Extracting Prime Protein Targets As Possible Drug Candidates: Machine Learning Evaluation

Abstract

Extracting “high ranking” or “prime protein targets” (PPTs) as potent MRSA drug candidates from a given set of ligands is a key challenge in efficient molecular docking. This study combines protein-versus-ligand matching molecular docking (MD) data extracted from 10 independent molecular docking (MD) evaluations — ADFR, DOCK, Gemdock, Ledock, Plants, Psovina, Quickvina2, smina, vina, and vinaxb to identify top MRSA drug candidates. Twenty-nine active protein targets (APT) from the enhanced DUD-E repository (http://DUD-E.decoys.org) are matched against 1040 ligands using “forward modeling” machine learning for initial “data mining and modeling” (DDM) to extract PPTs and the corresponding high affinity ligands (HALs). K-means clustering (KMC) is then performed on 400 ligands matched against 29 PTs, with each cluster accommodating HALs, and the corresponding PPTs. Performance of KMC is then validated against randomly chosen head, tail, and middle active ligands (ALs). KMC outcomes have been validated against two other clustering methods, namely, Gaussian mixture model (GMM) and density based spatial clustering of applications with noise (DBSCAN). While GMM shows similar results as with KMC, DBSCAN has failed to yield more than one cluster and handle the noise (outliers), thus affirming the choice of KMC or GMM. Databases obtained from ADFR to mine PPTs are then ranked according to the number of the corresponding HAL-PPT combinations (HPC) inside the derived clusters, an approach called “reverse modeling” (RM). From the set of 29 PTs studied, RM predicts high fidelity of 5 PPTs (17%) that bind with 76 out of 400, i.e., 19% ligands leading to a prediction of next-generation MRSA drug candidates: PPT2 (average HPC is 41.1%) is the top choice, followed by PPT14 (average HPC 25.46%), and then PPT15 (average HPC 23.12%). This algorithm can be generically implemented irrespective of pathogenic forms and is particularly effective for sparse data. Graphical Abstract: [Figure not available: see fulltext.]

Publication DOI: https://doi.org/10.1007/s11517-023-02893-0
Divisions: College of Engineering & Physical Sciences
College of Engineering & Physical Sciences > Systems analytics research institute (SARI)
College of Engineering & Physical Sciences > School of Computer Science and Digital Technologies > Applied Mathematics & Data Science
College of Engineering & Physical Sciences > School of Computer Science and Digital Technologies
College of Engineering & Physical Sciences > Engineering for Health
College of Engineering & Physical Sciences > Aston Centre for Artifical Intelligence Research and Application
Additional Information: Funding: Nhat Phuong Do received partial financial support from the Vietnam International Education Development (VIED), Decision No. 76/QD-BGDDT scholarship through the School of Pharmacy, Tra Vinh University, 126 Nguyen Thien Thanh Street, Ward 5, Tra Vinh City, Viet Nam. Copyright © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Uncontrolled Keywords: DBSCAN,DUD-E repository,Data mining,Drug design,Forward modeling,Gaussian mixture model,K-means clustering,Ligands,Machine learning (ML),Molecular docking,Protein targets,Protein–ligand interaction,Reverse modeling,Biomedical Engineering,Computer Science Applications
Publication ISSN: 0140-0118
Last Modified: 11 Nov 2024 08:55
Date Deposited: 15 Aug 2023 15:42
Full Text Link:
Related URLs: https://link.sp ... 517-023-02893-0 (Publisher URL)
http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2023-11
Published Online Date: 2023-08-23
Accepted Date: 2023-07-20
Authors: Chattopadhyay, Subhagata
Do, Nhat Phuong
Flower, Darren R.
Chattopadhyay, Amit K (ORCID Profile 0000-0001-5499-6008)

Download

[img]

Version: Accepted Version

Access Restriction: Restricted to Repository staff only


[img]

Version: Published Version

License: Creative Commons Attribution

| Preview

Export / Share Citation


Statistics

Additional statistics for this record