Complexity of modulation instability

Abstract

In this Research Letter, using experimental data, we analyze the computational complexity of modulation instability of a light wave propagating in a single-mode optical fiber. We show that computational complexity is an excellent tool which provides an insight into the emergence from noise of modulation-instability-induced coherent structures in the linear stage, before they become fully developed in the temporal traces, and substantially anticipating other statistical methods. Furthermore, computational complexity captures qualitatively the statistical signature of the recurrences in the nonlinear stage of modulation instability too.

Publication DOI: Complexity of modulation instability
Divisions: College of Engineering & Physical Sciences > Aston Institute of Photonics Technology (AIPT)
College of Engineering & Physical Sciences
Funding Information: A.M.P. acknowledges support by the Royal Academy of Engineering through the Research Fellowship Scheme. F.B. acknowledges support by H2020 Marie Skłodowska-Curie Actions (MSCA) (713694). This work was partly supported by the Ministry of Higher Education a
Additional Information: Funding Information: A.M.P. acknowledges support by the Royal Academy of Engineering through the Research Fellowship Scheme. F.B. acknowledges support by H2020 Marie Skłodowska-Curie Actions (MSCA) (713694). This work was partly supported by the Ministry of Higher Education and Research, Hauts de France Council, and European Regional Development Fund (ERDF) through the Contrat de Projets État-Région (CPER WaveTech) and I-SITE through the VERIFICO, FUHNKC, and EXAT projects, and by the CNRS through the IRP Lille-Aston-Ferrara international project on advanced nonlinear effects in optical fibers (LAFONI). Publisher Copyright: © 2022 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Uncontrolled Keywords: General Physics and Astronomy
Publication ISSN: 2643-1564
Last Modified: 21 Jan 2025 08:17
Date Deposited: 01 Aug 2022 10:05
Full Text Link:
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
https://journal ... earch.4.L022057 (Publisher URL)
PURE Output Type: Article
Published Date: 2022-06-13
Accepted Date: 2022-04-19
Authors: Perego, Auro M. (ORCID Profile 0000-0001-5211-6513)
Bessin, Florent (ORCID Profile 0000-0001-8280-6304)
Mussot, Arnaud

Download

[img]

Version: Published Version

License: Creative Commons Attribution

| Preview

Export / Share Citation


Statistics

Additional statistics for this record