N. In this method, only

multiplications by 2 are performed. A direct computation
of the sequence xQ(n), using Egn. (10), would involve the

evaluation of several factorials, for each element computed.

An efficient method for computing the Laguerre
polynomial functions in Eqn (3) is poy described
The method is based on the recurrence relation for the

Laguerre polynomial series, given by

Lo(y) = 1
Ll(y) = 1-y
mLm(y) = (2m-l-y)Lm_l(y)-(m—l)Lm_Z(y), m=2,3,... (29)

In computing the function x(t), using Egn (9), this method
combines the process of forming the partial sums of the
series, with the recursive computation of the polynomial
(85)

values of the polynomial function L (y). Smith describes

an algorithm for the summation of polynomial function
series and their derivatives and details of his - algorithm

are given in Appendix 2. To use the algorithm to evaluate

the function x(t), Egqn (11) is substituted into Egn (9), to

Obtain

n
Dy, (270 (30)

x(t) = /2y Yt
n

o2

Thus Egn (30) is a polynomial function series truncated
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to N terms. Using this algorithm and Eqn (30), the set

of quantities Sy(t), Sy-1 8 reeey S,(t) for the Laguerre

polynomial series summation are given by(63)(Appendix 2)

~

O, for k>N
k 2k+1-2vt k+1
-1 § LRTLTLYT - ktl
(-1) "% (k) rl Sk+1 BT 137 Sk (B)
- for O<kgN (31)

The partial sum for computing the Laguerre polynomial series
summation is

5. (t) = (-1)"x, (n) L (27t) (32)

O

™2

n=0

So(t) can be computed efficiently by evaluating the set of
quantities SN(t), SN_l(t), ...., giving, as the truncated

Laguerre function series

x(t) = v2y e 'E s (1) (33)

This uses approximately N multiplications fewer than a direct

computation of x(t) from Egn (30) using the recurrence

relation Egn (29).

The process for computing the function x(t) from the

. i ith' 1 it i
corresponding Poisson elements xp(n), using Smi s algorithm,is
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(i) Compute the Laguerre series coefficients xﬁ(n)

from xp(n) using the digital filter shown in

Fig. 11.

(ii) Compute the set of quantities SN(t), S (), o0

N-1
So(t), using Egn (31).

(iii) Compute x(t) using Egn (33) and the So(t) obtained

from Eqn (31).

The function x(t) can also be computed from the Poisson
sequence xp(n) by transforming xp(n) to the corresponding
bilinear sequence xb(n) as follows. The mapping from the
Poisson sequence to the bilinear sequence is achieved by

use of the transformation

Ly o, — 2 (34)

vy (l-2z_
p -
(l+zb

where z 1is the z-transform variable for the Poisson
sequence and Zy is the z-transform variable for the bilinear

sequence. Solving for z;l, the following transformation

is obtained

l+zb

N
|
el Ly

-1
-1 [(Y—d)+(¥+a)zb } (35)

Let xb(z) and X_(z) be the s--transforms of the bilinear
P

and Poisson sequences,respectively. Using the transformation

Eqn. (35), Xb(z) is obtained from Xp(z) by use of the
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equation

TY(l+z—l)

X |
P (y=a)+(y+a) z_l'

X, (z2)

-1.k

°Z° x_ (k) Fy-a)+(y+a)z

k=0 P [ y (142~ 1) }

xb(k), the bilinear sequence can be obtained from the Poisson
sequence xp(k) as the unit-impulse response of a digital
filter with transfer function Xb(z) Eqn (36). The digital
filter is shown in Fig. 12. The function x(t) can then be
computed from the sequence xb(n) by use of the method which

is now described.

To compute the function x(t) from its bilinear
sequence xb(n), Egqn (2) is substituted into Eqn (5), to

obtain

(37)

e summation of the first derivatives
(85)

Egqn (37) involves th

of the Laguerre polynomial series. Smith's algorithm

can also be used to sum the derivatives of polynomial

series. The set of quantities Sy(t), Sn—1 (Edreees So(t),

S‘ t)l SN_l(t),..., Sl

( (t) ae obtained by use of the
N
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algorithm. They are defined by the equations (Appendix 2)

(‘
O, for k>N
k 2k+1-2at
(-1)%x, (k)+ £55--<0C k+1
) xy (k) T Sks1(E)= 137 Skan (E)4
- for Og<kgN
(38)
and
P
O, for k>N
1 —
Sk(t) =
1 2k-1-20t k !
- — 4+ = ' -
%ok (B) R Sy (8) = 13T Sian (B)0
L for 1lgkgN
(39)

Si(t) can be computed efficiently by evaluating the set

. ,
of quantities SN(t), SN_l(t),...SO(t), SN(t), Sﬁ—l(t)""’

Si(t), giving as the truncated polynomial series

(N
20 X (-l)nnxb(n), for t=0
n=1
x(t) =3
2ae_atsi(t), for t>0
- (40)

The method uses approximately oN multiplications less than

a direct evaluation of Egn (37) using the derivative of

the recurrence relation Edn (29).
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4.3.2 INVERSION BY USE OF DIGITAL FILTERS

The function x(t) can be obtained as the unit impulse
response of a chain of analogue filters shown in Figs 3
and 4. As digital filters can be used to approximate
analogue filters, they can also be used in the inversion
of the bilinear and Poisson transforms. In this section,
digital filters for generating the function x(t), from
the bilinear and Laguerre elements, xb(n) and xg(n), are
obtained. These digital filter designs are based on the

numerical integration rules,

x(t), the inverse bilinear transform of the sequence
xb(n), is obtained as the unit impulse response of an
analogue filter with transfer function XL(s), Egqn (6).

A digital filter design,based on the rectangular integration
rule,to approximate an analogue filter is obtained by use
of the transformation s= ii:%:il . Using this

transformation in Eqn (6), the transfer function of a

digital filter for generating the function x(t) from xb(n) is

co —B+Oz_l n
XL(Z) = I xb( ) L———~<:I] (41)
n=0 L 1-0z
_ 1l=aT
where B8 = TTaT
_ 1
9 % THaT

The transfer function of a digital filter design ,based on

the rectangular integration rule ,for generating the inverse
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poisson transform from Egn (12) is

© -1 n
X. (z) =V2y I x,(n) To -B+0z
L n=0 * [l—cz-l 1-oz71 (42)

where B = T3y T

1+yT

The digital filter structures corresponding to the transfer
functions Eqn (41) and Egn (42) are shown in Figs 13 and
14, respectively. x(t) is thus approximated by the unit

impulse response of these digital filters at t=0,T,2T, ...

For the digital filter designs based on the
-1
. 2(1-
trapezoidal integration rule, s 1S replaced by —il—E:Tl
T(l+z )

in Egqns (6) and (12). The transfer function of the

digital filter for generating the inverse bilinear transform

is
® - * (43)
X (z)= 1 xbhﬂ E:EELtjl
n=0 1-Bz
2-aT
h _
where g 2+aT

The transfer function of the digital filter design, based

on the trapezoidal integration rule, for generating the

inverse Poisson transform, is
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© - -1," -
X (z)= V2y ¢ o(l+z ") | [-g+z~ LM
(z Y xQ(n){ ; J{ z (44)

n:O (,l"Bz-l l—Bz—

where
g = 2-yT
2+YT
g = T
2+yT

The digital filters corresponding to these transfer functions
are shown in Figs. 15 and 16. The unit impulse responses
of these digital filters at clock instants k=0,1,2,...

approximate the function x(t) ,at t=0,T,2T,...

4.3.3 PERFORMANCE OF COMPUTATIONAL METHODS

In computing the inverses of the bilinear and Poisson
transforms by use of the Laguerre polynomial functions,
there are possibilities of overflow and underflow problems.

If the function x(t) approaches zero very slowly as t

increases, then there can be overflow or underflow problems.
x(t) ,from Egns (30) and (37), consists of summations of
polynomial series weighted by factors exp(-Yt) and exp (~at),

respectively. For large values of vt and ot, the exponential

terms can suffer underflow. The summations of the polynomial

series can on the other hand result in overflow problems.

In computing the inverse poisson transform, the Poisson

sequence must first be transformed to Laguerre Series

ear seguence. The gains of the

coefficients or to the bilin
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digital filters for generating the Laguerre series
coefficients and the bilinear elements from the Poisson
elements, are high at the Nyquist frequency(63), Thus

the computed values of the high order Laguerre series
coefficients and bilinear elements are determined primarily
py the high frequency components of the Poisson sequence
xp(n). The high frequency components can be dominated

by errors due to their representation. These errors

pecome significant in computing the high order Laguerre
series and bilinear elements. It is therefore necessary to
check the computed high order elements for any increase in
magnitude due to the accumulation of the errors. This can be
difficult to detect because the exact elements may

increase in magnitude as n is increased, even though they

may tend to zero for very large n,

The digital filter methods for generating the function
x(t) from its bilinear and Poisson elements are approximations
of analogue filters through transformations. Therefore

there are inherent errors due to these approximations,and

these errors are unavoidable.
To assess the accuracy of the inversion method which

uses Laguerre series expansions s the Erlangian (Ey)

service time density was used. The service time density

is(2'8)

3
b(t) = éﬂl%%il_ exp (-4ut), £30
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The bilinear and Poisson sequences of b(t) are obtained

from the Laplace transform B (Sl‘ [(S+4U)1 The bilinear
sequence 1s given by
gEiny
4
’ k=1
u 4
2 (345 1+B) (—— =
bb(k) _ W ( B) ( 8)(a+4u) ' k=2
2 4
4 (1+5B8+58 )(l+6)(u+4u) ' k=3
4 4 k+3 4
(goqp) LC3) (1+8) 4 (%32) (148) 46 (K1) (148) *-
s (%) (1+8) 185, k=4,5,6,..

(46)

_ (a=4y)
where B = oFan The elements bb(l), bb(2) and bb(3) can
all be obtained from the last line of Egqn (46). However,
for a value of o close to that of 4y, there will be a loss

of significance in the computed elements if the last line

is used. It is therefore necessary to rearrange the

equation into the form given in Eqn (46). The Poisson

sequence corresponding to the service time density b(t) is
_ A Ak (XK x=0,1,2,..- (47)
bp(k) = (Y+4U) (7537) Y+4U) , Ry

For practical purposes, the probability distribution

function, B(t) = jtb(T)dT' or the complementary distribution
o

function, 1-B(t), are usually of greater interest than

the probability density function. Howevel, the function B(t)
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approaches unity for large t, therefore the magnitudes

of the high order bilinear and Poisson elements approach

a non-zero constant. This will result in slow convergence
of the series in Eqns(30) and (37), especially for large
values of t. 1Instead of computing the probability
distribution function, B(t), faster convergence of the
series is obtained by computing the complementary function,
1-B(t), whose bilinear and Poisson elements approach zero

for large k.

The complementary function d(t) = 1-B(t) can be

obtained from Egn (45) and it is given by

at) = EEP_(_SJ‘HJ_’C_) [32(_ut)3+24(ut)2+12ut+3], t20  (48)

[l—BL(S)J
s

The Laplace transform of d(t) is Dp(s) =

where BL(S) is the Laplace tranform oglthe service time
a(l=-z )

-1, .
density, b(t). Replacing s by ———3— and y(l-z 7) in
(1+z 7)
D; (s), and inverting the resulting z-transforms, the

bilinear and Poisson sequences of d(t), i.e.,dp(k) and

dp(k), are obtained.

To compute the function d(t) from the bilinear and

Poisson Sequences,bb(k) and bp(k),in Eqns (46) and (47),

the following process is performed.

(i) Obtained the bilinear and Poisson sequences of

i . Th
d(t) ,from by (k) and bp(k), respectively e

] ‘ ined b assing
bilinear sequence dy (k) 18 obtain Yy p
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the sequence {(l—bb(o)), by (1),-b, (2) ... }

through a digital filter with a transfer

(l+z_l)

— . The Poisso
o (12 l) son seqguence dp(k)

is obtained by passing the sequence {(l—bp(o)h

function

—bp(l), —bp(Zl,...} through a digital filter with

1
v(l-z"1

a transfer function

(ii) Using the methods outlined in section 4.3, the
function d(t) is computed from its bilinear and

Poisson sequences, db(k) and dp(k).

It is sometimes necessary to select suitable values
for the bilinear and Poisson parameters a and Yy, respectively,
in computing functions from their bilinear and Poisson
sequences. For some functions, these parameters can be used
to improve the convergence of the bilinear and Laguerre
elements and hence the series Egns (30) and (37). The choice
of the Poisson parameter y is important in the
computation of the inverse Poisson transform. The choice

must be such that the Poisson sequence transforms to rapidly

converging Laguerre series or bilinear elements. As a

result, the computed high-order Laguerre or bilinear

elements will become insignificant in magnitude before

they become grossly affected by computational errors.

To select a value for the parameters o and vy, the

analytic expressions for the bilinear and Laguerre

i n example
sequences or their z-transforms are examined. As a ple,
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the convergence of the bilinear Sequence in Eqn (46) can
pe improved by choosing a value for o which is as close
to the value of 4u as possible. Alternatively, if
expressions for the z-transforms of the sequences are
available, the pole positions of these transforms can be
determined. If these pole positions are functions of the
parameter o or Y, then these parameters can be used to
push the pole positions inwards towards the origin, in the
z-olane. Otherwise, one experiments with severél values

for these parameters.

The function d(t) was computed from the bilinear and

Poisson sequences bb(k) and bp(k) using three approaches:

(i) It was computed directly from its bilinear

elements db(k) which had been obtained from bb(k).

(ii) d(t) was computed from the Laguerre series
coefficients dg(k). The coefficients dQ(k) had
been obtained from the Poisson elements dp(k), which

in turn, were obtained from the elements bp(k).

(iii) d(t) was also computed from the bilinear elements

db(k) which nad been obtained from the Poisson

elements dp(k). The Poisson elements dp(k) had in

son elements bp(k).

turn, been obtained from the Pois

10 a=y=1, and using Double

For a service rate u = 7§

Precision *12 which has an accuracy of 20 digits on the

Harris 500 computer, the computed results were accurate
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to at least 17, 6 and 5 digits, respectively, for the
three approaches. Graph 1 is a plot of the computed
results from the three approaches. For a=y=4.5, the
computed results were accurate up to at least 18, 16
and 15 digits, respectively. A plot of the results
from these three approaches is indistinguishable from

the exact solution Egn (48) ,in Graph 1.

For a service rate u=10 and a=y=5, the computed
results were accurate to 15, 2 and 2 digits,respectively,
for the three approaches as shown in Graph 2. For the
same service rate and a=y=20, the accuracies were to about
17, 11 and 8 digits,respectively. Graph 3 is a plot of
the results from the three approaches, together with the
exact solution. The plot of the results from all three
approaches for a=y=39.5 (note 4u=40) is indistinguishable

from the exact solution,in Graph 3.

As the values of a and y approach the value of 4y,

very few bilinear elements and Laguerre series coefficients

were used in the calculations. 1In addition, the accuracy

of the computed results improved as the values of o and vy

approached the value of 4u.

The digital filter designs pased on the rectangular

integration rule produced results with poor accuracy. The

digital filter designs based on the trapezoidal integration

rule were used in the computation of the function
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x(t) = uexp(-ut), from its bilinear and Poisson sequences.
For T7=0.001, the results computed from the bilinear
sequence were accurate to about 5 digits for a service
10 .

rate u= 5+ using Double Precision *6 on the Harris 500
computer. The results computed from the Poisson sequence
via Laguerre series coefficients were accurate to about

3 digits. As T approaches zero, the accuracy of the
computed results improves. For T=0.00001, the accuracy

of the function computed from the bilinear sequence was

about 10 digits using Double Precision *12 arithmetic.

To obtain the number of multiplications performed
by use of the digital filters yer computed sample, let
the required sample be at t=Tl. T, must be an integer
multiple of the sampling period T. From Figs. 15 and

16, it can be seen that for each value of t=kT, where

T
k=0,1,..., 1 approximately 3N multiplications are

m 14
4

required, where N is the number of elements used. gherefore
NT
1

to compute theéﬁﬂF@ at t=T; requires approximately —g

nmultiplications. To minimise the approximation error, T must

1 .
be reduced, thus increasing the ratio 7 - The method which

uses the Laguerre polynomial functions requires about 6N and

3N multiplications to evaluate the function from the bilinear
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and Poisson elements, respectively, at t=Tl. The

method gives better accuracy and also offers some
computational savings over the digital filter method.
However, the digital filter methods will not suffer from

overflow and underflow problems which the Laguerre sgeries

expansion methods can suffer from.
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4.4 CONCLUSIONS

several digital filter methods for computing the
pilinear and Poisson sequences have been presented. The
methods were derived by means of the impulse invariant
and the numerical integration design procedures. The
digital filter designs based on the trapezoidal integration
rule produced results with better accuracy than the
results obtained by the other design procedures. Its
implementation was simple compared to the impulse
invariant design which required the computation of the
coefficients 6(n,m) and ¢(n,m) which, in turn, required

the evaluation of factorials.

Two methods for the inversion of the bilinear and
Poisson transforms were presented. It was found tc be
easier to invert the bilinear transform than the Poisson
transform. By a careful choice of the bilinear and

Poisson parameters o and Y, the method based on the

Laguerre polynomial expansiors was capable of achieving

very high accuracy. The accuracy obtained by use of the

digital filters was reasonable, but the accuracy of the

first method was higher.

As most continuous-time probability functions in queue

analysis are derived 1in the form of Laplace transform

expressions, the computational methods presented are

therefore useful in the inversion of these expresslons.
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The Poisson transform has applications in the analysis

of the M|G|1l queue as well. The methods for computi
ng

the Poisson sequences and their inverses are thus useful
in computing the various distribution functions for thi
is

queueing system.
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CHAPTER 5

COMPUTATION OF VARIOUS PROBABILITY

DISTRIBUTIONS IN QUEUE ANALYSIS

5.1 INTRODUCTION

some of the problems faced by a computer communication
system analyst involve performance evaluation. Queueing
theory provides the basic mathematical tools for solving
these problems. However, the results obtained by the
application of gueueing theory must further be solved by
numerical methods to obtain the actual data required in
the system specifications and performance evaluation. A
problem in the solution of gueueing problems is that of
inverting the Laplace and z-transforms. This has been
dealt with in the previous chapters. A systematic
approach for solving queueing problems by use of digital
signal processing methods has been presented. However,

specific problems will require certain technigues.

In section 5.2, Skinner's method(49) is used to

obtain upper and lower bounds on the waiting time

distribution for the clcll queue. Bounds for the queues

M|[M|1 and E2IMkl are derived. In section 5.3, a function

x(t) is computed, from an irrational Laplace transform

expression, by use of the bilinear transform and digital

signal processing techniques.

The bilinear and Poisson transforms of the probability

denSity function of the busy period of the MlG\l queue

are derived in section 5.4, These transforms are obtained

as functions of the bilinear and Poisson transforms of the
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gervice time density . and the transforms themselves. A
procedure for computing the busy period distribution, from
these transforms and digital signal processing techniques,

is presented. The procedure is used in the computation of
the busy period distribution for the M|M|1 and M{E4ll queues.

The exact solution for the M|/M|1l gueue presents some

computational problems. However, this exact solution is
rearranged into a set of recurrence relations which

minimise the computational problems.

In section 5.5, the discrete probability density
function for the number of customers served in the busy
period, for the M]Gll queue, is computed recursively.
Section 5.6 discusses the application of some of the
computational methods to the analysis of computer

communication systems.
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1
5.2 SKINNER'S METHOD FOR COMPUTING BOUNDS ON DISTRIBUTIONS

Some cumulative distribution functions are obtained

from the convolution of probability density fUnCtions(2’23)_

. (49 :
skinner's method ) provides a means of computing,

numerically, upper and lower bounds on such cumulative
distribution functions. By use of this method, approximate
numerical results, whose accuracy is known precisely, can
be computed. Skinner used his method to compute the upper
and lower bounds on the waiting time distribution in the
M|G|1 queue. However, in references 50 and 51, it was
shown that the method can be applied to the computation

of the numerical solutions of other problems as well.

Skinner's method can be used to evaluate numerically,

terms of the form(49’51)

[ x (1) dt, n=0,1,2,... (1)

that is, the integral of an n-fold self convolution of a

probability density function. The method then enables

bounds on terms like Egn (1) to be obtained by the

computation of discrete convolutions. The lower and upper

bounds on Eqn (1) are obtained as follows. The cumulative

distribution function corresponding to the density x(t)

is X(t) = ft x(t)dt. Lower and upper bounds on X(t) are

-0

obtained by sampling it and forming plecewise constant
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functions. The lower bound function z(t) takes the value
of the sample X(kT) in the time-interval kTgt< (k+)T. The
upper bound function X (t) takes the value of the sample
X(kT) in the time interval (k-1)Tgt<kT. This is the same
as §(t) except for a left shift of T. Xy the discrete
probability function corresponding to §(t) is given by

the forward difference

x, = X(KT) - X[ (k-1)T], k=...,-1,0,1,...
kT
= | x(t)dt (2)
(k-1)T

~r
The discrete probability distribution corresponding to X (t)

is identical to X1 except for a left shift of one place, 1i.e. ,

X T Xx41 (3)

The expression for the lower and the upper bounds on

the cumulative distribution corresponding to the probability

density function which is an n-fold self convolution of x(t)

is(51)
t kK _(n
;o g ket g 2 xn(1 ) (4)
~m _ ©
m=—-x - m=-
where x (™) ana i(n) are the n-fold discrete self convolutions

~
of the sequences X and X 'respectively- Because of
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A h _n)
gqn (3), ¥, = 1s the same as x =’ except for a left shift

(51) .
of n places yi.e.,
K - 5l

Therefore in Egn (4), the upper bound sequence i(n), can
m
pe replaced by the lower bound sequence xén), but with the

top 1imit of the summation as k+n instead of k.

If a function is given in a form similar to Eqn (1),
and there is a need to evaluate it numerically, then

Skinner's method is applied as follows:

(i) Obtain the cumulative distribution corresponding

to the density x(t), analytically, and periodically

sample it.

(ii) Difference the samples, to obtain the discrete

probability distribution X0 Eqn (2).
(iii) Compute the n-fold discrete self convolution of

x_, either directly or by use of the FFT algorithm.
m

-~

(iv) Sum the first k elements O

the lower bound for values of t in the range

kT<t< (k+1)T.

(v) Sum the first k+n olements,to obtain the upper

bound for values of t in the range katé(k+l)T,
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This method can be used to obtain the bounds on the
waiting time distribution for the G|G|1 queue. The waiting
time distribution function for this queue can be expressed

, (2)
as a convolution and it is thus suitable for the

application of Skinner's method,

The solution of the continuous-time G|G|1 queue is

obtained by approximating it with that of the discrete-time

G|G|1 queue(45), from
_ 1
Walz) = T Cq-T (6)
(1=2 )[—“-1}+
1-z

where [,]+ denotes the process of taking the minimum phase

function. Wd(zl is the z-transform of the discrete waiting

time distribution function. Cd(z) = Ad(%)Bd(z), where

Ad(Z) and Bd(z) are the z-transforms of the discrete

densities of the interarrival time and the service time,
Cq(2)
respectively. The function ———3— corresponds to a
(1-z ™)
discrete cumulative distribution function and it is similar

to Eqn (1). Skinner's method will therefore give bounds
on the approximation to the continuous-time queue solution.

There are several numerical methods which can be used to

solve Eqn (6) (42/47),

Expressions for the bounds on the cumulative distribution

of the waiting time for the G|G|1 queue are obtained as

fOllOWS :
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(i) Obtain an expression for c(t). c(t) is the

convolution of the densities of the interarrival

time and the service time, i.e. c(t)=a(-t)*b(t).

(ii) Obtain the expression for the cumulative

distribution C(t), corresponding to c(t).

(iii) Periodically sample the result to obtain C(z),
£(z)
the lower bound on the cumulative distribution

corresponding to c(t).

~
(iv) Obtain the upper bound function C(z) from C(z)
~
by use of the equation C(z) = zC(z).

(v) Solve Eqn (6), to obtain the expressions for the

z—transforms of the lower and upper bounds, by
C,(z)

replacing __é_:I— by C(z) and 8%2), respectively.
(1-z 7) ~

(vi) Invert the resulting z-transform expressions, to
obtain the expressions for the lower and upper

bounds on the cumulative distribution function

of the waiting time.
For the M|M|1l queue, the probability density functions

for the interarrival time and service time are respectively,

a(t) = ae~*t and b(t) = ue "t. Using steps (1)=(vi), the

~
expressions for W(t) and Ww(t), the lower and upper bounds

on the waiting time distribution are. for t20
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and

a. 'B, k
l—B) Oy » KTgT<(k+1)T (8)

Wit) = 1-¢

respectively, where;

B = exp(-uT)

_ Atpexp[- (A+u)T)
(A+u)exp (-AT)

(n+A)exp (-uT)
u+Aexp[}(X+u)f]

The exact solution for the waiting time distribution for

the M|M|1l queue is given by
A -
Wit) = 1- & exp [- (u=A)t] £30

The E,|M|1 queue in which the two arrival stages have

different death rates which are linear multiples of the

service rate(z)was also considered. The service time density

is the same as for the M|M|l queue. The interarrival time

(2)

density is given by

a(t) = 2uexp(-ut)[l—exp(fut)], t20
with rate A= 20 For this system, the upper and lower
3

bounds on the waiting time distribution are similar to
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Eqns (7) and (8), but 0y and Op, are given by the equations

-
oy =
(14287)+(1-8) [(1+8+48%) (148487 ] ¢
2 3
op = (1L+3R7=-87)

(2+8°) 8+ (1-8) 8 [ (4+6+87) (1+8+8°)]

where £= exp(-uT). The exact solution for the waiting

time distribution for this E,[M|1l queue is (2]

W(t) = 1-(2-vV2)exp[-u(v¥2-1)t], £30.

It is worth pointing out that, in using Egns (7) and (8)
directly, to compute the bounds there will be a loss of
significance in the computed bounds as T tends to zero.
To avoid this Egns (7) and (8) can be rearranged or

alternatively, extended precision arithmetic can be used.

Table 1 displays the upper and lower bounds for the

cumulative distribution of the waiting time for the M|M|1

queue, together with the exact solution. The results were

computed with A=1, u=l.5, for three values of the sampling

period T=0.1l, T=0.0l, and T=0.00l. Table 2 displays the

results for the E,|M|1l queue for the same values of A, i,

and T. The bounds approach the exact solution as the

Magnitude of T tends to zero.
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7aBLE 1 Upper and Lower Bounds on the Waiting Time

Distribution Function for the M|M|1 Queue with

A=1 and u=1.5

T = 0.1
t W (t) W(t) E(t)
0 0.400200 0.333333 0.297984
1 0.662012 | 0.595646 | 0.540551
2 0.809543 0.754747 0.699304
3 0.892677 | 0.851247 | 0.803204
4 0.939524 | 0.909776 | 0.871203
5 0.965921 | 0.945277 { 0.915706
6 0.980797 | 0.966809 | 0.944832
7 0.989179 | 0.979868 | 0.963894
8 0.993902 | 0.987790 | 0.976370
9 0.996564 | 0.992594 | 0.984535
10 | 0.998064 | 0.995508 | 0.989878
T=0.01
~
t W(t) W(t) W(t)
o | 0.340005 | 0.333333 | 0.329980
1 0.602679 | 0.595646 | 0.590548
2 0.760810 | 0.754747 | 0.749782
3 0.856006 | 0.851247 | 0.847091
4 0.913315 | 0.909776 | 0.906557
5 0.947815 | 0.945277 | 0.942896
6 0.968584 | 0.966809 | 0.965104
7 0.981088 | 0.979868 | 0.978675
8 0.988615 | 0.987790 | 0.986968
9 0.993146 | 0.992594 | 0.992036
10 | 0.995874 | 0.995508 | 0.995133
T=0.001
~5
£ W(t) W(t) W(t)
0 0.334000 | 0.333333 0.333000
1 0.596353 | 0.595646 0.595140
2 0.755359 | 0.754747 0.754256
3 0.851729 | 0.851247 0.850837
4 0.910137 | 0.909776 0.909460
5 0.945536 | 0.945277 0.945044
6 0.966991 | 0.966802 0.966642
7 0.979994 | 0.979868 0.979752
8 0.987875 | 0.987790 0.987710
9 0.992651 | 0.99259%4 0.992540
10 0.995546 0.995508 | 0.995472
S B
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TABLE 2

Upper and Lower Bounds on the Waiting Time

Distribution Function for the EzJMll Queue

T=O.lr

t W(t) W(t) W(t)
0 0.483802 | 0.414214 | 0.376520
1 0.743068 0.685295 0.636201
2 0.872115 0.830930 | 0.787725
3 0.936346 0.909170 0.876138
4 0.968317 | 0.951203 | 0.927727
5 0.984230 | 0.973784 | 0.957829
6 0.992151 | 0.985916 | 0.975393
7 0.9960093 0.992434 0.985642
8 0.998055 | 0.995935 | 0.991622
9 0.999032 | 0.997816 | 0.995112
10 0.999518 | 0.998827 | 0.997148
T T=0.01
£ | W(e) W (t) W (t)
o} 0.421323 | 0.414214 | 0.410703
1 0.691568 | 0.685295 | 0.680871
2 0.835608 | 0.830930 | 0.827178
3 0.912380 | 0.909170 | 0.906410
4 0.953299 | 0.951203 | 0.949317
5 0.975109 | 0.973784 | 0.972553
6 0.986733 | 0.985916 | 0.985136
7 0.992929 | 0.992434 | 0.991951
8 0.996231 | 0.995935 | 0.995641
9 0.997991 | 0.997816 | 0.997639
10 0.998929 | 0.998827 | 0.998722
T=0.001
t | w(t) W () W (t)
o} 0.414926 | 0.414214 0.413865
1 0.685928 | 0.685295 0.684857
2 0.831404 | 0.830930 0.830560
3 0.909496 | 0.909170 0.908898
4 0.951417 | 0.951203 o.951012
5 0.973920 | 0.973784 0.97362
6 0.986000 | 0.985916 8'322282
) 4 .
7 0.992485 | 0.99243
’ 5 | 0.995907
8 0.995966 | 0.99593
16 | 0.997799
9 0.997837 | 0.9988
1o {o 998837 | 0.998827 0.998817
. 0.3t | T
A=1.0 and p=1.5
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5.3 DISTRIBUTION WITH IRRATIONAL LAPLACE TRANSFORM

Occasionally, one is faced with the task of inverting

transcendental Laplace transform expressions, If a

probability function is specified in this form, one

can be interested in computing either the inverse Laplace
transform or the bilinear and Poisson sequences ,for the
purpose of numerical calculations. This is therefore a
problem of computing the bilinear or Poisson sequence from
the Laplace transform expression, If the actual function

x(t) is required, it can be computed from the resulting

bilinear or Pcisson sequence.

To illustrate how these transcendental functions can

be inverted, the Laplace transform

X (s) = exp (B8/8) exp (-8Vs+6) (9)

was used as an example. The inversion of the Poisson
transform poses some problems because it must be transformed

to other sequences like the Laguerre series coefficients

or the bilinear sequence , therefore this transform was not

used in this example. To obtain the bilinear transform, s

Eil:i:il . The bilinear transform of x(t)

(l+z ™)
from Eqn (9) is then

is replaced by

-1
-1
(o= ez ] e (9 Frerp -8/ L E | (10)
L1427t h ol
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To invert X, (z), in order to get the bilinear sequence Xy (n),

is not easy. One therefore resorts to numerical methods

The FFT algorithm can be used to invert this equation
by use of the transformation z = exp(jz%m). Using this
transformation and De Moivre's theorem(86) in Egqn (10),

the DFT of the bilinear sequence is obtained as

L 2T .
Xb[exp(]—i—l] = exp (8/8)r (o +jo ), m=0,1,...,L-1

(11)
where:
W
_ 1, -1 m
r = exp{—cmcosﬂiuan (5 )]}
W
_ . rl -1,''m
o = cos{cm51nE§tan (@—)]}
W
. .ol -1, 'm
o, = —51n{cm81n[§tan (9)]}
L
~ 2 247
c. = g[® +wﬁ]
w o= L
m l+cos(z%m)

The inverse DFT of Egn (11) gives the bilinear sequence Xy (n).

i is seguence, it
In the absence of an exact expression for this E !

is difficult to assessthe accuracy of the sequence computed

by this method.

However, it is possible to obtain an expression for the
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function x(t) from Eqn (9), by use of entries in tables
given in reference 87 and the properties of the Laplace

transform. The probability density function x(t), is given

by
(8V6) 82
ex 9) - R
x(£) = BE=z == exp[-(ot+ )], 20 (12)

2/1t

The method which makes use of the Laguerre polynomial
functions in chapter 4, for inverting the bilinear transform,
was used. The function x(t) was computed from the sequence

xb(n) obtained as the inverse DFT of Egn (11). Double

Precision *6 arithmetic, which has an accuracy of 10 digits,
was used. The computed function x(t) was compared with
results from a direct evaluation of Egn (12). For 6=1 and

8=15 and FFT block sizes of 2048 and 4096, the accuracy

of the computed function was at least 6 digits.
This example demonstrates how to invert transcendental

Laplace transform functions, which may arise in connection

with more complicated queueing systems. Chapter 4 dealt

with the problem of computing the bilinear and Poisson

sequences from the time functions. This example also shows how

these sequences can be computed from Laplace transforms.

-158-



5.4 BUSY PERIOD DISTRIBUTION FOR M|G|l QUEUE

This section deals with the computation of the busy
period distribution for the M|G|1 queue by use of the
pilinear and Poisson transforms. The section is divided
into four parts, the first part describes the derivation of
the bilinear and Poisson transforms of the busy period density.
The second part outlines the computational procedure. The
third and last parts discuss the solution for the M|M|1l queue

and the performance of the computational method, respectively.

5.4.1 BILINEAR AND POISSON TRANSFORMS OF BUSY PERIOD DENSITY

A busy period of a queueing system commences when a
customer arrives to find the system empty and the server
free to serve him immediately. It ends when the server
completes the service of a customer, leaving the system
empty again. The Laplace transform of the probability
density function of the pusy period for the bulk arrival
MXlGll queue is given in reference 88, as

Gy (s) = BL{s—AJr)\XL[logGL(S)]} (13)

where BL(S) is the Laplace transform of the service time

i i nd the
density. For this queue, arrivals are Polsson a N

i i Laplace
are in groups of random S1z€. Xy (s) 1s the Lap

transform of the discrete distribution of the group size.
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the group size i i =S
When g P Si 1s unity, XL(S) =e~ and GL(s) reduces
to

Gy (s) = BL[s—K+AGL(s)] (14)

which is the equation for the Laplace transform of the

pusy period density for the M|G|l queue. The solution of
this equation is known for only a few cases in particular,
for the M|M|1 and M|D|1 queues. The numerical solution of

this equation is therefore desirable.

It is suggested in reference 2 that Egn (14) can be

solved numerically through the iterative equation

G (s) = BL[s+>\—>\GL’n(_s)J (15)

L,n+1

The limit of this iterative scheme as n»« converges to GL(s)
for a stable queue. Egn (15) is in a form suitable for

the application of the bilinear and the Poisson transform

methods in Chapters 3 and 4. By use of these transforms,

the iterations can be performed on the bilinear and Poisson

sequences of gn+l(t), the busy period density, instead of

the Laplace transform GL,n+l(S)‘

To use the bilinear transform to solve Egn (15),

-1
a(l-z ) in the
numerically, s is replaced by ?I:;ii;’ to obtain

he busy period density, at the (n+l)th

bilinear transform of t

iod
iteration. The bilinear transform of the busy perio
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density from Egn (15) is then

A a(l-z-l) -1
G (z) &G [ » -ng [u(l z )
b,n+1 L,n+ _ - A=

(16)

If the Laplace transform of the service time density can

be obtained, then Egn (16) is solved to get G If

b,n+1(2) -

instead, the expression for the service time density b(t),
or its samples are available, then the bilinear sequence

of b(t) can be used to obtain G The bilinear

b,n+l(z)'
sequence of the service time density can be obtained from
the function or its samples, by use of the digital filter
methods in chapter 4. For this situation, it is necessary
to express the bilinear transform Gb,n+l(2) as a function

of the bilinear transform of the service time density,

i.e., as a function of Bb(z).

To do this, one proceeds as follows. The bilinear

transform of the service time probability density function

-1

i 1-z 7) ,

is by definition B, (z) = B gi——:———} . To find G
b L 1+z

must be expressed in the form

b,n+l(z)

in terms of Bb(z), Egn (16)

-1
) (a[l—(Fn(z)) ]1 5 T (2)] (17)
(z)=Bg | -1 J b-n
[a+(E (2) 7]

Gb,n+l

i ..1in the brackets of
Using Eqns(17) and (16) , the terms within

o i sultin
BLL-J in these equations are equated. Solving the resutting

-161-



-1

equation, (Fn(zl) is

1 -Do-2ay27t -1
(¢_(2))7" = 1z 10z 06, (2)

(A+2a) +hz to (1421
(l+z )Gb,n(z)
The bilinear transform of the busy period probability

density function, at the (n+l)th iteration, is then given

by

It

Gb,n+l(z) Bb[Fn(zﬂ

o 0] —k
L by (k) [F, (2) (19)
oo b n (211

where bb(k) is the bilinear sequence of the service time
density. Because the elements of the bilinear sequence

bb(k) tend toward zero for large k, the summation in Egn (19)
can be truncated after say, M terms. The iterations are

then performed on the bilinear sequence of the busy period
density, instead of its Lapilace transform, by use of

Egns (19) and (18).

Replacing s by y(l—z_l) in Egqn (15) and proceeding

in a similar manner, the Poisson transform of the busy

Period density is obtained from the Poisson transform of

the service time density. The Poisson transform of the

busy period density at the (n+l)th iteration is therefore

- -k
(20)
G (z) = B _[Fy(2)] = kiobp(k)[Fn(z)j
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where

-1
[Fn(z)] = - % +

>|=<
N
+
D]
N

The seguence bp(k) is the Poisson sequence of the service
time density b(t). For the M|G|1 queue,bp(k) corresponds
to the probability of k customers arriving in a service
period when y=A. By use of Egn (20), the Poisson transform
of the busy period density can be computed, iteratively,
from the Poisson sequence of the service time probability

density.

5.4.2 COMPUTATIONAL PROCEDURE

The busy period distribution is computed iteratively
by use of Eqns (19) and (20). Because of the unigueness
of the bilinear and Poisson sequences of functions, when
these sequences converge and the inverse bilinear and

Poisson transforms obtained, the result is the busy

period density.

For practical purposes, the cumulative distribution

function is more useful than the density function. It is

easier to compute the survivor function (complementary

cumulative distribution) of the busy period. This is

given by h(t) = 1-G(t) where G(t) is the cumulative

distribution function corresponding to the busy period

t) is
density g(t). The Laplace transform Hp (s), of h(t) 1
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(1-G; (s))
= . The bili
HL(S) S inear and the Poisson sequences

of the survivor function h(t) are obtained from the
Steady—state bilinear and Poisson sequences of the busy
period density as follows: Let gb(k) and gp(k) be the
steady-state bilinear and Poisson sequences of the busy
period density g(t), and hb(k) and hp(k) those of the
function h(t), respectively. The sequences hb(k) and
hp(k) can be obtained by passing the sequences {l—gb(o),

-9, (1), =9, (2) .- }oand  {1-g (o), -g,(1), -9 (2) ...}

P
-1
through digital filters with transfer functions iliz—:%—
a(l-z 7)

and ———L——T— , respectively.

y(l-z 7)
To compute the bilinear and Poisson sequences gy n+l(k)

and g (k) using Eqns (19) and (20), the FFT algorithm

p,n+1
is used. Using Egns (18) and (19) and then replacing 2z

by exp (] Z%E), the DFT of the bilinear sequence gb,n+l(k)

is, after using De Moivre's theorem

o] k .
z bb(k)rn,m exp(jken,m)

. 2Tm
] k=0

Gy n4y LexP O

= y = ee., L1
= @n‘i‘l,m + jOn+l’ml m=0,1, ’

(21)
where
2 2 %
+ d
_ Cn,m n,m
T'n,m 2 2
4 e + £
n,m n,mn
— d - fn m’1
0 = tan 1 —g4mj—tan t;“LiJ
n,m Cn,m n,m



= = - 2Tm
fn,n1 (-9, plsin(=— I, )-ch'm[l+cos —Em ]

_ 2Tm
en,m A(1 @n’m)cos(—If)+(2a+A~A@n'm)-A0n’msin(g%m)

dn,m = —(2u+X¢ )s1n(gﬂﬁ)+k0 [l+cos(2£m)]

Caym = (2ath0y Vs BE o, otto, sin (2]
.2Tm

®n,m ~ Re {Gb,n [eXp(J_E—)]}

o = Im {G Lexp YAl m)]}

n,m b,n

The inverse DFT of Egqn (21) gives the bilinear sequence
of the busy period probability density function at

iteration (n+l).

Replacing z by exp(jg%m) in Eqn (20), the DFT of the

Poisson sequence of the busy period probability density

function at iteration n+l 1is obtained. The DFT is

.ZTTm' > k ex 'ke ]
Gp’n+l[exp(j—f—ikkiobp(k)rn,m p(J n,m

; m=0,1,...;L-1
= %p41,m  2%n+l,m T

(22)

where
27
2 g2 - 21[@ -9 - —)cos(=~) *
Tn,m {¢n,m + n,m n,m n,U A
%
2T Y1}
21y - 51
On,mSln( )
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D
I
o+
o)
o]
1
Ll
1
o]
=]
>|=<| >I=<
-

— 2T
q)n,m - Re{Gp'n[exp(J—L-m)]}

— .2Tm
Op m = Im{Gp,n[eXP(]"IT)]}

The inverse DFT of Egn (22) gives the Poisson sequence of
the busy period probability density function at the (n+l)th

iteration.

From experience with the computational procedure, it
is necessary to make a correction for the phase en,m in
Egqns(21) and (22). In computing this phase, when its
sign becomes reversed, it is necessary to add the value 7
to the computed value. This is because the phase is

computed modulo 2T.

An idle system, that is, a system whose busy period

is given by go(t) = §(t), can be used as the initial state.

The cumulative distribution of the busy period for the

M| G| 1 queue is computed from the service time probability

density function by the following process.

(i) Compute the bilinear or poisson sequence of the

service time density b(t). This is done by replacing

-1 -1 .
a(l-z ) oy Y(l-z~%) in the expression for
(1+z )

BL(s). The inverse

s by

z-transform of the result
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gives the required sequence. These sequences

can also be computed from b(t) by use of the

methods in Chapter 4.

(ii) Compute the DFT of the bilinear or Poisson sequence

of the busy period density of an idle system,

i.e., the DFT of gb'o(k) (k)=8(k), this is

~9p,0

o _*]

o,m =1, m=0,1,...,L-1.

a

s . .27Tm
(iii) Using Eqn (21) or Eqn (22), compute Gb,n+l[exp(j—L—)1

L2T
or Gp'n+l[¢xp(]—im)l, the bilinear or Poisson

transform of gn+l(t).

(iv) Compute the inverse DFT,to obtain the bilinear

or Poisson sequence,g n+l(k) or gp n+l(k).
1 14

(v) Repeat (iii) - (v) until the sequence gy n+l(k)
14

or (k) converges to gb(k) or gp(k).

gp,n+l

(vi) Compute the bilinear or Poisson sequence of h(t),

the survivor function of the busy period, from

the sequence gb(k) or gp(k). This is conveniently

done by passing the sequences {l—gb(o),—gb(l),

=g (2) se - } and {l-gp(o), -gp(l), —gp(z),...}

through digital filters with transfer functions

-1 ,
(l+z_ ) and ___l_:T—,respectlvely.
a(l=-z 7) y(1-z 7)

(vii) Compute the survivor function h(t) from its

bilinear or Poisson clements by use of the methods

in chapter 4.
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(viii) Obtain the cumulative distribution of the busy

period, i.e., G(t)= 1-h(t),

There is no reason why a similar procedure cannot be
obtazined to solve Egn (13), the Laplace transform of the

pusy period density for the bulk arrival MX|G|1 queue.

An alternative method to this procedure is outlined
in reference 46. In this method, the solution for the
discrete MlGIl queue 1is used to approximate the
solution for the continuous M|G|1 queue. The busy period
distribution is computed by use of the FFT algorithm. The
method computes the approximate results as upper and lower
bounds, which are more useful than having approximate

results of unknown accuracy.

5.4.3 SOLUTION FOR M|M|1 QUEUE

2)

. ' (
Solutions for the M|M|1l and M|D|l queues are available ™.

For the M D| 1 gueue, the service times and busy periods are

discrete functions. The busy period distribution functions

for systems with discrete service times are discussed in

references 46, 88 and 89.

The busy period probability density function for the

2
MMl 1 gueue is given bY( !

o 2m+1
1 A+u)e] L £/T0 £20 (23)
g(t)= 5 exp [- (A+1) szo (m+1) (m?)

!
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The summation corresponds to the modified Bessel function
/ . Th i ' i
Il[zt XUJ e summation is obtained by use of information

in reference 90, p 12. The cumulative distribution of the

pusy period is then

2m+1
_ 1 (2m) .
G(t) éﬁk+u 1) (ot )2][}—exp(—(k+u)t)x
: k
2m
t
I =

It is worth noting that the computation of the exact solution
for the busy period distribution Eqn (24) will present:
computational problems, because of the evaluation of
factorials. To avoid the evaluation of the large number

of factorials, Egn (24) can be rearranged to

G(t) = Z [a -8 (£)], £30 (25)

xl
Dll—‘

where o_ and Bm(t) are obtained from the following set of
m _

recursive relations:

2
L - (emtl) (2mt2) D%, m=0,1,2,. (26)
n+l (m+1) (m+2) Atpt m

where o = 7%%
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(2m+1) (2m+2) /o, 2
mr) () o) B (E) Y

(t) , m=0,1,2,...

m+1 " mt1

(27)

=
=y
®
=
o
™
t
Il

0o (E)

2 -
(t) = [t +w)] ) L2m+2+t(x+u) (t), m=0,1,2,...

Ym+1 (2m+1) 2m+2 2mtt (At Ym

(28)

where Y, (t) exp [~ (A+u) t]

If G(t) is computed from Egn (24) or (25), the term
eXP[‘(X+U) t] can cause underflow problems which can result
in errors in the computed G(t). Underflow problems are

most likely to occur for large values of (A+u)t. The
evaluation of factorials in Eqn (24) can result in

overflow problems.

The G(t) computed from Edn (25) partly depends on

i ' roduct
the factor Ym+l(t) in Eqn (28). This factor is a P

of the term

2
[£OH0] exp [~ (A+u) t]
(2m+1) ! (2m+2) :

can have a significant
and another term. The factor Ym+l(t)

large values
value for large values of t and m. put for larg
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of (A+u)t, the term exp[-(A+u)t] can result in underflow

roing the t i
thus ze g erm Y +1(t). This results in an error in

lue of the ;
the valu computed factor 8m+l(t) in Egn(27)andchence in
G(t) in Egn (25). Underflow problems can be avoided
by computing instead, the natural logarithms of vy (t) (which 1is
o
[_(A+U)t1)and the successive Yn(E)'s, through Eqn (28).
The factor ym+l(t) is then obtained by taking the

exponential of the computed logarithm.

5.4.4 ACCURACY OF COMPUTATIONAL PROCEDURE

The busy period lasts for very long periods for high
utilizations. This then means that the busy period
probability density function can be significant for very
large values of t. It was mentioned in chapter 4 that
the inversion of the bilinear and Poisson transforms by
use of the Laguerre polynomial series can suffer from
underflow and overflow problems if the function which is

being computed tends to zero very slowly as t is increased.

These problems can therefore be expected in computing the

busy period for i=1 and p>1l. The chances of these problems

occurring can be minimised by a suitable choice of the

1] \ ively. This
bilinear and Poisson parameters,t and y,respectively

1s at the expense of’possibly, using more bilinear and

- i ions.
Laguerre series elements in the series expansi

The busy period distribution for the M|M|[1 queue was

i lined and the
Computed by the computational procedure outll
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inversion method in Chapter 4,section 4.3.1, for \=1. There
were no computational oroblems encountered in computing the
distribution g(t) by use of this procedure or by use of Egn(25),
for the utilization factor p=0.1. For u=10 and

4=9.999, about 8 bilinear elements of the service time
density resulted in about 30 significant bilinear elements of
the busy period density, using Double Precision *6 arithmetic
with an accuracy of 10 digits. The number of iterations
performed, before the cbnvergence criterion |gb,n+l(o)
gb’n(o)[ 510—9 was satisfied, was about 7. The computed
results for the function G(t) obtained by the computational
procedure and from Egn (25) agreed to about 8 digits. For
the same queue, with same values of A and p , and the same
convergence criterion, and a=1, about 170 bilinear elements
of the service time density were used. The FFT block size
for the bilinear elements of the busy period density was 256.
uracy achieved was

9 iterations were performed and the acc

about 8 digits.

Graph 1 is a plot of the computed busy period function

for both values of w. Also plotted in the same graph

i 5). For
are the results from the exact solution EQn (25)

utilization factor p=0.1, the value of the pilinear parameter

©=9.999 results in much fewer significant pilinear elements

of both the service time and the Dusy period densities.

Fewer iterations are also performedu As
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mentioned before, there is a need for experimenting with

several values of the bilinear parameter o

Graph 2 is a plot of the complementary function
corresponding to the busy period distribution for the
M|M|1 queue with A=l and u= %9 . For these values of
A and u, the busy period lasts for several hundreds of
seconds of time. The value of a, the bilinear parameter,
used was 0.1l. The accuracy of the computed results
compared to an evaluation of the solution Egn (25) was at
least 4 digits. 1In Graph 3, the computed busy period
functions for the M|M|1 and M|E,|1 queues are plotted

together for A=l and u=10.

The Poisson elements of the busy period density
converged after a few iterations. The accuracy of the
busy period distribution computed from this sequence was
poor. The poor accuracy was obtained because of the

difficulties in the inversion of the Poisson transform.

The bilinear and Poisson elements can be used to compute

the moments of the busy period distribution. The moments

are obtained by evaluating derivatives of the Laplace

transforms at s=0. This corresponds to the evaluation of

the derivatives of the bilinear and Poisson transforms

at z=1, The moments are obtained by a summation Of

lements weighted,appropriately.

the bilinear and Poisson €

A listing of the progran for computing the busy period

, . i 3.2.
distribution for the M|G|1 queue 1S in Appendix
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5.5 NUMBER SERVED IN THE BUSY PERIOD  OF THE M|G|1 QUEUE

The distribution of the number served in the busy
period 1is also important in performance evaluation of
computer communication systems. Let f(k) and F(z) be
the probability density function of the number served in
the busy period and its z-transform,respectively. F(z)

2)

is given by

Flz) = 2 W[F()] = 2 " B [N (1-F(2))] (30)

where V(z) is the z-transform of the sequence v (k) which
is the probability of k arrivals in a service period. This
sequence v(k), corresponds to the Poisson seguence of the

service time probability density function.
To compute the discrete probability density £f(k), the
following equation is used

1 -1

F(z) =z v(o) + 2 v (k)R (2) (31)

o8

k=1

where

i me
After expanding both sides of EQn (31) and matching sa

1

= Furthermore
powers of z —, it can Dbe sho (1)=v (o). y

wn that £

2) pees
it can be shown that f(kls for k>1 depends on £(1), £(2)yeeers

The probability of k arrivals

f(k-1) and the sequence v (k) -
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in a service period, v(k), is known. Thus f£(k), the
14

probability of k customers being served in the busy period
14

can be computed from the sequences r(n,m) and v(k) by use

of the equation

-
v(o), n =1
£(n) =<
n
L v(i) r(i,n-1), n32
k.J"_=l
(32)
The elements r(m,n) are computed recursively from the
equation
r
O, n<m; n,m < O
r(m,n)= 4 f(n), m=1 and n=1,2,...
n-1
s r(l,i)r(m-1,n-1), nzm>1
i=1 (33)
.

The process of computing the elements r(m,n) must be

combined with that of computing £(n). This is because the

value of r(i,n-1) in Egnh (32) which must be evaluated from

Eqn (33) depends on the values of the elements £(1), £(2),.--y

£(n-1).
the sequence f(n) for the M|M|1

Exact solutions of

2
and M|D|1 queues are available( ) For the M[M[1 queue,

the probability of having n customers served in the busy
Period is given by
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fny = 2R72) ¢ " (L4 120
nl(n-1)!]

’ n:l,2,.,, (34)

For the M|D|1 queue f(n) is obtained from

f(n) = exp (-np), n=1,2,3,... (35)

The evaluation of these two expressions Eqns (34) and (35)
directly can result in overflow and underflow problems.

To avoid these problems, these expressions must be
rearranged. For the M|M|1l queue, f(n) Eqn (34) is computed

recursively from the equation

(1 _
I'_:E 7 n_l
£(n) =
20(2n=-3) £ (n-1), n=2,3,4,... (36)
L (l+p) n

For the M|D|1 queue, f(n) Eqn (35) is computed recursively

from

£ (1’1) =<

n=2,3,..- (37)

i Eqns (32) and (33),
Using the computatlonal procedure q

es on the
f(n) was Computed for the MlMIl and MID’]. gueu
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1cL 1904 computer, using double precision arithmetic with a

(82)

significance of 20 digits - The computed results were

compared with the exact solutions from Egns (36) and (37),
for A=1 and utilization factors in the range 0.1 to 0.9.
The results from the computational procedure were accurate

up to 17 digits.
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5.6 CONCLUSIONS AND APPLICATION TO ANALYSIS OF COMPUTER

COMMUNICATION SYSTEMS

(49)

4 L
Skinner's method was used to obtain bounds on the

waiting time distribution for the G|G|1 queue. Bounds
for the M|M|1 and E2|Mll queues were derived. The bounds
approached the exact solution as T approached zero. This
method will find applications wherever there is a need of
evaluating integrals of an n-fold self convolution of a
probability density function. Another example where

Skinner's method can be used, is the system considered in

reference 23.

A transcendental Laplace transform was inverted by use
of the bilinear transform and digital signal processing
techniques. Such an equation can be for instance, the
Laplace transform of the busy period initiated by a
customer whose service time is X secC., which is being
approximated by a diffusion process (see reference 3, p. 105).
It can also be the Laplace transform of the service time
probability

density which is to be used to compute other

functions.

The bilinear and Poisson transforms of the busy period
i tin
density were obtained. An iterative procedure for computi g

11i r and
the busy period distribution by use of the bilinea
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poisson transforms was outlined. This distribution, for the
’

M‘M\l and 1"11134"l queues, was computed by use of the procedure
The accuracy of the computed results, compared to the exact
solution, was good especially for low utilization factors

The busy period is important in the study of computer

communication systems with priority(3'l8"2l,60) .

60 .
¢ )', the interruption of

In

time-sharing computer systems
users to perform maintenance and system functions can
create problems to the users, e.g., the loss of files and
the incomplete execution of programs. Therefore information
concerning the occurrence and the length of the busy and
idle periods can pe used to schedule system maintenance

to minimise these interferences.

(6,22)

Stored—program—control telephone systems and

integrated digital voice-data systems in store-and-forward

networks(l8_21) operate on a priority basis. The real-time

nessages (e.g., speech, O terminal users) have priority

over the non-real-time messages (e.g., batch jobs or data

messages). The busy period distribution then provides useful

performance measures 1ike link utilization, and some

percentile performance specifications. The latter cannot

be obtained without the knowledge of the detailed busy

period distribution.

The solution of the busy period distribution enables
i - -first-served

the waiting time distribution for the first-come firs

st—come—first—served (LCFS)

2
(FCFs) M|G|1 queue( ) and the 1la
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MlGll queue(3’p'119) to be computed.

This computational
method will also enable the waiting time distribution for
the head-of-the-line priority (HDL) queue(3’ pp.113-123)

to be computed.

The distribution for the number served in the busy
period was computed by use of a recurrence relation. For
the cases tried, the accuracy of the computed results was
only a few digits poorer than the inherent accuracy of the
computer used. This is sufficient for most practical

purposes.
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CHAPTER 6

LINK COST EVALUATION IN THE PILOT

PACKET SWITCHED NETWORKS

6.1 INTRODUCTION

An estimate of the delay a packet would experience if
it were assigned to a particular link by a node of the
pilot Packet Switched Network (PPSN) is obtained. A link
is the set of lines which join a particular pair of nodes.
Before a node can assign packets to links, it must have
information about the delay the packets will experience
through each link. This information is stored in the Cost
Matrix of each node and it is updated at regular intervals.

The node assigns packets to minimum-delay links.

Fig. 1 illustrates the processes performed after a
packet has been assigned to a link. After being allocated
for transmission on a particular link, a packet for output
from a PPSN node passes to the Link Controller process for
the selected link. The Link Controller selects one of the

lines of the 1link for transmission of the packet and passes

the packet to the appropriate Line Handler process. The

Link Controller selects the line having minimum delay. The

Line Handler process in turn, passes the packet to the HDLC

(High-Level Data Link Ccontroller) Line Unit responsible

for the chosen line. At each stage, the packet must gueue

for service, if there are packets ahead of it.

Each node calculates an estimate of the delay through

An interval of 5s 1is used

each link at regular intervals.

in the PPSN.
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one method of estimating this delay has been described
in reference 70. In this method, only the delay through
the Line Units is used to evaluate the link delay. Ten
samples of the Line Unit's queue lengths are taken during
the 5s interval and an average queue length obtained for
each Line Unit. These averages, together with the line
speeds, are used in a formula to produce an estimate of

the 1link delay. The link delay estimates obtained are

then used in routing decisions.

only the Line Unit queue lengths are taken into
account in this evaluation; the Link Controller and Line
Handler gueues are ignored. This results in the estimate
of the link delay being less accurate than could be
obtained by using both the Link Controller and the Line
Unit gqueue lengths in forming the estimate. This chapter

presents a method for estimating the link delay, which

takes into account both the Link Controller and Line Unit

queue lengths.
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6.2 DELAY THROUGH LINE UNIT i

The operation of the Link Controller is assumed to
pe as follows. At time instant n, it removes a packet
(provided there is at least one) from its buffer and
allocates this packet to the Line Unit offering minimum
delay (calculated from the Line Unit queue length and
line speed). If two or more Line Units offer the minimum
delay, an allocation is made randomly, to one of these

Line Units. Other assumptions used are:

(i) The Link Controller service time is very much
smaller than that of the Line Units,thus it is

ignored in the derivation of an estimate of the

link delay.

(ii) All packets are of equal length.

(iii) The Line Handler queue and the time to execute

the Line Handler process can be neglected.

Let di(n) be the delay a packet to be allocated to

the Line Units, at instant n, would experience through

k Controller allocates a packet to

(n). The delay is

Line Unit i. The Lin
the Line Unit having minimum delay d;
given by

s
2 (i its) (1)
d, (n)= -Inax(o,qi(n)—l)+wi(n)+ 5 (time units

m'm
-
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where d; (n) = number of packets in the buffer of Line

Unit i, plus the one in transmission, just

prior to time instant n.

wi(_n)_ = number of time units,at instant n, required
for the completion of the transmission of

the packet being transmitted by line 1.
S . = gpeed of line iih bits per second.

Sq = base speed in bits per second.

A time unit is the reciprocal of the base speed.

Egn (1) can pe understood as follows. A packet
allocated to Line Unit i at instant n, will find max(O,qi(n)—l)
packets queueing ahead of it and one in transmission , if
any. The packets gueued up will require a service time

s
of (Agg)max [O,qi(n)—l] time units. The packet in transmission

i
will still have wj (n) time units to complete transmission.
s

o
The allocated packet will wait for (;)max[o’qi(n
i

Its transmis

)—lj +w.l(n)

time units before service. sion (or service)

s

time is (59) , thus the total dela
i

given by Egn (1). By simp

v through Line Unit 1 1is

1ification of Eqn (1), the delay

is obtained as

> i its) (2)
di(n) = —S-C'f max[l,qi(n)jﬂﬂi (n) (time unl

- ler at
Suppose a packet arrives 4t the Link control

in the Link controller puffer.

instant n and finds 2 (n) PaCketS
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as long as the Link Controller buffer contains packets,
one packet is allocated to a Line Unit at each instant.
It is assumed that the Line Unit buffers have unlimited
capacity, SO that this is possible. The packet arriving
at time instant n will then be allocated to a Line Unit
at instant n+%(n). The delay it will experience through
Line Unit 1 is thus given by
2 (n)

S
a, (n#2 () )= 2maxlyay ]+ 2 - ay i) Jr ()= (0 L()=0,1,2,- -
i m=0 t

(3)

where ai(n) is the number (0 or 1) of packets allocated

to Line Unit i Jjust after instant n.

Eqn (3) gives the delay through Line Unit i. To

include the effect of the Link Controller queue, an

expression is needed for ci{n), the delay experienced by

a packet which arrives at the Link Controller at time

instant n.
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6.3 ESTIMATE OF THE LINK DELAY

9 (n) is the number of packets in the Link Controller

t instant n. .
puffer a FJ (n), the delay a packet arriving
at instant n experiences through the Link Controller and

through Line Unit j is then given by

Fj (n) = %(n) + dj(n+2(n)) (time units) (4)

This i1s because one packet is allocated to a Line Unit at
each instant, as long as the Link Controller buffer contains
packets. The packet arriving at instant n thus waits 2 (n)
time units in the Link Controller buffer plus dj (n+2 (n))

time units in the buffer of Line Unit j.

Tt is assumed that the Link Controller allocates packets

to the Line Units by comparing the delays di(‘n) , and it
allocates a packet to the Line Unit having minimum delay.

This selection strategy will approximately equalise the

delays through the Line Units. Thus c(n), the delay

experienced by a packet which arrives at the Link Controller

at time n, 1is

i 5
c(n) = F.(n), for all the j's (5)

Using Eqns(5), (4) and (3), the delay c(n) becomes

S L(n) (n+m) }Hw (n)
c(n)= -5—9{1max(l,qj (n) HmEO as ]
5 =

(6)
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Eqn (6) La. (n+ ]
In Eg ' J(n ml is the total number of packets
allocated to Line Unit j during the interval n to n+¢ (n)

To a close approximation, this can be replaced by 2(n)p. (n)
2 4

the product of the total number of packets in the Link
controller at time n and the proportion of packets sent

via Link Unit j. Thus Egn (6) becomes

s
~ 9
c(n) = Sj{max(.l,qj(n)).+Hn).pj(n)}+ wj(,n) (7)
pj(n) in this expression can be eliminated by the following

steps:

(i) Equate the right hand side of Eqn (7) to the

same expression, but with j replaced by i (see

Eqn (5)).

(ii) Manipulate to get an equation with pi(n) on one

side.
ate the result to 1

(iii) Sum for all i's and equ

(p; (n)'s are proportions).

(iv) Rearrange to obtain pj(n).

. : 7).
(v) Substitute the expression for pj(n)lntOEqn (7)

The resulting expression 18

M i) MO8y 1;:4 s,w; ()
1+ —Q,(l) .zlmaX(l,qi(n))- —""‘g(n) j_:z}-_]_ SO ) I __.-————-SO
n 1=
o5 (m)= —
S
= max(l,qj(n))



gshere M is the total number of Line Units,

gsubstitution of this expression into Eqn(7) gives
’

after simplification,

M M s.w, (n)
2 (n)+ I max(l,q,(n))+ 5 —=
i=1 * i=1 e
c(n)= M s (8)
y X
i=1 %o

For a packet arriving at the Link Controller at instant n,
and finding & (n) packets already in the Link Controller

queue, Egn (8) provides an estimate of the delay it would

experience.
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c.4 AVERAGE OF THE ESTIMATED DELAY

Let N be the number of time units in each sampling
interval. The delay experienced by a packet arriving at
the Link Controller at the mth instant in the jth sampling
interval is given by C[(j-l)Nﬂnl. This can be averaged
over the sampling interval by summing for m=0,1,...,N-1 and
dividing the result by N. The average estimated delay is

then given hy the following approximation

9)

1 .
M s, jN)+ I Q, (GN) + L
D i=l i=1 o
i=1%0

M M s, W, (3N)
C(IN) = ‘{i( - i }

where L(jN) is the average Link Controller queue length

during the jth sampling interval taken over

N samples.

(§N) is the average queue length for Line Unit i
and it is assumed that

p Nt .
Q; (JN)= z max{l,qiL(]—l)N+m]}
m=0
W.(jN) is the average of the number of time units
£ the

left for completing the transmission O

packet in service 1in Line Unit 1.

The PPSN node does not have information about wj (n).
€ 1 igsion

In this case it can be assumed that the packet 1n transmissl '

X imum number of time

at each time instant, still has the ma
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S
s + Q
.+g, which is (57) bef ‘
units, s s; ore completing transmission.
cing W.(jn) by (z=) i .
geplacing W.(3J Y Si)’ in Egqn (9), the estimated delay
C(jN) 1is then given by

=

i=1

|+

CN) = g~ (LOM+ T Q9 (GN)+v] (10)
z |

Thus the average of the delay estimate can be obtained

by taking N samples and averages of
(i) Link Controller queue length, and
(ii) Line Unit gueue lengths,

and using these together with line speeds in Eqn (10) .
The link delay estimate which ignores the Link Controller

queue is given by(‘70)
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6.5 SIMULATION AND NUMERICAL EXAMPLES

rTable 1 shows a simulation of the Link Controller/Line
Units process,to determine the delay Fjgn, Eqn
For this simulation, line speed ratios gg =12 2 =238
and — = 4 and initial conditions g, (1) i = 3,
q3(l) =5, (1) = 5 are assumed. The initial values of
the variables wi(l) are assumed to be equal to the values
of the respective line speed ratios. dihn indicates the
delay obtained by use of Eqn (2). The table shows that a
packet arriving at instant n=1,to find &(1)=5 and the above
initial conditions,will experience a total delay of 36 time
units. The delay obtained by use of the derived equation

(8) is 37.1 time units. Using Eqn (11) which ignores the

Link Controller queue, the delay 1is 26.2 time units.

S

Table 2 is a simulation for 1ine speed ratios EI =9,

s
= 7, and O - 5 and initial values for 4y

2 S3
belng ql(l)=2, q2(1)=3r q3(l)=51 wl(l)zsl W2(l)=2 and

n

o
s

(1) and wi(l)

wy(l)=1. The +able shows that 2 packet arriving at instant

n=1,and finding the above initial conditions and 2(1)=9

packets in the Link controller queue,will experience @

th
total delay of 41 time units- py use of EdR (8), the

i imistic
total delay is 44.1 time units. Using the less optiMt

The delay obtained

Eqn (10), the delay is 48-° ¢ime units.

by use of the equation which 1gnore

queue is 28.3 time units.
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From the examples given, Eqn (10) does provid

| e a
reasonable estimate of the delay compared to tp

e delay
(n), while Egn (11) gi i
F]( ), glves an underestimate of the
delay. This algorithm for the estimation of the Link C
in ost
was incorporated into the PPSN, with minor modificati
ions

to take into account the limited buffer capacities of

the Line Units.
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CHAPTER 7

CONCLUSION
S AND SUGGESTIONS FOR FURTH
ER RESEAR
CH

;.1 CONCLUSTONS

Digital si
g ignal processing methods we
| re used i
_1ution of some . in the
queuelng problems which oft
en arise in

the analysi
ysis of computer communication
systems

. | . T e
. f d t
y i i i

roc i i
P essing techniques were presented

Bilinear i |
- and Poilisson t+ransforms were used in the

solutio
n of several queueing problems. The Poisson

transform i
interrelates the various distributions for the MlG\l

queue. i
This transform was used in the analysis of this

queue. ;
The Pollaczek-Khinchin transform equation for

ber i n .LS u u i

digital filter.

The bili ‘
bilinear and Poisson transform,sequences were

e S Se 1 i ' .

transforms enabled digital

tim .
e probability functions. The

s to be applied

m was approximately

signal -
processing technique in queue analysis.

A me :
thod in which the Laplace transfor

ransformation was presented.

rted by use of the pilinear t

ting the waitin

g time distribution

The
method was used in compu
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for the MlG\h queue. A systematic procedure for the
inversion of the Laplace transform by use of the bilin
ear

and Poisson transforms was outlined. The procedure w
as

used in the computation of the bilinear sequence of the

saiting time distribution for the G|G|1 queue

The inversion of Laplace transformsby use of the
pilinear and Poisson transforms requires the ability to
compute the bilinear and Poisson sequences from
continuous-time probability functions and these
functions from the sequences. Efficient methods for

computing the sequences from the continuous-time functions

and vice-versa were developed.

The bilinear transform was used in the inversion of

a transcendental Laplace transform expression. Expressions

for the bilinear and Poisson transforms of the busy period

distribution for the M|G|1 queue were derived. From these

transforms, a procedure for the computation of the busy

period distribution was obtained.

Skinner's method was used toO obtain upper and lower
i eue.
bounds on the waiting time distripution for the G|G|1 qu
i uyeue
The distribution for the number served in the mliGll g

, relation.
busy period was computed using a recurrence

) to derive
Solutions for some queues,whlch were easy

utational
Or were available, were used to test the comp

0=0.1 and p=0.9. IR

Methods for utilization factors
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practice, communication systems are designed to

operate within these values. Accurate inversion of
transforms is important in the study of computer
communication systems in which the design criteria are
often in the lO_Sprobability range. The accuracy obtained
by many of the computational methods was sufficient for

most practical purposes.

Another problem analysed, though not by use of digital
signal processing methods, was that of estimating the
delay along a link between two nodes. This estimate is
useful in routing decisions in a computer communication
network., An equation for the link delay estimate was
derived. The delay obtained by simulation, was
compared with the delay obtained from the derived equation..
The comparison showed that the equation gave a reasonable

estimate of the link delay.
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7.2 SUGGESTIONS FOR FURTHER RESEARCH

There are several areas in which further research is
necessary. Probahility functions used for this work were
known expressions and the samples obtained from these
functions retained the full accuracy of the computer. In
practice, these functions can be obtained by statistical
observations and data measurements. Samples obtained from
the observations and measurements will often have errors
whose magnitudes are greater than the magnitude of the
inherent error of the computer. An area for further
research is the study of the effects of these errors
on the accuracy of the results computed by use of the

methods presented.

In this research, systems whose exact solutions were
either available or easy to obtain were analysed. Applying
the computational methods to the study of computer systems,
whose exact solutions cannot be obtained easily, is another
area for further research. A few examples are: computer

(3)

systems with priority , frequency-division multiple-~

access (FDMA) and time-division multiple-access (TDMA)

(31,32)

systems(34), and discrete-time queues .

This research should be only a guideline to a
systematic approach to the solution of queueing problems

by use of digital signal processing techniques. There
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are many problems that the computational methods will

not solve directly, e.g. systems considered in references
19, 29, 30 and 33. Further research is therefore necessary
in the analysis of such systems by use of digital signal

processing methods.
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APPENDIX 1

Components of a Digital Filter

A digital filter processes a set of input numbers to
obtain another set of numbers at its output. A linear time
invariant digital filter consists of three basic components.
The first component is a delay unit as shown in Fig. 1l(a).

When a pulse clocks the delay unit, the real number stored

in this delay unit is pushed out and a new number at the input

is stored. The second compcenent is an adder/subtractor

as shown in Fig. 1(b). This component operates instantly
by adding/subtracting the numbers at the inputs. The
sum/difference is obtained at the output. The third
component is a multiplier as shown in Fig. 1(c). For a
linear digital filter these coefficients are fixed numbers.
The input number is multiplied by the coefficient of the

multiplier and the result is obtained instantly at the

output.

By an interconnection of these components, linear
difference equations can be solved. There are several
(73,74)

forms of realisations of difference equations
The methods of realization can be divided into two classes,
recursive and non-recursive. Fox a recursive realization,
the current output sample is a function of past outputs as
well as present and past input samples. For a non-recursive
realization, the current output sample is a function of only

the past and present input samples. Further information

on digital filtering can be obtained from references 72-74.
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Fig. 1 The components of a digital filter

(a) The delay unit

input number X output number
—_— oz >

n-1

clock pulse n

(b) The adder/substractor

input number X, output number
Xn* Yp

input number Yn

(c) The multiplier

input number Xn output number
x_ C
n
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APPENDIX 2

Smith's Algorithm for Summation of Polynomial Series and

their Derivatives

(85)

In this appendix, Smith's algorithm is outlined
and used to obtain the set of quantities Sy(t), Sy_;(t),

1
...,So(t), SN(t),...,Si(t) which are in Chapter 4.

Summing the Polynomial Series

Any set of polynomials which are orthogonal over an
interval of the real line or orthogonal over a discrete
set of real numbers can be shown to satisfy a three-term

recurrence relation-

p,(t) = By
pn(t) = (Bnt—on)pn_l(t) - q)npn_z(t)r n=213r4ro-o

(1)

where pn(t) is a polynomial of degree n and Onr 94 and Bn

are constant coefficients which are usually simple and known.

The recurrence relation Egn(l) can be used to sum a
polynomial series

N
x(t) = L

I, Pyt (2)
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A set of quantities Sm is defined by the equation
S =0 , m>N

S_ = Xm+(8m+lt - O<mgN (3)

In+1 1S m1 ™ P mt 1527
By substituting the recurrence relation Eqn (1) into Egn (2)
and using Egn (2), it can be shown that the series 1is

given simply by

x(t) = B_S, (4)

SO is calculated by successively evaluating the quantities

S SN_l,oaoc

N’

The recurrence relation for the Laguerre polynomial

series is

Lo(t) =1
Ll(t) = 1-t
nL_(£) = (2n-1-t)L_j (€)= (a=1)L 5 (£) (5)

Comparing Egn (5) and Eqn (1), the coefficients Bn,c n and

O for the Laguerre polynomial functions are

1 , n=0
Bn = L
—}1‘ ’ n=l,2,... (6)
-1
o, = —(22 ), n>0 (7)
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0] = ——, n>0 (8)
Substituting these coefficients into Egn (3), the set of
quantities S _(t) for the Laguerre polynomial functions

are obtained, as given in Chapter 4.

Summing the First Derivative of Polynomial Series

The first derivative of the polynomial series Egn (2) is

1
N xnpn(t) (9)

xl(t) =
n

| e B~

By taking the derivative of Eqn (l), a new recurrence
relation involving the derivatives of the polynomials pi(t)

is obtained

pl(t) = Bipy (t)

plit) = (8, t = o )pp_y(E) = o pp ,(E)+6. P, (E),

n=2,3,... (10)

Substitution of Egqn (10) into Egn (9) and using the set of
guantitues Sp in Eqn (3) results in

N

xl(t) = £ s 8p__;(t) (11)
n=1 .

The right-hand side of this equation is similar to Egn (2)
and can be treated as a polynomial series. Another set of
quantities Si are defined by
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Sm =0 , m>N
1 _ 1 1
Sm B Bmsm +(8mt_ om)sm+l—¢m+lsm+2’ OsmsN (12)
giving the series Egn (11) as
1 1
x (t) = B_S (13)

o1l

The derivative of the series at any value of t can be

obtained by calculating successively the set of quantities

1 1 1
SN, SN_l’..., SO’ SN’ SN_l(t),...,Sl-

Using Egns (6)-(8) in Egn (12), the set of gquantities

1
N-1

Laguerre polynomial functions are obtained, as given in

1
SN(t), SN_l(t),..., So(t), S () ,ee., Sl(t) for the

Chapter 4.
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APPENDIX 3

Listing of Programs

3.1 Listing of Program for Computing Bilinear Sequence

of Waiting Time Distribution for G|G|1 Queue.
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C
C Program computes the bilinear transform of the waiting time p.d. f
€ for the G/G/1 queue by use of the complex cepstrum. This method
€ uses the bilinear transforms of the p.d. f. ‘s of service and
C interarrival times in place of the periodic samples. This permits
C digital filtering to be done more efficiently.
C
C
DOUBLE PRECISION A(2048), B(2048), ASUM, UFACT., MU
DOUBLE PRECISION LAMDA, AI, AR
REAL CHECK
DATA NOUT/ 15/
MU=8. 0DO/ 5. ODO
LAMDA=1. ODO
UFACT=LAMDA /MU
=183
M=2#sM
MHALF=N/2
WRITE(NOUT, 10)
10 FARMAT(//, 10X, “The hilinear transform of the walting time p.d. £ fo
#T the G/G/L queue’/. 10X. ‘computed by use of the bilinear transform
#s of the service time and’/, 10X, ‘the interarrival time p.d. £ *s. T
#he cepstrum method is used to extr—~‘/, 10X, ‘act the bilinear transf
#orm of the waiting time p.d. £ . %)
[
C Generate the bilinear transform of the service time p.d. f and store
C this in array B
c
CALL SERPDF (D, M)
o
C Generate the bilinear transform cf the interarrival time p.d. f.
»
CALL ARRPDF (A, N, LAMDA)
C
C Convolve the service time p.d. £ with the interarrival time p.d. f,
C time-reversed i.e. obtain blk)#ai-k). This is done in the fregquency
C domsin by taking the DFT s of ai—k) and b(k) and multiplying
C them element by element. The inverse DFT then gives c{(k) which is
C stored in array A.
C

CALL REFFT(B, M—1, MHALF)

CALL REFFT (A, M=1, NHALF)

A1Y=ACTYRBOL)

ACRY=AC2) %5 (2)

DO 30 KG=2, NHALF

AR=A (2#Ka~1)

AT=A{2%KQ)

AC2#KQ-1)=AR B (2#KA~1) ~AT 3 ( 24KQ)

AC2#RD) =ATER (2HKA— 1) FAREE ( 2#KQ)
30 CONTINUE

CALL RFTINVA, M=1, MAIALF)
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WRITE(NOUT, 32)

32 FORMAT(//, 10X, ‘The sequence c{(k) obtained by convolution‘//)
CALL DQUTPUT (A, N)

Compute sequence Ffrom analytic solution

CALL RESOLN(A, N)
WRITE(NQUT, 33)

33 FORMAT(//, 10X, "c(k) from analytic solution’//)
CALL QUTPUT (A, N)

Subroutine LHSIDE generates the sequence whose z—transform is
H-{all-231/C01+231)/W{all~-231/01+z217

CALL LHSIDE(A, N
Get complex cepstrum af afik)

CALL REFFT{A, M—1, NHALF)
CAaLL LOGARR (A, N, CHECK)
WRITE (NOUT, 35)CHECK
35 FORMAT(//,8X, "Value af CHECK’,F20 &/)
CALL RFTINV (A, M=1, MHALE)

Zero negative time part of cepstrum.
CaLl NULNEG (A, N)
Get minimum phase part.

CALL REFFT (A, M—1, MHALF)

Negate because inverse sequence is required.

DO 70 I=1,MN
T A{I)=-A01)

Obtain the exponential of camplex sequence
Call EXPARR (AL M)
Normalise sequence since for p.d. £ zero freq coeff=}

ASUM=4A(1)
DO 20 I=1,N
F0 ACLY=ACTD) /7 ASUM

Now obtain the inverse DI'T tg get the required p.d. f.

CALL RFTINVOA, M1, MHALF)
WRITE (NOUT, {D0)

100 FORMAT(//, 8X. "Computed bilinear trans of waiting time pdf. '//)
WRITE(MNOUT, 104 7MU

104 FORMATL//, 3%, "MU-the average zervice rate ‘LF25.13/)
WRITE(NOUT, 105)LAMDA

105 FORMAT(//, 8X. "Lamda the average arrival rate ‘', F25. 13/)
WRITE(NGOUT, LO&)IN

106 FORMAT(//,8X. ‘Block size used ¢for this computatian’, I7/)
Colll TUTPUT (s, MDD
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c

=)

T Now compute the bilinear transform of waiting time p.d. £. from
C analytic soclution.
C

) CALL RWAIT (A, N)
WRITE(NOUT, 120) |
0 120 FORMAT(//,8X, ‘Bilinear trans of waiting time from analytic soln’/
CALL QUTPUT (A, M)
STOR
END
" .
C
) C
SUBROUTINE SERPDF(F, M)
DOUBLE PRECISION F{M)
’ MHALF=M/2

F(1)=5 0D0O/3. ODO
F(2)=11. GDO/24. ODO

) DO 10 K=3, MHALF
FOK)=(-1. ODO/3. ODO) ##¢{K~1)
FR)==F (K)

) 10 CONTIMUE
MHP 1=MHALF+1
DO 20 KL=MHP L, M

) 20 F{KL)=0. ODO
RETURN
END
) C
C
C
) SUBRQUTINE ARRPDF (A, M, LAMDA)

DCOUBLE PRECISION a(iM), LAMDA
LO 10 KG=1, N

] 10 A(KQ)=0. 0DD
ACL)=LAMDA/ 2. ODO
AN =LAMDA /2. ODO

) RETURMN
ERD
C
. <
C
SUBRQUTINE RESCLN(B, N)
) DOUBLE PRECISION BN
NHALF=N/Z
DO 10 KWP=3, NHALF
) 10 BKPY=(—1. ODD/3. ODO)YH#&KP

NHP 1 =NHALF+1
DO 20 KT=NHP!L, N

) 20 B{KT)=0D. 0ODO
B(1)=13 0DO/24. ODO
B(2)y=25 0DO/ 144, QDO
) B{M)=5 0DO/ 14 0ODO
RETURN
=D
) C
C
C
) SUBROUTINE RWAITIA, M)

DOUBLE PRECISION Al
DO 10 K=1.0M
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A(K)=O‘75DO*((1.0DO/S.ODO)**(K*l))—O.15DO*((*O.2DO)**(K—1))
CONTINUE

RETURN

END

SUBROUTINE QUTPUT (A, N)
DOUBLE PRECISION A{(N)
Me==
IF(M. GT. 2536)M=255%
WRITE(LIS, 10Y(ALI), I=1,M)
FORMAT(1H , 5F25. 15)
WRITEC(LS, 204N
FORMAT(1HO. 8X, "Last element of the sequence is ‘,F25.15)
RETURN
END

SUBROUTINE LHSIDE(V, M)
DOUBLE PRECISION V, SUM
DIMENSION V(M)

SUBROUTINE GENERATES THE LMS OF H-[1-23/WL1—21

Note that the zero at z=-1 is not introduced

Zero at z=1 is removed the sequence is processed through a digital
filter with fransfer function 1/(1-7)

MMl =M1

MEALF =M/ 2

FIHP 1 =MHALF+1
MHM1=MHALF~1
VD)= Ii1)y=-1. 0DO

DEAL WITH NEGATIVE TIME SAMPLES FIRST

30

SUM=0. ODO

DA 80 I=MHRPI1.M
SUM=SUM+V )
VIT)=5UM

CONTIMUE WITH POSITIVE TIME SAMPLES

70

D3 @0 I=1,MHALF
SUM=GUM+V(T)
VT =5UM

HETURN

END
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SUBROQUTINE LOGARR (A, M. CHECK)

DOUBLE PRECISION A(N), PI,PHZ. PHIPRE, PJ, PTREND, DMAGSQ
REAL THECK

d
¢ COMPUTE LOS OF DOUBLE PRECISION COMPLEX ARBAY
c
CHECK=D. 0
IF(ACL). LE. 1.0D-10)¢9 TO 100
ACLY=DLOG(ACL)
A{2)=DABS(A(2))
IF(A(2). LE. L. OD=-12)00 TO 10O
&(2)=DLOG(A(R))
NHALF=N/2
DO 10 I=2, NHALF
DMAGSA=A(2# I—1) ##2 +tA{ 28T ) #52
IF(DMAGSQ. LE. L. OD-10)60 TO 100
PHZ=D&TANR (A(2HT ), AL2#I~1))
AR5 T~-1)=0. 3DO*DLOC(DMASSQ)
10 A(2%T)=PHZ
c
C MAKE PHASE CONTINUOUS
¢
PI=3 (41392453589793200
FJ=0. ODG
PHZPRE=0, ODO
DO 50 I=2, MrALF
FHZ=a(2%*1)
IF(DABS(PHT—PHIPRE+PJ). LT. PIYCO TO 45
C
C PEAL WITH PH&SE JUMPS EXCEEDING PI
c

IF((PHI-FHIPROHR ) OE PTI50 TO 40
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"¢ PEAL WITH

T S O e AL R s i ST R i S S AR R i i

PJU=PJ+2. ODOxXPI
50 TO 45
c
C BEAL WITH POSITIVE JUMP
C
40 PJ=PJ-2. ODO#P]I
45 CONTINUE
A{2#T)=PHI+PJ
20 PHIPRE=A(Z2%I)
c
¢ REMOVE LINEAR TREMND
C
PHTOT=A{(N)
PIMUL=PHTOT/3. 14157246535
c
c RCUND TO NEAREST INTEGER MULTIPLE OF PI
Cc
NPI=IFIX{ABS(PIMUL)+0O. 5)
MPI=ISIGN(NPI, IFIX(PHTOT))
PO 70 I=2, NHALF
PTREND=DBLE(FILOAT(MPI))
PTREND=FPTREND*DBLE(FLOAT(I~-1))#PI/DBLE(FLOAT (NHALF))
70 A(“%I)=A\7*£)~PTRCND
IF(CHECA. EQ. O. 0G0 TQ 110
100 CHECK=1.0
110 RETURN
END

SUBROUTINE EXPARR (A, M)

DOUBLE PRECISION A&(h), DEXMAG, DRE. DIM
c
C TAKES EXPONENTIAL OF DOUBLE PRECISION COMPLEX ARRAY
c

NHALF=N/2

A(i)zDEXP(A(l))

A(2)=DEXP{A(2

DO 10 [=2 IHALF

DRE= ACDET-1)

DIM=A(2%D)

DEXMAG= uEXPtAnE%le)J

A(28I-1)=DEXMAC*DCCS(DIM)

10 A(2#I1)=DEXMAGEDSIN{DIM)

RETURN

END

SUBROUTINE MULNES (A, M)

DOUBLE FRECISION AR
c
C SETS NEGATIVE TIME SAMPLES (IN TOP END OF ARRAY) TO ZERO
c

NHP 2=l 242

DO 10 D=NHP, N

1O ACT)=0. ODC

ACHRFE =10 =A CRHP D~ 1) 50 550

RETURN

END
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SUBROUTINE REFFT(A, R, N)
DOUBLE PRECISION A;Ai,AE,AB;AQ,AS,A53A7;A8)NR;NI;C.S:X
DOUBLE PRECISION ARG, YN
- DIMENSION A¢2, N)
INTEGER R
CALL RFT1<(A, R, N)
LIMi=N/2
LIMEZ=LIM1-1
Al=A(2, 1)#0. 5DO
- AZ=ALZ N)Y#O. 5D0
A3=A(1, 1) %0, 5DO
A4=A(1, N)#0. 5D0
X=N
ARG=3. 14159246535897932D0 /XN
WR=DCOS(ARG)
WI=—DSIN(ARG)
C=1.0DO
3=0. 00O
DO 1 I=2,L1iMmt
AT=A(1, I)#0. EDO
AL=A(Z 1) #0. 5DO
MMI=N—-[+1
A7=A0L1, NMI) 0. 5D0
A8=ACZ, NMI) %D, 5DO
X=(
C=X#WR-S#WI
S=0#lWR+X W]
AL, I)=AB+AT#C+A21G
A2, 1) =AL-A7#5+A3%(
ALL NMID) =AS-A7¥C ARG
AL, NMI)=-A5-A7 #5+A3 K0
1 CONTINUE
PO 2 I=1,LIM2
N T=N~-I+1
MNMMI=N~I
ACL, NMID=ACL, NMMI)
A2, NMI) =42, MMM
CONTINUE
ACL LIMI+1 =41
A2, LIMI+1 ) =2
AL, 1)=A3+A4
A2, 1)=A3-44
DO 106 I=1,N
AL, I)=A01, 1)#2. 0ODO
00 A2, TH=A(2, 1) 2. 0DO
RETURN
END

nJ

SUBROUTINE RF T LA R, D

DOUBLE PRECISION A, AL, A2, A2, A4, A3, A
DIMENSION ACZ ™)

INTEGER R

N2=a*N

CaLL FRT(A R, M2, 1)

L IMl=pns 2

LIM@=l i+ ]

LIMZ=e -217-



Al=A(2, 1)
A2, 1)=AC1, LIM2)
AZ=A2, LIM2)
DO 1 I=2,LIMI
NMI=N-I+2
A3=A(1, 1)
A4=A(2,1)
AS=A{1, NMI)
AL=A(2, NMI)
AL, I)=(A5+A3)#0. 5D0
AL, I1)=(A4-Ab) #0O. 5D0
AL, NMID)=(A4+A45) %0, 5DD
AL, NMID=(A5-A3)#0. 5D0
1 CONTINUE
DO 2 I=LIM2, LIM3
ACL, I)=A(1, I+1)
ACZ2, I)=A(2, T+1)
CONT INUE
All, NY=A1
A2, N)=AZ
RETURN
END

FJ

SUBROUTINE RFTINV(A, R, M)
DOUBLE PRECISION A,AI»AZ)AQ»A4;A5;Aé;A7;A8;C;S;WR;NI
DOUBLE PRECISION ARG, ¥
DIMENSION A(2, N
INTEGER R
LIMl=N/2
LIM2=_IML1+]
LIM3=N-1
Al=A(1, LIM2)®2. D00
Ad=—-A2, LIM2)Y#2, 0D
Ad=A0L, 1)
Ad=A{2, 1)
DO 1 I=LIM2,LIM3
ACL, T)=AC1, T+1)
A2, IX=A02, 1T+1)
1 CONTINVE
ARG=3. 1415924833897 9232D0/FLOATIN)
WR=DCOS (ARG
WI=-DSIN{ARG)
C=1, QU0
S=0. ODO
DO 2 I1=2,LIM!L
NMI=N—-I+1
AS=A(1, 1)
AS=A(2, 1)
A7=A{1, NMI)
AB=A{Z2, NMI)
AlL, I)=A3+a7
ACE, T)=AL-A8
X=
C=X#WR-S#W]
S=8#WR+X #h
AT NMMIT={AS-A7) «C - {AL+AR) 5 G
A2 MNMIT=0A3-07 ) 830 AR AR ) 10

2 CONT INUE ~218-



ann

100

iF

AlLl, 1)=A3+A4

ACL, N)=A3-A4

A, 1)=A1

A2, N)=—A2

CALL RFT2(A, R, D

DO 100 I=1,N

AL, I)=A{1, 1) #0. 5D0
A2, I)=A(2, 1) ®0. 5DO
RETURN

END

SUBROUTINE RFTZ(A, R

» M)

DOUBLE PRECISION A, AL, A2, A3, A5, A6, A7, AB

DIMENSION A¢2. M)
INTEGER R

LIMI=N/2

Al=A{1, N)

AZ=A(2, N

DO 1 I=1.LIML
MNMI=N-I+1

ACL, NMID=A(L, NMI-1}
A2, NMID=A(2, MI-1)
CONTINUVE

A3=A(Z, 1)

Al2, 1)=4al

AL, LIMI+1)=82
AL LIMI+1)=A3

PO 2 TI=2, LIMl
MMI=N-I1-+2

- AS=A{L1 T A2, NMT)

18]

As=a{2, )AL, NMID)
AV=ACT T +A G2 NIML)
A3=A2. I)+A(1, MNMI)
AlLL, T1=A3

A2, NMIi=-A4

ACL, NMI)Y=A7

ACE, T)y=AB

CONT INUE

Nel=2 %N

CALL FFTA, Ry N2, —1)
RETURM

END

SUBROQUTINE FFT(A, M,

)

M2, MXD)

DOUBLE PRECISION A, X. XN, XLEL, TR, TI, PI, UR, UI, WR, WI, AMXD

DIMENSION & N2)
INTEGER MXD

MXD I8 1 THE DFT IS

N=2 % %M

AMN=N

MY R2=N/E
PMl=N-1

N

o007 f=larivl

OBTAINED. IF

-219-

—1 THE INVERSE DFT IS OBTAINED



B e T e T T IO PO OO SO T OO OO O NN SR PO Nt Lo
i

IF(I. GE. )60 TO 5
. TR=A(2%#J-1)
TI=A(2%J)
Al2RJ-1)I=A(2%I~-1)
' AlZ2EI)=A(2%#])
Al2#I-1)=TR
A(2#I)=TI
(] 5 K=Ny2
6 IF(K.GE. )60 TO 7
ENEY
) K=K/ 2
0 T0O &
PARY N E 3N
) PI=3. 141592653589793:2D0
DO 20 L=1,M
LE=2##L
) LE1=LE/2
XLE1=LE1
UR=1. QDO
. LI=0. QDO
AMXD=MXD
WR=DCOS(PI/XI.ELl)
’ WI=AMXD*#DSIN(PI/XLEL)
paQ 20 J=1,L[F1t
DO 10 I=Jd, N, s
) IP=I+LE1
TR=A(ZRIP-1) #UR-A(IRIP ) Y]
TI=A(2®IP)=#UR+A(2#IP 1) +JI
. A(2RIP-1)=A(2#1-1)-TR
Al2#IPI=A(2%1)-TI
ALREI-1)=A(28]~1)+1IR

) 10 A(2%I1)=A2#1)+T1
X=UR
UR=X#WR-UT*WI

) 20 UI=UI#WR+X%I

IF(MXD. EQ. 1)80 TO 35
XN=1. ODO/FLOAT (N)
) DO 30 I=1,N2
30 ACT)I=ALT)#XN
35 RETURHN
) EiMD
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3.2 Listing of Program for Computing M|G|1 Queue Busy

Period Distribution

For subroutines REFFT and RFTINV , see Appendix 3.1.

The following subroutines were called from the

- 92
Harris 500 Computer Subroutine Library GINOGRAF( ).

OPEN

AXIPOS
AXISCA
AXIDRA
GRAPOL

DEVEND
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PROGRAM COMPUTES RUSY PERIGD PROBABILITY DENSITY FUNCTION FOR
M/G/1 QUEUE BY USE OF AN ITERATIVE METHOD. THIS METHOD BEGINS
WITH BILINEAR TRANSFORM OF SERVICE TIME PDF AND THE BILINEAR
TRANSFORM OF A DELTA FUNCTION AT T=0 (1.E. AN IDLE SYSTEM )
FROM THIS THE BILINEAR TRANSFORM OF BUSY PERIOD PDF FOR N=1, 2,
3s..., IS COMPUTED. THIS IS REPEATED UNTIL THE BILINEAR TRAN-—
SFORM OF BUSY PERIOD PDF CONVERGES. THE INVERSE BILINEAR
TRANSFORM 1S5 THEN COMPUTED BY USE OF SMITH'S ALGORITHM.

* % X ox ok Kk X%

EOR X X
ook & K %k &k ok ok % % %k X

%

ry

%*

5.
*
*
L3
x
X
L
*
x
xx
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%
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*
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*
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X
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~

D000 0N 0

DOUBLE PRECISION B(400), 6T(200), GR{200), 3(2048), GTEMP (2048),
#ER(Z00), MUL T, A, TIME, L, CHECK. TVAL, AKP, UT, DIF, SUM

REAL#S XTR(200), TR(DI00) #6, Sk, 5146

DATA NOUT/ 14/

8=1. 0E-9

S1=4. 0DO

MINTV=4

NT=199

T=DBLE(S1) /DFLAAT (NT - 1)

L=1. 000

MU=10. 0DO

MB=170

UTs=L /MU

A=1. 0DO

M=8

D=2 45 71

MBP=112

NHALF=N/72

WRITE (NOUT, 5)
5 FORMAT(//, 5X, "THE BUSY PERIOD PROBABILITY DENSITY FUNCTION FOR THE
® M/G/1 QUEUEING SYSTEM COMPUTED FROM THE BILINEAR TRANSFORM OF THE
¥/, 5X, "SERVICE TIME PDF‘/120¢1H~))

v
C COMPUTE BILINEAR TRANSFORM FROM LAPLACE TRANSFORM EXPRESSION
C OF SERVICE TIME F.D. F
c
CALL BTSERV(B. A, MU, MB)
WRITE (MOUT, 10)
10 FORMAT(/, 10X, ‘BILINEAR TRANSFORM (OF SERVICE TIME P. D £ //)
CALL OUTPUT(B, MB)
c

GENERATE INITIAL BILIMEAR VRANSFOPM OF BUSY PERIGD P.D.F. AND OBTAIN
-222-
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B

[AS]

OO

OO0

OO0

OO0

OO0

O0O000

] O

ALl IR
{
i

ch

Fay
Il

SCALE AND DRAW AXES FOR ORAPH

GTEMP (13=0. ODO

CALL QPEHN

CALL AXIPOS(1,50. 0,50 0Q,12C. 0, 1)
CALL AXIPQOS(1, 50, O)JL Q, 200, 0.2)
CALL AXISCA(3, NINTV. 0. 0,51, 1)
CALL #XISCA(4, 10.5;].0‘2)

CALL AXILDRACLI, 1. 1)

CALL AXIDRA(-1,-1,2)

NOW DO THE ITERATIONS TO COMPUTE BILINEAR TRANSFORM OF BUSY PERIOD

NITS=0
49 MITS=NITS+]
CHECK=GTEMP (1)

COMPUTE D.F.T. OF BILINEAR TRANSFORM OF BUSY PERIQD P.D.F.

CALL DFTPDF (€. B, A, L, N, MB)
MOVE CONTENTS OF ¢ TO GTEMP TO AVOID TRANSFORMING BACK
CALL MOVE(GTEMP, G, N)
COMPUTE INVERSE D.F.T. 7O OBTAIN BILINEAR TRANSFORM OF BUSY PERIOD

CALL RFTINV(GTEMP, M~1, NHALF)

CHECK FOR CONVERGENCE OF BILINEAR TRANSFORM SEQUENCE OF BUSY PERIOD
PDF

DIF= LHCMN“GTENP(l)
IF(DABS(DIF). GE. 1. OD-B8)60 TOQ 49

COMPUTE BILINEAR TRANSFORM OF BUSY PERIOD CUMMULATIVE DISTRIBUTION
FUNCTION BY PROCESSING SEQUENCE BY A DIGITAL FILTER WITH TRANDFER
FUNCTION (1+1/720/(A01-1/2))

20 CaALL DIGFIL{(GTEMP. N, A)
WRITE (NOUT, 55)

55 FORMAT(//, 10X, "BILINEAR TRANSFORM OF BUSY PERIOD DISTRN’/)
CALL OUTPUT(GTEMP., N)

COMPUTE INVERSE BILINEAR TRANSFORM USING SMITH'S ALGORITHM

DO 60 KEGR=2. NT
TROKGR ) =T#DFLOAT {(KER~1)
TIME=T®# (KGR-1)
CALL SUMDLACGTEMP. N, A, TIME, TVAL)
&0 GT{KGR)I=2Z. ODO*AXDENP (—A%TIME) #TVAL
TR(1)>=0.0C
SUM=0. ODO
DO 70 KP=1,N
AKP=KP
SUM=CUFM+ ( (=1, ODO) ##KP ) #AKP*ETEMP (KP)
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IS GI®!

S NSNe]

[SSIS!

10

10

10

11

co

co

13

14

13

v

O CORNTINUE
ST (1 y=2 ODO#A&SUM
HRIT_\KLUT;lao)u;:ﬁP(l)»wTEHP(N}

D FORMAT(/ /7, 10X, 7187 & NTH ELEMENT QF
#I10D PROBABILITY DENSITY FUNCTIGN /2
WRITE(NGUT, 1024

2 FORMAT(/, 10X, "RILINEAR PARAMETER ALPHA='.F10. 4)
WRITE(NCOUT, 1031

3 FOEMAT//, 1QY, "NUMRER OF BILIMNEAR ELEMENTS USED “, 1I7)
WRITE(NOQUT, 10707

7 FOHVA'{//‘IOX)/TIHE INTERVAL RETWEEN COMPUTED SAMPLES',F15. &/)

WRITENGUT, 110N

O FORMAT(/, 10X, 'BLOCK SI7E OF DFT FOR THIZ ITERATION', I7)
WRITE(NOQUT, 120271 TS

O FORMATOS 10X,
WRITE(NCOUT, 13007, MU

O FORMAT(/. 10X, "UTILISATION FACTOR AND AVERAGE SERVICE TIME’, 2F15. &)
CAaLL COMPLF(ET. MNT)
CALL DATAGROXTR, 6T, NT, JX, 5)
CALL GRAPOL (TR, XTR, JX)

J

YEAR TRANSFORM OF BUSY PER
2/ )

O ITERATIONS PERFORMED . I7)

MPUTE P.D.F. FROM ANALYTIC SOLUTION
CALL BUSYFR(GR, NT, L, MU, T)
MPUTE ERROR BETWEEN ITERATIVE METHOD AND ANALYTIC SOLUTION

DO 135 Ki=1,nNT
S ER(KINI=GRIKII-CT(KI)
WRITE(NOUT., 140
O FORMAT(//, 5X, “COMPUTED BUSY PERIOD’, 18X, 'BUSY PERIOD FROM SOLN’,
#18X, "ERROR “/100(iH-))
DO 1460 KGB=1,nT
WRITE(NOUT, 100)GT(KEB), GR(KER), ER(KGR)
O FORMATI(FES. 15, 10X, F25. 15, 10X, F25. 15)

160 CONTINUE

ENERATE DATA FOR GRAPH: PQOSITION, ALE AND DRAW AXES; AND DRAW GRAPH

SUBRGCUTINE REFDE(G, N, L, MU, T

DOUBLE PRECIZIOGN G{i), Lo U, UT, PROD, SUM. A1, AM, AKGE, AMP {
DOUBLE PRECISION ACICDY, AX, T, A1, AMM, AMMP1
DOURLE PRECIZION Jml SUM2

DOURLE FRECISION AKY

MAX=40

UT=L /MU

A1=DSART (L M)

A{1Y=A1/7 (LM

DO 5 M=1, MAX

AMM=2x {M=-1)+1
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10

30

40

30

AMMP 1 =AMM+1. ODO

AM=M

AMP 1=AM+1. ODO
A(M+1)=AMM*AMMP1*((Al/(L+MU))*%2.0DO)*A(M)/(AM*AMPI)
PO 40 I=2,N

AT=(I-1)#TH(L+MY)
SUM2=(1.0DO—DEXP(*AI))&A(1)/DSGRT(UT)
SUM=0. 0DO

DO 30 M=1, MAX

MT2=Mx2

SUM1=1. ODO

DO 20 K=1,MT2

PROD=1. ODO

KP1=K+1

DO 10 KXX=2, KP1

ARXX=KXX—1

PROD=AI=*PROD/AKXX

SUM1=8UM1+PROD

CONTINUE
SUM=(1.0DO~DEXP(~AI)*SUMI)§A(M+1)+SUN
CONTINUE

SUM=CBUM/DSORT(UT)
G{I)=8UM+8UM2
CONT INUE
G(1)=0.0DO
RETURN

END

SUBROUTINE DATAGRXTR, XT.NT, JX, 5)

DQUBLE PRECISION XT(NT), 51

REAL#6 XTR{NT), 5x&

INTEGER JX

S1=8

JIX=0

X=X+

IF(JX. GT.NTYEO0 TO 30

IFOXTCOIX) L LE. 0. 0DO. R 2T %) LE. S1)60 TO 30
XTROJXI=XT(UX)

&0 TO =20

IF{XT(IX) . LE. O. ODOYXTR(UX) =5

IFOXTCIXD) . 6T, 0. ODO. AND. XT(UX). LT 51)JX=uX -1
IF(UX. GT. NT)YJUX=NT

RETURN

END

SUBRAUTINE RUSYFN(G, N, L, M, T)
DOUBLE PRECISION G(M), L. . SL, 52, AMP 1, AM, BMP 1, BM. T, CON
DOUBLE PRECISION#12 GMPL, 0F# 12, X#12

DOUBLE PRECISION®12 GML. SMPL#12, XB1#12, X00#12
MNTERM=100

DO 30 k=2,

AM=DEART (LEM) / {L+M)

CON=AM#£2. ODO

X=TEDFLOAT (K—{ ) (L 4+M)

GM=DEXP ¢ ~X)

Bi=aM s
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GML=-X

S1=8BM

S2=AM

DO 20 MXX=1, NTERM
MX=MXX-1

AMP1=AN§DFLDAT((Q%MX+1)%(2¥MX+2))%CDN/DFLDAT((MX+1)*(MX+2))
XG1=DFLOAT(2%MX+1)%DFLDAT(E%MX+E)
XG2=(DFLDAT(2*MX+2)+X)/(DFLOAT(Q#MX)+X)
GMPL=2.0DO%DLOG(X)“DLOG(XGl)+GML+DLDG(XGE)
IF(GMPL.LT.&0.0DO)THEN

GEMP 1=DEXP (GMPL )

ELSE

WRITE(1&, 221)

221 FDRMAT(//;IOX;’UNREASONABLE RESULTS! 'ty

sSTOP

ENDIF
BMP1=BM*DFLDAT((2*MX+1)%(2%MX+2))%CON/DFLDAT((MX+1)*(MX+2))+
ZEMP L rAMP 1

BM=BMP 1

GML=GMPL

AM=AMP 1

S1=51+3MP1

20 S52=82+AMP1
30 G(K)I={S2-S1)/DRART(L /M)
= (1)=0. 0DO
WRITE(1&, 40)AMP YL, BpP 1L
40 FORMAT(//, LOX, "AMP1 AND 3MPL Y, 2E25. 10)
RETURN
EMD

SUBROUTINE QUTPUT (A, M)
DOUBLE PRECISION A{n)
M=y
IF (M. GT. 200 M=200
WRITE (L& 10)Y (ACTY, 1, i)
10 FORMAT(SF25. 15)
WRITE(16, 20)A M)
20 FORMAT{//, 10X, "LAST ELEMENT A(N) ., F25 15/)
RETURN
END

SUBROQUTINE MOVELA, B, M)
DOUBLE PRECISION A{N), Z(N)
DO 10 K=1,N

10 A(K)I=B{K)
RETURN
EMD

SUBROUTINE DIGFIL(G, M, &)
DOUBLE PRECISION G{N). QUM A
SUM=0. ODO
Gil)=1.0DO-G( 1)
DO 5 K=2Z. N

9 GlA)=-G (K)
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10

10

10

*#AZ, A3, Ad, AM AN AK, SUMS L M,

DO 10 K=1,N

SUM=GUM+G (K)

G{K)=8UM/A

DO 20 K=2, N
GIN-K+2) =G (N=-K+2) +Q (N-¥+1)
RETURN

END

SUBROUTINE COMPLF (3, N)
DOUBLE PRECISION G{(N)
DO 20 K=1, N

GA)=1. ODO-G(K)

RETURN

END

SUBROUTINE BTSERV (B, AB, A1y, ME
DOUBLE PRECISION B(MB), &3, MU, Al
Al=MU/s (AB+M)

DO 10 K=2, MB

B(K)=A1*2‘ODO%(((AE*NU7/4A8+MU))*%(K~E))*AB/(AB+MU)

B{1)=Al
RETURN
END

SUBROUTINE IBPPDF((Q, &
DOUBLE PRECIGZION G(M}. ari
DO 10 K=1, N

G(K)=0. ODO

AN=0. 3DO

G(1)=1. 0DO

RETURN

END

SUBRCOUTINE DFTPDF{G, B o0 L, Ny i
DOUBLE PRECISIOMN GI{N). 27 "My,

AN=N
PI=3 141592&53589793200
NH=N/2
DO S0 M=2, MH
AM=M-1
ARG=2. ODO#P I #AM/AN
Al1=DCOS{ARG)
A2=DSIN(ARG)
T=3{2%M—1)
=G 2%M)
CNM=(2 ODO®A+_aT—L)ra 1«20 T~1, ODO-SHAD)
DNM=(2 CDO#A+L#T-L)wAZ+L +=%%{ 1 0ODO+«AL)

ENM=L =01, QDO-T)#Al ¢(2 CLORARL-LET Y +L S HAL

FNM=L%{1 0DO~T)#A2—L <Z>¢1 O0O+AL)
AZ=DARS(ENM) ##2. ODO+T 125/ 7MY £ 22 ODO
AG=DATS{CHNM) H#Z. ODO«T A7 50 TMM) 252 000
RIMK=DS3RT { 24 /47)
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GM=DATAN((DNM*ENM*CNM%FNM)/(CNM*ENM+DNM%FNﬂ))
IF(GM. LT. O. ODO)GM=P] +3M
SUMR=0. ODO
SUMI=0. ODO
DO 50 K=1,MM™
AR=K—1
BT=RNK##AK
WR=DCOS(AK*EM)
WI=DSIN(AK®GM)
SBUMR=SUMR+B{K) #WR*BT
SUMI=SGUMI+B(K)#WI*DT

50 CONTINUE
G{2#M—-1)=8UMR
G(2#M)=3UMI

60 CONTINUE
Al1=0. ODO
AZ2=0. 0DO
DO 70 KJ=1, MM
Al=A1+3 (KJ)

70 AZ=A2+ (=1, 0DO) ## (KJ—-1) ) %#B (KJ)
G{l)=Al
G(2)=Aa2
RETURN
EMD

SUBROUTINE SUMDLA(A, N, LAMBDA, T, PDF)

SUBROUTINE USES SMITH'S ALGORITHM TO SUM THE DIFFERENTIATED
LAGUERRE POLYNOMIAL SERIES FOR THE INVERSE BILINEAR TRANSFORM

OO0

DOUBLE PRECISION A{M), PDF, LAMBDA, T, SK, SKP 1, SKP2, SDK, SDKP 1,
#SDKP2, AK, AKP 1, AKP2, Al
SK=0. ODO
SKP1=0. ODO
SKP2=0. ODO
SDK=0. 0DO
SDKP 1=0. 0DO
SDKP2=0. ODO
NM1=N-1
DO 20 K=1, NML
AR=N—K
AKP 1=AK+1. ODO
AKP2=AK+2. ODO
SKP2=SKP 1
SKP 1=8K
Al=2. ODO*AK+1. ODO-2. ODO*LAMBLA®T
SK=( (=1. ODO) ## (N=K)) #¥A(N-K+1)+A1#5KP 1 /AKP 1 ~AKP 1 ¥SKP 2/ AKP 2
SDKP2=5DKP 1
SDKP 1=5DK
A1=2. ODO#AK—1. ODO-2. ODOKLAMBDA®T
SDK=-SK/AK+A L SDKP L/ SK-AK #SDRP 2/ AKP 1
20 CONTIMUE
PDF=5DK
RETURN
END
EOF. .
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