
Vol.:(0123456789)1 3

Medical & Biological Engineering & Computing 
https://doi.org/10.1007/s11517-023-02893-0

ORIGINAL ARTICLE

Extracting prime protein targets as possible drug candidates: machine 
learning evaluation

Subhagata Chattopadhyay1 · Nhat Phuong Do2 · Darren R. Flower3 · Amit K. Chattopadhyay2 

Received: 23 January 2023 / Accepted: 19 July 2023 
© The Author(s) 2023

Abstract
Extracting “high ranking” or “prime protein targets” (PPTs) as potent MRSA drug candidates from a given set of ligands 
is a key challenge in efficient molecular docking. This study combines protein-versus-ligand matching molecular docking 
(MD) data extracted from 10 independent molecular docking (MD) evaluations — ADFR, DOCK, Gemdock, Ledock, Plants, 
Psovina, Quickvina2, smina, vina, and vinaxb to identify top MRSA drug candidates. Twenty-nine active protein targets 
(APT) from the enhanced DUD-E repository (http:// DUD-E. decoys. org) are matched against 1040 ligands using “forward 
modeling” machine learning for initial “data mining and modeling” (DDM) to extract PPTs and the corresponding high 
affinity ligands (HALs). K-means clustering (KMC) is then performed on 400 ligands matched against 29 PTs, with each 
cluster accommodating HALs, and the corresponding PPTs. Performance of KMC is then validated against randomly cho-
sen head, tail, and middle active ligands (ALs). KMC outcomes have been validated against two other clustering methods, 
namely, Gaussian mixture model (GMM) and density based spatial clustering of applications with noise (DBSCAN). While 
GMM shows similar results as with KMC, DBSCAN has failed to yield more than one cluster and handle the noise (outli-
ers), thus affirming the choice of KMC or GMM. Databases obtained from ADFR to mine PPTs are then ranked according 
to the number of the corresponding HAL-PPT combinations (HPC) inside the derived clusters, an approach called “reverse 
modeling” (RM). From the set of 29 PTs studied, RM predicts high fidelity of 5 PPTs (17%) that bind with 76 out of 400, 
i.e., 19% ligands leading to a prediction of next-generation MRSA drug candidates: PPT2 (average HPC is 41.1%) is the top 
choice, followed by PPT14 (average HPC 25.46%), and then PPT15 (average HPC 23.12%). This algorithm can be generi-
cally implemented irrespective of pathogenic forms and is particularly effective for sparse data.

Keywords Molecular docking · Protein–ligand interaction · Drug design · Ligands · Protein targets · Data mining · Machine 
learning (ML) · K-means clustering · Gaussian mixture model · DBSCAN · DUD-E repository · Forward modeling · 
Reverse modeling

1 Introduction

Drug design is a key aspect of healthcare that relies on accu-
rate identification of biologically active substances from pro-
tein targets (PT) [1]. Ligands (Ls) comprise such biologically 
active substances that control PTs, which are the functional 
biomolecules used in the processes of cellular transduction, 
transformation, and conjugation [2], and hence pharmacoki-
netic response of the active ligands [3]. PTs can be composed 
of ion channels, receptors, enzymes, or porter molecules with 
which drugs-like-ligands bind [2]. Detecting successful L-PT 
combinations, or more specifically high affinity ligands (HALs) 
with prime protein targets (PPTs), is still a challenge as new 
diseases are continuously emerging that require fast responding, 
high efficacious new drugs with lower adverse effects that are 
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budget conducive as well. The present extensively interdiscipli-
nary study combines tools drawn from molecular biology, prob-
abilistic mathematics, and computer science to automate the 
detection of HAL and PPTs from the best ligand–protein com-
binations to identify next-generation MRSA drug candidates.

MRSA is a bacterial infection that is resistant to several 
antibiotics, making it difficult to treat. The development of 
AI-powered drugs has offered new hope in the fight against 
MRSA. Current state of MRSA drugs using artificial intelligence 
(AI): AI-powered drugs have shown great promise in the fight 
against MRSA. AI have been used to identify new compounds 
that can attack MRSA bacteria, and these compounds have been 
tested in clinical trials. One such compound is called LFF571, 
which has shown promising results in treating MRSA infections. 
AI-powered drugs have the potential to revolutionize the way we 
treat MRSA and other antibiotic-resistant infections. By using 
AI to identify new compounds, scientists can develop drugs that 
are more effective and have fewer side effects. AI can also help 
to identify new drug targets, which can lead to the development 
of more targeted therapies.

The present study targets three key areas of MRSA drug 
designing: (i) computational extraction or detection of HAL for 
PTs, (ii) computational extraction of PPT for HALs, and (iii) 
probabilistic prediction of interactions of new PTs and Ls [4]. 
This work primarily focuses on identifying the top PPTs for the 
corresponding HALs. The novelty lies in stockpiling molecular 
docking data from 10 different architecture (ADFR; DOCK; 
Gemdock; Ledock; Plants; Psovina; Quickvina2; smina; vina; 
and vinaxb) that independently analyze different biochemi-
cal pathways, and then combining them using machine learn-
ing, first to dimensionally reduce the key elements and then to 
regress towards probabilistic predictive models.

The study combines information from several machine 
learning (ML) algorithms to identify correct L, PT candidates, 
and combinations of two (popularly called as structure–activ-
ity-relationship or SAR or quantitative structure–activity-rela-
tionship or QSAR) at the outset of a drug design [5]. In SAR, 
from the structural features of the compound, its biological 
activities are predicted. SAR is also able to predict the com-
binatorial strength of the new composite compound bench-
marked on a set of pre-trained compounds whose activities are 
already tested. However, its limitation is noted in L-PT inter-
actions. SAR is unable to predict PT if the Ls are unknown 
[4]. Therefore, efforts have been made to solve this issue with 
L-PT 3-D modeling [6]. This approach is not free of its own 
limitation either. Firstly, L-PT-3D requires knowledge of the 
full 3-D protein structure, which is not always feasible. Sec-
ondly, it relies on an extensive chemical library, and relatively 
heavy computation [4]. To address these issues, researchers 
used a sequence of supervised learning algorithms, known 
as “proteochemometrics,” that outline classifiers that can 
predict Ls and PTs individually and jointly in a combined 
formation [7]. These classifiers are support vector machines 

(SVMs), regressions, artificial neural networks (ANN), fuzzy 
classifications, and so forth as promising predictors for suc-
cessful identification of drug targets [8, 9]. K-means cluster-
ing (KMC) has also been tried in several studies to discover 
candidate proteins and its corresponding high affinity agents, 
particularly in functionality mapping of candidate proteins 
[10]. Given that we have a phenomenological idea as to the 
number of clusters and the cluster centers, K-means is an ideal 
choice for us initially, and then, we validate the performance 
of KMC with two more clustering techniques, Gaussian mix-
ture model (GMM) and density-based spatial clustering of 
applications with noise (DBSCAN).

This study automates the extraction of PPTs for a given 
sample with HALs, initially using data mining and data 
modeling (DDM), called “forward modeling” (Approach I), 
and then using a KMC-based “reverse modeling” approach 
(Approach II) to automate and validate the observations 
from forward modeling. We later validate the performance 
of KMC with GMM and DBSCAN, as mentioned. This 
allows for a statistical estimation within the constraints of 
sparse data, an approach that can substantially reduce the 
time needed to find PPTs, thus substituting rigorous labo-
ratory experiments, and hence in optimizing the resources 
involved with wet-lab experiments.

The next sections illustrate the methodology adopted, dem-
onstration and explanation of the results, and generic imple-
mentations of the methodology in drug development studies.

2  Methodology

In this section, we first explain the composition of the 
DUD-E data (http:// dude. docki ng. org/), and how approaches 
I and II detailed below can be used to analyze these data.

• Approach I: DMM called “forward modeling.” The aim 
is to mine HALs and its corresponding PTs.

• Approach II: K-means clustering as machine learning 
(ML) technique to automate the prediction of PPTs and 
validate the HAL-PT combinatorial models thus obtained 
from the experiments of Approach I (called “reverse 
modeling”). The performance of KMC is further vali-
dated by GMM and DBSCAN clustering methods.

2.1  DUD‑E data

Tier 1 involves docking data from the enhanced DUD-E 
repository (http:// dude. docki ng. org/) using 10 popular 
and easily accessible (open access) docking programs — 
ADFR, DOCK6, Gemdock, Ledock, PLANTS, PSOV-ina, 
QuickVina2, Smina, Autodock Vina, and VinaXB. The 
choice is governed by reported individual success rates, 
e.g., DOCK6 at 73.3% [11], Autodock Vina at 80% [12], 

http://dude.docking.org/
http://dude.docking.org/
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Gemdock at 79% [13], ADFR at 74% [14], Ledock at 75% 
[15], PLANTS 72% [16], PSOVina 63% [17], QuickVina2 
63% [18], Smina more than 90% [19], and VinaXB 46% 
[20]. Tier 2 combines data from all 10 scores using statistical 
(linear and nonlinear) models belonging to four universal-
ity classes (detailed later). Tier 3 is about normalizing VS 
enhancement data from Tier 2 through a novel calibration 
of the individual best score (Smina in our case) against the 
respective probability density functions (PDF); existence of 
Tier 2 PDF points beyond the best individual score defin-
ing the improved docking performance from the algorithm 
in Tier 2. PDF data being non-dimensional, normalization 
is guaranteed and that too without any information loss. A 
recent statistical study from our group [21], structured on the 
ubiquitous consensus scoring (CS) approach, has analyzed 
the same docking data [11–20] to outline a substantially less 
computationally demanding structure to identify top PPT 
candidates, starting from a statistical mechanics-based uni-
versality class approach. Apart from establishing improved 
ligand–protein docking fidelity through this approach, the 
study will also serve as a validity benchmark of the ML-
based present approach. As shown later, the ML approach 
compares favorably with its CS counterpart.

Each DUD-E database (DB) consists of 1040 ligands 
(L) × 29 protein target (PT). Out of 1040, 1000 are decoy 
ligands (DL), i.e., inactive, and 40 are active ligands (AL). 
“Decoys” are therefore discarded, and “actives” are consid-
ered for the study. Each L has its “affinity” towards a cor-
responding PT. Ligand–protein binding (LPB) or docking 
occurs only when the change in the Gibbs free energy of the 
system is “negative” when the system reaches its thermo-
dynamic equilibrium at a constant pressure and tempera-
ture. Therefore, “negative” affinities denote successful LPB/
docking. As the extent of LPB/docking is determined by the 
magnitude of the said negative energy, it can be safely sug-
gested that the magnitude of the negative affinity determines 
the stability of any ligand protein complex (LPC).

Each ligand in a DB is considered “unique,” that is, the 
same ligand (similar affinities to corresponding PTs) never 
recurs in any other DB under consideration.

A representative data matrix is shown in Table 1 below. 
It shows the affinity strengths (cell values) of the first 4 Ls 
corresponding to the 29 PTs in ADFR. Note that affinities are 

“negative” in numbers, indicating attractive potential. Similar 
AL-PT combinations for the remaining 9 DBs are extracted.

2.2  Approach I: data mining and data modeling 
(DDM) — ‘forward Modeling’

The key objective here is to extract HALs from the unlabeled 
cluster data and identify the probabilistically matching PPT 
for successful molecular docking with respect to successful 
drug design.

2.2.1  Data mining steps (carried out for each DB)

A) Identification of HALs and extracting the correspond-
ing PTs based on affinity maxima. Essentially, it is the 
measure/magnitude of HALs.

B) Grouping proximal HAL candidates based on Euclidean 
distance (ED) separation of similar or close to maximum 
affinity within each DB.

C) Finding ligands (Ls) with highest overall affinities by 
calculating the maximum of the mean affinity across all 
PTs and its spread (maximum of the standard deviation 
across PTs. It can be stated that such an L or a group 
of Ls show high affinity towards all PTs and thereby 
accommodate maximum PTs during DOCKING.

D) Finding most receptive PTs that can bind with the maxi-
mum number of HALs, computing column-wise high 
affinities.

E) Tabulating percentages of HALs amongst total ligands.

Details of the observations are mentioned below.

2.2.2  Summary steps of DDM (DB‑wise)

Table 2 shows the HALs, their respective high affinities, 
corresponding PPTs, the (global) maximum of the mean 
affinities of HALs, affinity standard deviation, and percent-
ages of HAL contributions in tabular format for the given 
DB. Maximum of the mean affinities identifies the L with 
the overall highest binding capacity calibrated against the 
dispersion (i.e., standard deviation) of the affinities around 
mean. The highest ranked HALs are marked in blue.

Table 1  Sample of a DB
AL PT1 PT 2 PT 3 PT 4 PT 5 … PT 

26 PT27 PT 
28

PT 
29

1 -6.5 -
11.5 -7.4 -9.1 -6.5 … -6.6 -8.5 -8.5 -7.8

2 -6.1 -
11.3 -7.7 -7.7 -6.2 … -9.5 -7.6 -7.9 -7.6

3 -7.2 -9.9 -8 -8.7 -5.3 … -8.4 -9.3 -10.2 -7.1

4 -6.8 -
10.3 -8.5 -8.9 -6.5 … -8.6 -8.1 -5.2 -11
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HAL1013, 1014, and 1017 (3/40, i.e., 7.5%) have 
affinities close to each other and therefore considered as 
effective Ls. While HAL1013 and HAL1014 show closer 
affinity towards PT27, the HAL 1017 affinity maps against 
PT2. PT27 and PT2 are thus called prime PTs (PPTs). 
HAL1003 and HAL1006 show most overall affinities to 
bind with all PTs. The HPC, mean, and standard deviations 
for the remaining DB are shown below in Tables 3, 4, 5, 
6, 7, 8, 9, 10 and 11.

In the plants DB, HALs show redundancies in the mag-
nitude of affinities. In the final ranking, such redundancies 
are removed.

2.2.3  Summary of DDM

A) HALs (blue font) with “high” affinities to the cor-
responding PTs are obtained DB-wise and shown in 
Tables 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11. Highest affin-

Table 2  ADFR
#HAL Max_af

f #PPT Mean_aff_to_All_PT Std_Dev %

1013 -13.8
27

7.51014 -13.5
1017 -13.3 2
1003 8.3793
1006 7.3273

Table 3  DOCK
#HAL Max_af

f #PPT Mean_aff_to_All_PT Std_Dev %

1012 -78.55 27
5

1014 -77.96
1006 15.8176 62.8857

Table 4  Gemdock
#HAL Max_af

f #PPT Mean_aff_to_All_PT Std_Dev %

1001 -110.98 22 2.5
1013 77.5197
1005 22.9424

Table 5  Ledock
#HAL Max_af

f #PPT Mean_aff_to_All_PT Std_Dev %

1017 -9.86 2 6.7376 2.5
1002 6.7121
1012 1.4763

Table 6  Plants
#HAL Max_af

f #PPT Mean_aff_to_All_PT Std_Dev %

1018 -11.9
14

22.5

1019 -11.9
1020 -11.9 1.7881
1031 -11.9

15
1021 -11.4
1038 -11.4

2
1039 -11.4
1036 -11.3
1037 -11.2
1002 8.2069
1022 8.0414
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ity can be seen in Gemdock (HAL1001, affinity mag-
nitude − 110.98, showing affinity to bind with PPT22). 
Due to its high magnitude, it is an outlier. Discarding 
it will amount to key information loss. Hence, we use 
a machine learning (ML) technique (KMC) to accom-
modate such extremal values on scalar data.

B) DB that is able to provide maximum information on 
HPC is Smina (62.50%), followed by Quickvina2 
(42.5%). Plants (22%) is the third rank holder.

C) AL with the highest overall affinity (mean affinity across 
its values) is 1002.

D) Ligand with the highest overall affinity towards all 29 
target proteins is 1013 (mean 77.51).

E) Ligand with the highest accommodation across all 29 
target proteins is 1006 (standard deviation 62.88).

F) Ligand 1029 is the most versatile as it can bind with 
target proteins 2 (affinity − 11), 14 (affinity − 11), and 
15 (affinity − 11.33).

G) Total number of ligands with high affinity is 76 out of 
400, i.e., 19%. After redundancy check (i.e., eliminating 

ligands with similar affinities), final number of ligands 
with high affinity is 22 out of 400, i.e., 5%. After redun-
dancy check, the relative percentage of HALs against 
the PPTs show as follows — with PPT2 (55%), PPT14 
(19%), PPT15 (4%), PPT27 (18%), and PPT22 (4%). 
Overall, out of 29, only 5 PTs (17%) show high recep-
tiveness towards these ligands. This information is cru-
cial to create the DUD-E data mining and data modeling 
(DDM). After redundancy check, DB that have contrib-
uted in extracting maximum information are ADFR 
(rank1), DOCK (rank2), Gemdock (rank3), Ledock 
(rank4), Plants (rank5), Psovina (rank 6), Quickvina2 
(rank 7), and Vina (rank 8).

H) After max–min normalization, the affinities are shown 
under “Norm_Affinity” column in Table 12 below.

It is evident that the PPTs are PPT2 (Rank 1), PPT 14 and 
PPT27 (Rank 2), and PPT15 and PPT22 (Rank 3) as three inde-
pendent clusters. Ideally, the clustering should affect three big 

Table 7  Psovina #HAL Max_af #PPT Mean_aff_to_All_PT Std_Dev %
f

1029 -11.33 15

10
1016 -11.17

14
1009 -10.96
1014 -11.02 2
1002 7.0345
1022 7.0041
1038 1.9070

Table 8  Quickvina2
#HAL Max_af

f #PPT Mean_aff_to_All_PT Std_Dev %

1019 -12

14

42.5

1020 -12
1018 -11.9
1016 -11.5
1017 -11.5
1039 -11
1021 -11.5

15

1010 -11.3
1009 -11.2
1011 -11.1
1015 -11.1
1023 -11.6
1039 -11.5

2
1038 -11.4
1036 -11.3
1022 -11.2
1014 -11.1 1.7250
1003 8.1310
1002 8.1069
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Table 9  Smina
#HAL Max_af

f #PPT Mean_aff_to_All_PT Std_Dev %

1018 -12
14 62.51019 -12

1020 -12
1029 -11
1009 -11

15

1010 -11
1011 -11
1021 -11
1023 -11
1031 -11
1003 -11

2

1014 -11
1015 -11
1016 -11
1017 -11
1022 -11
1026 -11
1027 -11
1029 -11
1034 -11
1035 -11
1036 -11
1037 -11
1038 -11
1039 -11
1020 1.5699 1.5699

Table 10  Vina
#HAL Max_af

f #PPT Mean_aff_to_All_PT Std_Dev %

1018 -11.9
14

20

1019 -12
1020 -11.7 1.7721
1023 -11.6 15
1037 -11.7

2
1038 -11.6
1039 -11.6
1036 -11.8
1002 8.2655

Table 11  Vinaxb
#HAL Max_af

f #PPT Mean_aff_to_All_PT Std_Dev %

1018 -11.9

14
15

1020 -11.9 1.7861
1017 -11.6
1019 -12
1023 -11.6

15
1031 -11.9
1002 8.3345
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clusters — 2, 14, and 27, as is attempted in ML application 
below. It is important to note that ranking of PPTs need to be 
validated also. Hence, KMC, which is one of the most popular 
clustering techniques, is chosen as an efficient ML technique.

2.2.4  Dependency

It seems that target proteins are “dependent” on each other 
(Pearson’s correlation test = 0.970, p-value < 0.05), i.e., 
mostly linearly correlated (refer to Fig. 1).

Correlation heatmap In Fig. 1, most PTs (indicated by Ts in 
the figure) show positive correlations with values close to 1 
(0.970) as seen in the color trackers (heat map equivalent).

Figure 2 is representative of PTs distributed over a normal 
distribution profile.

Distribution: None of the target proteins have sym-
metrical Gaussian distributions (Shapiro–Wilk test stat 
(W) = 0.560, p value < 0.05, CI = 95%).

Next, three clustering techniques, e.g., KMC, GMM, and 
DBSCAN, are used as the efficient and popular unsupervised 

Table 12  Final set of PPTs obtained based on HALs

HAL Affinit
y

Norm_Affinit
y PPT

1013 -13.8 0.0390

1014 -13.5 0.0328

1012 -78.55 0.6189

1014 -77.96 0.6136

1001 -
110.98

0.9112 22

1017 -13.3 0.0310

2

1017 -9.86 0.0001

1038 -11.4 0.0139

1036 -11.3 0.0130

1037 -11.2 0.0121

1014 -11.02 0.0105

1039 -11.5 0.0148

1014 -11.1 0.0112

1003 -11 0.0103

1037 -11.7 0.0166

1038 -11.6 0.0157

1036 -11.8 0.0175

1016 -11.17 0.0118

14
1009 -10.96 0.0099

1019 -12 0.0193

1018 -11.9 0.0184

1029 -11.33 0.0132 15

27

Fig. 1  Correlation heatmap

Fig. 2  Distribution plot
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machine learning (ML) techniques to cross-validate the 
results, especially the number of clusters obtained and noise 
(outlier) handling through the above-mentioned rigorous 
data mining exercise on HPC.

2.3  Approach II: machine learning (ML) — 
for ‘automation’ and ‘reverse modeling’

The objective here is to test the correctness of manual 
data mining (DDM) results, accommodate the PPT 
outliers (PPT15 and PPT22 in Table  12), and then 
automate the process of predicting possible PPTs for a 
given set of test HALs. For this purpose, ML has been 
considered; more specifically, KMC has been chosen as 
one of the most popular clustering techniques [22–24]. 
From KMC, 3 good clusters (note, as indicated earlier, we 
already expected 3 clusters from max–min normalization) 
are targeted in line with the same number from DDM 
(refer to Table  12). Good clusters are defined as the 
ones with spherical conformation, that do not overlap, 
and have no outliers; i.e., all Ls can be accommodated 
within the clusters. Moreover, in this framework, KMC 
(an unsupervised ML method as the DUD-E data is 
unlabeled) can automate the PPT prediction process with 
reasonable accuracy. As mentioned above, two other 
clustering techniques, such as GMM and DBSCAN, are 
used to validate the output of KMC.

2.3.1  KMC: the steps are given below.

Step 1: Data scaling is done for 40 × 10, i.e., 40 APs each 
from 10 DB under study. Hence, 400 AP L-set is taken as 
the step for data wrangling/preprocessing.

Step 2: Calculating inertia to find the initial number of 
clusters. Essentially, it is the sum of squared error (SSE) 

for each cluster. Hence, the denser the cluster, the smaller 
is the inertia. Because inside the desired cluster data 
points are closest to each other, low values for inertia are 
meaningful.

In Fig.  3, the calculated value of inertia, obtained 
iteratively over 3 clusters, shows up as 494.5 that is 
adequately low. However, across all 3 clusters, the step 
counts are monotonous with not much difference in 
inertia values. Therefore, the initial number of clusters 
is considered to be 5 and the aim is to further iterate 
towards a suitable convergence when all the data points 
are accommodated inside the final (reduced) number of 
clusters. The iterative convergence shown below assumes 
5 initial clusters. Table 4 below shows the convergence 
rate of the clusters against the number of iterations 
performed (Fig. 4).

Fig. 3  Inertia values to predict 
correct number of clusters

Fig. 4  Iterations versus number of clusters. Iteration 0th, 5 clusters 
(0–4) and its corresponding number of Ls (total 400):
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1 320
2 40
0 31
3 8
4 1

Observation: One plus eight, i.e., total 9 data points, 
are considered as the outliers as because in comparison 
to other clusters, its counts are very low. Hence, the aim 
is to accommodate these outliers within their neighboring 
clusters.

Iteration 96th, 4 clusters:

1 320
2 40
0 39
3 1

Observation: 8 earlier outliers are accommodated inside 
the first cluster. The fourth cluster still has one data point and 
is considered as an outlier. Our aim is to accommodate this 
into the neighboring cluster to get compact clusters without 
any outlier, an accepted quality assurance of any good clus-
tering technique.

Iteration 105th, 3 clusters:

1 321 (80.25%)
2 40 (10.00%)
0 39 (09.75%)

Observations: Remaining data points at the fourth cluster 
have been successfully accommodated into cluster 2. After 
this iteration, no further change in the number of clusters and 
corresponding Ls is found.

Summary: A set of 400 × 29 data matrix of “ligands affin-
ity (LA)” (rows) and “active protein target (APT)” (columns) 
can be partitioned efficiently into 3 distinct (un-overlapped) 
spherical clusters without any outlier. Therefore, the quality 
of clustering is good.

Step 3: Centroid calculation (training data): These are 
final centroids as with further iterations, its values are not 
changing anymore (refer to Table 13):

Table 3 shows distinct values such as (− 2.***), (− 0.***), 
and (0.4***) for three clusters (Tables 14 and 15).

Step 4 (Visualization): 3 distinct clusters with centroids 
as black dots in Fig. 5. Here, “0” denotes cluster 1, “1” refers 
to cluster 2, and “2” signifies cluster 3.

It is interesting to see from the centroids thus obtained that 
cluster 2 contains most of the ligands (80.25%), followed by 
cluster 3 (10%) and cluster 1 (9.75%). This observation can be 
logically mapped to the findings from data mining that predict 
“high” affinity ligands with tendency to bind with APT2 (63%), 

Table 13  Centroids based on affinity magnitudes of 400 HALs corresponding to 29 PTs

PT1 PT2 PT3 PT4 PT5 … PT25 PT26 PT27 PT28 PT29

C1 0.4195 0.4167 0.4399 0.4326 0.4417 … 0.3712 0.2873 0.4120 0.2284 0.4381
C2  − 2.8644  − 2.8335  − 2.7851  − 2.8103  − 2.7481 …  − 2.3875  − 2.7718  − 2.1523  − 2.3501  − 2.7525
C3  − 0.5149  − 0.5237  − 0.7641  − 0.6784  − 0.8172 …  − 0.6065 0.4779  − 1.1833 0.5301  − 0.7832

Table 14  Euclidean distances 
of each of the 26 test Ls of test 
data ‘A’ from centroids of each 
cluster

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
CL
1

5.542
8

4.571
2

5.312
7

5.625
3

5.558
0

6.151
1

7.396
1

7.163
1

5.912
5

5.837
3

CL
2

13.99
83

16.43
75

14.00
29

14.43
48

14.57
05

14.43
79

13.07
26

12.03
96

14.17
40

15.63
78

CL
3

5.692
5

7.030
7

5.437
2

5.455
5

5.784
3

6.171
6

6.945
1

6.269
5

6.487
4

7.737
7

L11 L12 L13 L14 L15 L16 L17 L18 L19 L20
CL
1

8.118
0

3.233
6

4.610
7

3.451
6

4.386
4

5.443
4

6.363
9

7.970
1

6.855
5

8.058
7

CL
2

12.06
28

16.60
46

16.97
64

15.01
69

14.96
90

14.94
57

15.40
86

15.54
38

18.31
98

17.18
42

CL
3

7.271
0

7.657
3

8.482
7

5.466
3

5.780
2

7.657
4

6.956
2

8.083
6

9.708
6

9.452
1

L21 L22 L23 L24 L25 L26
CL
1

3.447
9

5.035
9

5.448
9

4.855
7

5.694
6

6.117
5

CL
2

18.38
14

17.60
36

14.86
74

14.30
54

14.77
22

15.32
68

CL
3

9.072
1

8.466
6

7.470
7

6.560
8

7.375
1

7.703
3
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APT14 (19%), and APT27 (18%). Hence, it can be safely con-
cluded that cluster 2 is probabilistically expected to contain 
the maximum number of high affinity ligands (HALs) towards 
APT2. Cluster 3 is the next candidate with the maximum num-
ber of high affinity ligands pointing towards APT14, while clus-
ter 1 data points are high affinity ligands targeted for APT27. 

We can conclude that of the 29 APTs considered, these three are 
the prime protein targets (PPTs). This observation needs to be 
validated by going back to the original test data set, which has 
been performed below (refer to Tables 16, 17 and 18). It should 
be borne in mind that for other L-sets, these PPTs may vary.

Step 5: Validation on test L-sets (A, B, C), i.e., the 
reverse modeling:

Test L-sets have been selected from the given 400 HAL 
DB randomly — first 26 Ls from the “tail” of HAL test data 
(L-set A), second set of 26 Ls from the “middle” portion of 
the HAL test data (L-set B), and third set of 26 Ls are taken 
from the “head” of the HAL test DB (L-set C).

Euclidean distances (ED) of each of the ligands 
from the centroids have been computed. Each ligand is 
clustered (refer to Table 14) based on minimum distance 
(red colored cells) from the centroid. Using maximum 
affinity as the descriptor, HALs are mapped against the 
original data to identify the corresponding PPTs (refer 
to Table 15) and then evaluated for possible PPTs within 
the cluster, as shown in Tables 14 through 16. Table 15 
shows corroborating HPC obtained by clustering (refer 
to Table 16).

Table 15  Mapping HALs to the corresponding PPTs — ‘reverse modeling’
HAL PT1 PT2 PT3 PT4 PT5 PT6 PT7 PT8 PT9 PT10 PT11 PT12 PT13 PT14 PT15 PT16 PT17 PT18 PT19 PT20 PT21 PT22 PT23 PT24 PT25 PT26 PT27 PT28 PT29 Max_affinity
375 -5.8 -10.9 -6.6 -8.3 -5.5 -6.9 -9.3 -9.1 -7.2 -9 -6.3 -7.5 -7.9 -11.5 -11.1 -8.9 -6.1 -7.7 -6.1 -6.5 -6.4 -7.8 -6.1 -7.2 -6.7 -8 -6.4 -7.6 -9.9 -11.5
376 -5.5 -10.9 -5.9 -7.7 -5.6 -6.2 -9.2 -8.5 -6.6 -8 -6.1 -6.9 -7.1 -9.2 -10.7 -7.9 -6.3 -7.8 -5.8 -6.4 -6.4 -8.6 -6 -7.1 -7.3 -6.4 -6.7 -7.4 -9.7 -10.9
377 -5.5 -11 -6.6 -7.5 -5.4 -7.3 -9.5 -8.5 -6.8 -8.2 -6.3 -8.6 -9.3 -11.6 -9.4 -8.5 -6.4 -7.3 -6 -6.8 -6.4 -8.3 -6.2 -7.2 -7.6 -7.6 -7 -7.2 -9.3 -11.6
378 -6.1 -10.6 -6.5 -7.6 -5.8 -7.1 -9.8 -9 -6.9 -7.5 -6.2 -7.5 -8.1 -11.9 -10.6 -7.8 -6.4 -7.5 -5.7 -6.6 -6.6 -7.5 -6.5 -7 -7.6 -7 -7 -7.3 -10.9 -11.9
379 -6.4 -10.7 -6.6 -6.8 -5.6 -6.9 -9.3 -9.3 -6.8 -8.6 -6.7 -7.6 -8.5 -12 -9.5 -8.3 -6.7 -7.4 -5.6 -6.2 -6.4 -8 -6.3 -6.8 -7.2 -7.4 -6.6 -6.9 -11 -12
380 -5.3 -10.8 -6.3 -7.3 -5.6 -6.7 -9.6 -8.4 -6.6 -8.6 -6.4 -7.5 -8.3 -11.9 -11.4 -8.3 -6.7 -7.6 -5.6 -6.4 -6.6 -8.1 -6.4 -6.7 -7.7 -7.5 -6.9 -7.2 -11.5 -11.9
381 -5.9 -10.5 -6.7 -8.1 -5.7 -7.6 -7.1 -9.3 -7.4 -9.4 -6.6 -7.3 -8.3 -9.1 -11.4 -9.2 -6.7 -8 -5.6 -7.2 -6.1 -9.6 -6.3 -7.9 -7.8 -8.3 -6.6 -8 -11.2 -11.4
382 -6.6 -11.2 -6.4 -7.9 -5 -8.4 -7.7 -9.1 -6.1 -9.3 -6.7 -9.9 -10.4 -10.6 -10.4 -9.3 -6.3 -7.9 -5.7 -8.5 -6.4 -8.8 -6.2 -8.1 -7.4 -8.1 -6.8 -9.1 -9.9 -11.2
383 -6.1 -10.4 -5.9 -7.5 -5.9 -8.6 -7.9 -9.1 -5.8 -8.2 -6.5 -10.3 -9.5 -9.5 -11.6 -9.1 -5.6 -7.8 -5.4 -8.6 -6.2 -8 -6.8 -8.3 -6 -7.3 -6.8 -8.5 -10.2 -11.6
384 -5.9 -10.2 -6 -6.7 -5.8 -8.9 -7.9 -9.2 -6.5 -7.3 -6.4 -10.1 -7.2 -9.5 -9.9 -9.2 -5.9 -6.6 -5.7 -8.1 -6.6 -7 -6.2 -9.3 -6.2 -7.5 -7 -9.3 -8.3 -10.2
385 -7.1 -10.1 -6.5 -7.9 -5.7 -8.7 -7.1 -8.1 -7.5 -9 -6.3 -10.1 -8.7 -9.4 -8.9 -9.2 -7 -7.9 -6 -8.6 -6.8 -8.5 -6.5 -9.8 -7.3 -7.8 -6.7 -9.4 -9 -10.1
386 -6.8 -10.6 -5.7 -7.4 -5.8 -7.4 -8 -7.6 -6 -7.7 -6.3 -7.9 -7.3 -10.5 -8.9 -9.4 -5.5 -7 -5.7 -7.4 -6.1 -7.6 -6.4 -7.5 -6 -6.8 -7.1 -8.8 -8.3 -10.6
387 -6.2 -10.6 -5.4 -7 -5.9 -8.1 -9.1 -6 -6.2 -8.2 -6.7 -7.8 -8 -10 -7.4 -9.2 -5.3 -6.8 -5.7 -7.7 -5.6 -7.5 -6.5 -8.1 -5.9 -7.4 -7.2 -8.5 -9.4 -10.6
388 -6.2 -10.4 -5.6 -7 -6.3 -7 -8.7 -8.7 -6.6 -9.1 -6.7 -8.5 -7.5 -10.2 -10.1 -9.3 -5.7 -7.9 -5.9 -7 -6 -8.2 -6.7 -7.9 -6.3 -6.7 -6.8 -7.9 -9.2 -10.4
389 -7.2 -10.9 -5.8 -7.3 -5.7 -7.1 -8.6 -9.3 -6.6 -9.1 -6.6 -8.3 -8.3 -11 -10.9 -9.1 -5.5 -7.8 -5.6 -7 -5.9 -8.6 -6.3 -7.6 -6.2 -7.2 -7.1 -7.2 -7.5 -11
390 -7.4 -9.9 -5.8 -7.8 -5.8 -8.7 -8.4 -5.8 -6.6 -9.2 -6.2 -9.6 -8.1 -10.8 -7.5 -8.8 -5.7 -7.7 -5.7 -8.3 -6.4 -8.1 -6.3 -8 -6.3 -7.1 -6.4 -9 -8.7 -10.8
391 -7.4 -10.4 -5.6 -7.7 -7.5 -6.3 -8.6 -9 -6.6 -9.1 -7.5 -7.1 -7.2 -10.5 -11.9 -8.8 -5.3 -7.7 -7.4 -6.4 -5.8 -8.2 -7 -7.3 -6.6 -6.9 -6.9 -6.7 -8.2 -11.9
392 -7.3 -8.9 -5.8 -8 -7.6 -6.6 -8.5 -8 -6.6 -7.7 -8.7 -6.5 -9.2 -10.7 -9.9 -8.9 -5.4 -7.4 -7.2 -6.2 -6 -7.5 -7.7 -6.9 -6.4 -7.9 -8.7 -6.7 -8.9 -10.7
393 -6.7 -8.4 -5.4 -6.3 -7.4 -7 -7.4 -7.7 -6.5 -6.8 -7.9 -7.9 -7.7 -9.8 -8.4 -9 -5.6 -6.3 -7.2 -6.9 -5.6 -6.9 -7.4 -8 -5.8 -6.2 -7.4 -7.3 -9 -9.8
394 -6.4 -10.8 -5.4 -6.2 -7.7 -6.9 -7.5 -6.7 -6.7 -6.9 -8.9 -8.5 -7.8 -9.6 -9 -6.6 -5.4 -6.4 -7.4 -6.7 -6.2 -7 -7.6 -7.8 -6.5 -6.5 -8.9 -6.9 -9.9 -10.8
395 -5.9 -10.8 -5.8 -6.4 -5.8 -7.4 -7.3 -7.2 -6.6 -7 -6.4 -7.5 -8 -9.8 -8.4 -6.9 -5.8 -6.5 -5.8 -6.9 -6 -7.2 -5.7 -7.2 -6.2 -6.3 -6.3 -7.7 -9.8 -10.8
396 -7.9 -11.3 -5.9 -6.3 -5.4 -6.6 -7.7 -9.4 -6.5 -7 -6.2 -7.2 -8.8 -10.1 -10.9 -6.6 -6 -6.3 -5.6 -6.3 -5.8 -7.2 -6.2 -7.3 -6.6 -6.1 -6.7 -7.5 -9.9 -11.3
397 -7.9 -11.2 -5.7 -7.9 -5.6 -8.5 -7.1 -8.9 -6.4 -8.1 -6.2 -9.6 -8.3 -8.5 -10.2 -6.6 -5.8 -8 -6 -8.3 -6 -8.1 -6.1 -8 -6.2 -7.8 -6.6 -8.8 -9.6 -11.2
398 -6.7 -11.4 -5.6 -7.3 -6.1 -8.1 -8.9 -7.9 -6.4 -7.8 -6.5 -10 -8.5 -10.8 -9.2 -6.8 -5.8 -8 -5.7 -8.2 -6.1 -8.4 -6.1 -8.1 -6.3 -8.1 -6.5 -9.1 -9.1 -11.4
399 -7.7 -11.4 -5.6 -8 -5.7 -8 -8.7 -7.9 -6.5 -8.7 -6.2 -9.2 -8.1 -10.9 -9.1 -6.6 -6 -8.1 -5.1 -8.5 -6 -8.1 -6 -8.9 -6.9 -7.9 -6.1 -8.6 -7.6 -11.4
400 -5.7 -9.5 -5.9 -9 -6 -7.4 -8.9 -8.2 -6.6 -10.3 -5.9 -7.9 -7.8 -10.2 -9.6 -6.6 -6.1 -8.5 -5.2 -7.8 -5.8 -9 -6 -7.2 -6.7 -8.6 -6.6 -8 -9.8 -10.3

Fig. 5  Three distinct clusters with centroids obtained with KMC

Table 16  Validation of 
relationships among HAL test 
data “A” and PPTs based on 
clusters

Test HAL L-set #Sum Cluster % HPC %
A (26 x 29) PPT2 (13), 

PPT14 
(10), 
PPT15 (3)

PPT2 (50%), 
PPT14 
(38.4%),
PPT15 
(11.6%)

374-377, 379, 
380, 383, 384, 
386-400

22 1 84.6

378, 379, 381, 382 4 3 15.4

Table 17  Validation of 
relationships among HAL test 
data “B” and PPTs based on 
clusters

Test HAL L-set #Sum Cluster % HPC %
C (26 x 29) PPT2(8), 

PPT14(10), 
PPT15(7), 
PPT12(1)

PPT2 (31%), 
PPT14 (38%),
PPT15 (27%),
PPT12(2%)

251-254, 256, 
258, 264-276

19 1

255, 257, 259-
263,

7 3
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Other HPC obtained by test data “B” and “C have also 
been corroborated in the similar way.

From the above experiments, we conclude that PPT2 (aver-
age HPC is 41.1%) is the highest ranked protein target as most 
HALs show high affinity towards it. PPT2 is followed by 
PPT14 (average 25.46%), and then PPT15 (average 23.12%).

Prime HAL information: (test set “A” — 26 data 
(375–400) picked from the tail of 400 total ligands; test set 
“B” — 26 data (251–276) picked from the middle portion 
of 400 total ligands; and test set “A” where 26 data (1–26) 
picked from the head of 400 total ligands.

Test set “A”: Ligand numbers 379, 380, 381, and 392 
(15%) have maximum affinity towards PPT 14 (11%) and 
15 (4%), respectively.

Test set “B”: Ligand numbers 259, 260, and 261 (11%) 
have maximum affinity towards PPT 14.

Test set “C”: Ligand numbers 12, 14, and 17 (11%) have 
maximum affinity towards PPTs 27, 27, and 2, respectively.

Therefore, out of 26 × 3 = 72 test ligands, 14% are found 
to be HALs, which gives a clue to the percentage of HALs 
that can be obtained from any number of ligands, which is 
another outcome of this work. For obvious reasons, though, 
the percentage may vary with the dataset.

It is important to note that the above analysis cannot qual-
ify for the ranking of HALs as well as PPTs. It can only pre-
dict the key HPCs numerically and cannot argue for qualita-
tive ranking, which requires domain expertise and in-vitro/
vivo experimental analysis of individual HPCs.

Below, we validate the performance of KMC using two 
other clustering methods, GMM and DBSCAN.

2.3.2  The GMM clustering method

Working principle: It assumes that all data points originate 
from a finite number of Gaussian distributions with unla-
beled/unknown parameters. Hence, it is a probabilistic unsu-
pervised ML model.

Observation: The clusters are plotted similarly as KMC to 
retain visual uniformity (see below figure). The blue colored 
dataset makes cluster 1 (contains 321 datasets), while clusters 
2 and 3 are represented in yellow and green colors, respec-
tively, containing 40 and 39 datasets. The centroid properties 
are also identical to KMC. It is important to note that similar 

to the KMC method, cluster 2 is probabilistically expected 
to contain the maximum number of HALs towards APT2. 
Cluster 3 is the next candidate with the maximum number of 
HALs pointing towards APT14, while cluster 1 data points 
are high affinity ligands targeted for APT27. We can conclude 
that of the 29 APTs considered, these three are the prime 
protein targets (PPTs) as already identified by KMC.

Summary: A set of 400 × 29 data matrix of LA (rows) and 
APT (columns) can be partitioned efficiently into 3 distinct (un-
overlapped) spherical clusters without any outlier using GMM 
method (Fig. 6).

2.3.3  The DBSCAN clustering method

Working principle: The algorithm identifies the group of data 
points based on the assumption that the data points inside the 
respective cluster belong to distinct contiguous density of higher 
priority points that are separated from a distinct contiguous den-
sity of relatively lower priority points. The algorithm can clus-
ter a high-volume dataset having errors and noise within the 
dataset and thus algorithmically superior to KMC and GMM 
algorithms. Moreover, DBSCAN does not require initializa-
tion of cluster number and thus do not come across over and 
under-fitting issues of clustering and faster than that of KMC 
and GMM. Since KMC and GMM may cluster low-priority 

Table 18  Validation of 
relationships among HAL test 
data “C” and PPTs based on 
clusters

Test HAL L-set #Sum Cluste
r

% HPC %

B (26 x 29) PPT2(11), 
PPT15(8), 
PPT25 
(2), 
PPT29(1), 
PPT14 
(2), 
PPT27(2)

PPT2(42.30%), 
PPT15(30.77%
)

23 1 1 3.85

1-22, 24-26 25 2 96.15

Fig. 6  Three distinct clusters with centroids obtained by GMM method
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data points, alongside GMM, we have implemented DBSCAN 
for cross-validation of KMC and GMM-based outputs.

DBSCAN requires two parameters: (i) “epsilon (eps),” the 
least distance between two neighboring points, and (ii) “Min-
Points (Mpt),” the minimum number of data points required to 
construct a cluster. For our data points, “‘Mpt” is calculated as 
2* data dimension, i.e., 2 * 29 = 58, while “eps” is calculated 
from the distance plots (refer to Fig. 7). From the figure, it is 
noted that maximum curvature (least distance) occurs at 96 
(refer to the y-axis), which is our “eps” to run the algorithm.

Observation: With the above “eps” and “‘Mpt” values, 
DBSCAN can yield one cluster but there are 80 outliers. It is 
most probably due to varying density among the data points 
within our high-dimensional data. Hence, we have discarded 
DBSCAN in this work (see Fig. 8).

3  Discussions

Ten years is a typical gestation time for a new drug to hit the 
market. Clinical trials alone take six to seven years on average. 
The average cost towards each successful drug is estimated at 
$2.6 billion [23] (http:// phrma- docs. phrma. org/ sites/ defau lt/ 
files/ pdf/ rd_ broch ure_ 022307. pdf). The failure rate of a new 
drug to reach the market is around 88%, which means only 12% 
of projected drug candidates are eventually marketed as genu-
ine drugs (http:// phrma- docs. phrma. org/ sites/ defau lt/ files/ pdf/ 
rd_ broch ure_ 022307. pdf), notwithstanding such high expense. 

Failure can happen due to various causes starting from a wrong 
choice of PTs and Ls and its combinations at the experimental 
stage in the laboratory to regulatory stringencies and finally 
adoption by the healthcare workers and the end users. Any suc-
cessful new drug must have high efficacy, low dosing, rapid 
actions, and only a few side effects. It should also be able to 
reduce the morbidity load, cost of hospitalization, and curb 
mortality. The key to time and cost conducive delivery is thus 
fast and accurate identification and validation of PPTs and the 
HALs that can efficiently combine with each other to give a 
stable molecule that helps designing an effective drug. This 
is where intelligent, machine learned, molecular docking can 
make the crucial difference between success and failure, and 
certainly in taming cost.

This work is an attempt to detect PPTs for a given sample of 
HALs on 10 L-sets, each obtained from standard DOCKING 
programs. The approach complements a recent benchmark [21] 
where a novel statistical combination, popularly called consen-
sus scoring (CS), was used to predict the PPTs for the same data-
set. The present independent approach provides a validation of 
the outcomes from that work as also in terms of being risk vali-
dated itself from this verification. DDM is done on ALs (decoys 
are discarded), and based on their individual receptiveness to Ls 
or agents, our probabilistic model predicts PPT2 (55%), PPT14 
(19%), PPT27 (18%), PPT15 (4%), and PPT22 (4%) as the most 
promising PTs out of 29 choices; i.e., only 17% of the PTs show 
high receptiveness as prime targets to the agents.

As the DB is unlabeled, KMC has been applied as an ML 
technique to test the efficiency of the above DDM approach. 
KMC can produce 3 distinct clusters. To validate the observa-
tions of DDM, the neighborhood of each ligand in all three test 
samples is measured from the centroids of each cluster. It is 
evident that PPT2 (average possibility of getting stable HPC 
is 41.1%) is the highest ranked among all, as most HALs show 
high affinity towards it; followed by PPT14 (rank-2 average 
25.46%), and then PPT15 (rank-3 average 23.12%), respectively. 
The result is further validated by GMM and found to be similar 
as KMC. Thus, KMC provides a rigorous DDM approach that 
can be automated to generate faster and accurate drug prediction 
routines. Importantly, for pursuing this approach, large training 
samples are not necessary as this is a “sparse classifier.” This 
method can be used in new sets of Ls-PTs from DB to identify 
PPTs towards successful laboratory tasting of real drugs.Fig. 7  The ‘eps’ value obtained by DBSCAN method

Fig. 8  Number of clusters and 
noise for the dataset printed 
on Python 3.11.1 IDLE Shell 
installed on 06/12/2022 in the 
win32 64 bits system

http://phrma-docs.phrma.org/sites/default/files/pdf/rd_brochure_022307.pdf
http://phrma-docs.phrma.org/sites/default/files/pdf/rd_brochure_022307.pdf
http://phrma-docs.phrma.org/sites/default/files/pdf/rd_brochure_022307.pdf
http://phrma-docs.phrma.org/sites/default/files/pdf/rd_brochure_022307.pdf
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3.1  Advantages of the method:

a) The algorithm does not require large training (macro-
supervised learning not needed) of DB due to its effi-
cient redundancy handling algorithm around the maxi-
mum of the mean affinity.

b) DDM and KMC-based ML complement each other in 
terms of accuracy and speed, thus, reducing the time 
taken to discover right PTs/drug candidates.

c) The method does not require complex computations.
d) This method can efficiently handle sparse unlabeled data 

having noise.
e) This method is also cost-efficient as it only requires 

moderate computation, not chemical samples.

3.2  Limitations of the work and hence the targeted 
future research are as follows:

a) This work focuses only on ALs; decoys are discarded. In 
future, similar approaches can be adopted even for the 
decoys to validate whether these agents are genuine decoys.

b) Other clustering techniques (such as fuzzy C-means clus-
tering (FCM) technique) could also be used in identifying 
PPTs, which have overlapping binding features with Ls.
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