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In this Research Letter, using experimental data, we analyze the computational complexity of modulation
instability of a light wave propagating in a single-mode optical fiber. We show that computational complexity

is an excellent tool which provides an insight into the emergence from noise of modulation-instability-induced
coherent structures in the linear stage, before they become fully developed in the temporal traces, and substan-
tially anticipating other statistical methods. Furthermore, computational complexity captures qualitatively the
statistical signature of the recurrences in the nonlinear stage of modulation instability too.
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The nonlinear Schrédinger equation (NLSE) is a paradig-
matic universal model which describes nonlinear dispersive
waves across the most diverse areas of physics including
fluid dynamics [1], plasmas [2], Bose-Einstein condensates,
and nonlinear optics [3]. One of the most significant and
studied phenomena described by the NLSE is definitely the
modulation instability (MI) of its homogeneous solution [4].
MI occurs when a weak periodic perturbation grows ex-
ponentially at the expense of a strong carrier wave. This
phenomenon results in the generation of temporal periodic
patterns and in the birth of spectral symmetrical sidebands on
both sides of the carrier wave frequency that eventually result
in the breakup of the original wave itself. It has been observed
in a variety of physical systems including fluids, plasmas,
Bose-Einstein condensates, and fiber optics. In nonlinear fiber
optics the first experimental observation of MI dates back to
1986 [5]. While MI has been firstly evidenced in the spectral
domain, the direct observation of the associated temporal dy-
namics has remained for a long time a considerable challenge
due to the very fast nature of its oscillations, which in general
exceed the bandwidth of electronic devices. Impressive recent
advancements in measurement techniques such as time lenses,
time microscopy, and time holography [6—8] have finally en-
abled the observation of the complex temporal dynamics of
MI. These recent observations contributed to get a deeper
understanding of the MI phenomena.

The linear stage of MI is characterized by exponential
growth of spectral sidebands which can be mathematically
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described by two linearized coupled differential equations for
the perturbations amplitudes. However, when modulation
mode amplitudes become significant compared with the cen-
tral mode, nonlinear terms in the perturbation equations be-
come relevant: The linearization approximation breaks down,
and a rich and complex dynamics appears. The most striking
feature of the nonlinear stage of MI lies with recurrences asso-
ciated with the Fermi-Pasta-Ulam-Tsingou (FPUT) problem.
This is linked to the energy oscillating back and forth between
the sidebands and the homogeneous mode [9—12]. In the time
domain, soliton- and breather-like coherent structures appear
and dynamically interact. Due to the complexity of the non-
linear stage of MI, advanced characterization tools such as the
autocorrelation function [13—15], the probability distribution
function of the intensity [14,16], and sophisticated concepts
such as the soliton gas theory [17] are required to capture and
describe its complex dynamics. However, the abovementioned
statistical tools do not provide information about the self-
organization process when the embryonic coherent structures
are embedded in noise and cannot yet be macroscopically
detected in the temporal traces. MI is an intrinsically complex
phenomenon where a nontrivial interplay between noise and
nonlinearity shapes the dynamics [18]. Providing a quantita-
tive measure of complexity in a variety of systems is a relevant
research topic in physics where different approaches have
been explored in many different contexts [19]. For instance,
in recent years, complexity in various nonlinear photonic sys-
tems has been investigated [20-23], exploiting the framework
of the spin glass theory [24,25].

In different fields of nonlinear science it has been shown
that computational complexity can provide relevant informa-
tion about the pattern formation process [26]. To the best
of our knowledge, the computational complexity of temporal
intensity traces generated by MI has never been investigated
or computed so far. Shedding light on the relevance of this
statistical quantity for the understanding and prediction of MI
in optical fibers is the main goal of this Research Letter. Here
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we will focus specifically on the concept of computational
complexity of a string which was introduced by Kolmogorov
in 1963 [27]. Within this theoretical framework, the compu-
tational complexity of one string is the length (in bits) of
the shortest computer program that is able to produce that
particular string as an output. A universal way to calculate
the computational complexity of a string is not available.
However, one of the possible methods to calculate it for a
binary string is based on the Lempel-Ziv (LZ) algorithm [28].
The latter constitutes the foundation of various file compres-
sion protocols currently used in personal computers. The LZ
algorithm assumes that the program, which has to compute a
given string, can only do two operations: copy a substring or
insert a new substring. We summarize here very briefly the LZ
algorithm following Ref. [26], where an excellent diagram-
matic representation can be found too. Let us consider a string
o made of digits o707 - - - 0,, that has been reconstructed up to
digit o,, and let us call ¥ = 007 - - - 0, the reconstructed part
of the string. We now consider a substring of o, Q = 0,41,
and check whether Q can be reconstructed by simply copying
substrings of X: If yes, we define a new Q = 0,410,142, and
so on and so forth till Q cannot be reconstructed anymore
copying words from substrings of X. In this case a new digit
has to be inserted to create Q. The total number of inserted
digits (plus 1 if the last copy step is not followed by adding
a digit) is defined as the computational complexity c(n) of
the string, and it basically consists in the total number of
steps necessary to construct the full string o. However, a
more convenient indicator is the complexity normalized as
C(n) = c(n)/b(n), where b(n) = lim,_, o c(n) = log’;(n) is the
asymptotic value of the c(n) for a randomly ordered binary
string [26,28]. Hence, for n — oo, C(n) will tend to 1 for a
string where Os and 1s are randomly ordered and will be close
to O for a string whose digits are arranged in a periodic pattern
(e.g., 010101- - -) or are all perfectly identical to O, or to 1.

It is crucial to mention that computational complexity
differs substantially from the Shannon entropy (SE), a cor-
nerstone of information theory introduced by Shannon in
1948 [29]. A binary string consisting of n digits, of which
ng is the number of Os and n; is the number of 1s, has SE
given by § = — Zrln=o Dmlog,(pm), where po | =ng 1 /n. SE
has a maximum for a string where p; = pg = 1/2. On the
other hand, it tends to zero for either (p; — 1, pp — 0) or
(p1 — 0, po — 1). Hence SE is a measure of the randomness,
or indeed entropy, of the source that produces the string.
However, SE does not provide any knowledge regarding the
sequential order in which the Os and 1s are arranged within
the string. Things are very different for the computational
complexity. For instance, a string with Os and 1s alternating
periodically (01010- - - ) has normalized computational com-
plexity close to 0, according to the LZ algorithm, which is
very different from the normalized computational complexity
of a string having the same number of Os and 1s but arranged
in completely random fashion, which has normalized com-
putational complexity close to 1. In contrast, SE would be
the same for both strings. Thus computational complexity
can be used to provide knowledge about the structure and
order of the data that is not captured by SE. When C(n) is
significantly smaller than 1, then we have a clear indication
of the existence of regular patterns or coherent structures in
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FIG. 1. Experimental setup: EOM, electro-optic modulator;
EDFA, erbium-doped fiber amplifier; BPF, bandpass filter; Py M,
power meter; DSF, dispersion-shifted fiber; OSA, optical spectrum
analyzer; PC,_,, polarization controller; Laser fs, femtosecond laser;
FBG, fiber Bragg grating; SOA, semiconductor optical amplifier;
PD, photodetector; Oscillo., oscilloscope; Pulse Gen., pulse gener-
ator; Synchro., synchronization.

the data. Incidentally, we note that an analysis based on SE
of spatial MI of light in nonlocal media has been presented
in Ref. [30]. It is important to mention that computational
complexity is an extremely powerful metric tool to character-
ize, for instance, not only temporal traces generated in various
systems especially in biology including electroencephalogram
[31,32], electrocardiogram [33], and neural spike [34] traces,
but also the structure of DNA sequences [35]. Furthermore,
computational complexity has been used to analyze patterns
and chaos in dynamical systems including coupled logistic
maps and cellular automata [26] also in comparison with
other mathematical tools such as Lyapunov exponents. One
key finding of Ref. [26] is that computational complexity can
reveal pattern formation before its appearance is manifest in
the autocorrelation function or macroscopically in the ampli-
tude traces. To test the ability of computational complexity to
characterize MI of light, we have experimentally generated a
series of binary strings through the MI process of continuous
wave (cw) radiation propagating inside a single-mode optical
fiber. Then, we computed the evolution of their computational
complexity as a function of the input power P, because the
number of nonlinear lengths, Lyy, scales as 1/P, [36] and
rules the change in system complexity.

We provide a detailed schematic of the experimental setup
in Fig. 1. We have used as a light source a cw laser emit-
ting at 1545 nm wavelength. Light intensity was chopped
by means of an electro-optic modulator driven by an arbi-
trary wave generator to produce square-shaped pulses with
a duration of 1 ns. Then, these pulses were amplified by an
erbium-doped fiber amplifier whose amplified spontaneous
emission in excess was removed by a thin bandpass filter
(100 GHz bandwidth). Next, amplified pulses were launched
in a 4.186-km-long specially designed dispersion-shifted fiber
(DSF), with group velocity 8, = —4.4 ps?> km™', nonlinearity
y =25 WL km™!, and losses @ = 0.0495 km~! at 1545 nm.
Note that we added a 1% calibrated tap coupler before the
DSF in order to measure with a power meter the launched
power. By using a 80/20 coupler, we were able to study the
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DSF output signal by means of an optical spectral analyzer
(OSA) and a commercial time lens (PicoLuz ultrafast tem-
poral magnifier; Thorlabs) based on the results published in
Ref. [37]. The time-stretching effect provided by the time lens
was obtained thanks to a four-wave-mixing (FWM) process
between a strong pump and the fiber output signal to analyze.
The strong pump was generated by a femtosecond laser cen-
tered at 1570 nm with a fixed repetition rate of 99.882 MHz.
This laser was also used as a reference clock for the electro-
optic modulator; in that way, the repetition rate of the pump
pulses was a multiple of the femtosecond laser (10 times in our
case). This ensured a perfect overlap between femtosecond
pump pulses and DSF output pulses. Note that we added
polarization controllers before the time lens (PC;_») in order
to optimize the FWM process efficiency. The magnified signal
(idler generated from the FWM process, magnification factor
of 57) was isolated from the rest of the components by a fiber
Bragg grating (FBG). Finally, a semiconductor optical ampli-
fier (SOA) was used to slightly amplify this signal, which was
then recorded by a fast photodiode and a broadband oscillo-
scope (70 GHz bandwidth each). Through this time lens, we
were able to record temporal traces of each DSF output pulse
over a window and a resolution of about 50 ps and 300 fs,
respectively. The recorded temporal traces of the light power
were transformed into a binary string s(¢) according to the
following rule: If P(¢t) > P, then s(t) = 1, else s(t) = 0, with
P being the average power of the trace. For each value of P,,,
we calculated the computational complexity corresponding to
3994 pulses, and from this set of measurements we computed
the averaged normalized computational complexity and the
associated standard deviation. We repeated the procedure for
155 different values of the input power P, in the interval
[0.3,4] W. This corresponds to an investigation of the com-
plexity ranging from 3 to 30 Ly.. We have also simulated
numerically the light propagation along the optical fiber by
solving the following NLSE for the field envelope A(z,?)
defined in a comoving temporal reference frame of coordinate
t and evolving along spatial coordinate z:

dA Brd*A L«
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The initial conditions was chosen to be A(0, ) = +/Pn +
na(ry(t) + iri(t))/~/2, where n, = 107® W? is the noise am-
plitude and r.(t) and r;(t) are random numbers generated
independently and uniformly distributed in the interval [0,1].
In simulations we have varied P, in the same interval as
in experiments using 185 points. For each value of P, we
have repeated the simulation 80 times and obtained the aver-
aged normalized computational complexity (C) and average
indicators that will be presented below as well. We have
furthermore performed an additional set of numerical simu-
lations using a pulsed-envelope initial condition in order to
mimic more closely the experimental scenario. In the latter

6
case the initial conditions used are A,(0,7) = JPne S +
na(r (1) + iri(1))/~/2 with o = 0.38 ns.

In Fig. 2(a) we have plotted the MI output spectrum ver-
sus Py, from experiments. Figures 2(b)-2(e) show the output
spectra corresponding to different pump powers. Examples of
their corresponding time traces are depicted in Figs. 2(f)-2(1).
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FIG. 2. (a) Evolution of the experimentally measured power
spectrum in decibels vs input power P,,. (b)—(e) Output spectra cor-
responding to different input power [indicated above each panel and
corresponding to the colored dashed lines in (a)]. (f)—(i) Examples of
corresponding temporal traces.

The latter exhibit coherent structures embedded in noise in
the linear stage, regular coherent structures, and turbulent
coherent structures, respectively.

In Fig. 3 we have plotted the evolution of the power
trace measured at the fiber output both in experiment and
in numerical simulations. For P, between 1.5 and 2 W, we
observe the macroscopic manifestation of coherent structures.
The main results of this work are summarized in Fig. 4,
where we compare the computational complexity obtained
from experimental and numerical data with other relevant
statistical indicators. In particular, we have considered the
following: the second-order moment of the autocorrelation
function k4, defined as the autocorrelation function g (r) =
(P(t + 1:)P(z‘))/(P(t))2 evaluated at T =0 [14]; the previ-
ously defined Shannon entropy, and the Shannon spectral
entropy (SSE), which measures spectral broadening and is
defined as § = — > . Pwn(p,), where p,, is the amount of
power contained in the spectral mode with frequency w,
normalized by the total power in the spectrum. We ob-
serve that the computational complexity [Figs. 4(a) and 4(b)]
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FIG. 3. Pseudospatiotemporal map showing temporal traces
at the fiber output plotted in the plane 7-P,: (a) experiment;
(b) numerical simulations, for cw input.
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FIG. 4. Complexity (C) [(a) and (b)], k4 [(c) and (d)], spectral
entropy [(e) and (f)], and spectral Shannon entropy [(g) and (h)] are
plotted vs pump power P,,. Experimental results are shown in the left
column, and simulation results are shown in the right column (black
lines and red lines correspond to cw and pulsed input, respectively).

exhibits a sharp decrease in the linear stage of MI well before
k4 [Figs. 4(c) and 4(d)] and SE [Figs. 4(e) and 4(f)] start to
vary appreciably. The sharp decrease in the computational
complexity mirrors the self-organization process that shapes
the random noise on top of the cw background into embryonic
coherent structures. It is almost impossible to distinguish them
from the cw background in the time domain [Figs. 2(f) and
2(g)] since the perturbations are several tens of decibels lower
than the pump power [Figs. 2(b) and 2(c)]. However, in this
linear MI regime apparently dominated by noise in the interval
P, € 0.3, 1.2] W, complexity varies substantially from 0.88
to 0.57. This illustrates the huge sensitivity of complexity to
detect the early birth of coherent structures. Comparing with
Fig. 3, we can appreciate how the value of P at which co-
herent structure became visibly manifest is close to the value
of P, around which computational complexity has its lowest
value. After reaching a minimum for P, ~ 1.8 W in experi-
ment, computational complexity performs a series of damped
oscillations. These oscillations occur in correspondence to the
statistical signature of FPUT recurrences. The low value of
computational complexity in the nonlinear stage of MI is in-
dicative of the existence of coherent structures in the temporal

TABLE I. Summary of the MI regimes described by the different
statistical indicators.

Linear stage Nonlinear stage

Complexity Yes Yes
K4 No Yes
SE No Yes
SSE No Yes

traces. Hence, on the one hand, computational complexity
is a precursor of MI, and at the same time it character-
izes the nonlinear stage dynamics. Computational complexity
oscillations are analogous to the oscillations of x4 with the dif-
ference that maxima and minima are inverted in the two cases
and that those of k4 are more pronounced. The connection
between k4 and the statistical signature of FPUT recurrences
has been already clearly demonstrated in Ref. [14]. SE ex-
hibits oscillations in correspondence to FPUT recurrences
too, but no appreciable variation in the linear stage of MI.
The oscillations of SSE [Figs. 4(g) and 4(h)] are directly
associated with the statistical signature of FPUT recurrences
too and are aligned with the oscillations of the time domain
statistical indicators. It is also worth stressing that simulations
both with a cw input and with a pulsed input provide very
similar results for all the indicators, the main difference being
that SSE exhibits a small plateau at low power for the pulsed
case (as in experiment), while this is not the case for the cw
pumping. The small variation in SSE in the linear stage of MI
is connected to the particular pulsed initial condition and is not
directly connected to the MI process. In Table I a summary is
presented of the different MI stages whose key features are
captured or not by the various statistical methods investigated
in this Research Letter. Computational complexity describes
qualitatively both the growth of coherent structures from noise
in the linear stage and the statistical signature of the recur-
rences in the nonlinear stage, while other methods despite
fully capturing the nonlinear stage dynamics do not anticipate
the growth of coherent structures in the linear stage. We ob-
serve some discrepancies affecting the quantitative, but not the
qualitative, agreement between experimental and numerical
results. In particular, we notice a sharper decrease of compu-
tational complexity and a lower average asymptotic value in
numerical simulations compared with experiment. We believe
that the main cause of these discrepancies is connected to
the noise added to the signal after passing through the time
lens before the detection, for which we do not have an ap-
propriate model. We furthermore observed that the period of
oscillations is slightly larger in experiments than in numerical
simulations; this fact has been already noticed in Ref. [14]
relative to the k4 indicator. In conclusion, we have provided
a characterization of the computational complexity of MI of
the NLSE homogeneous solution, using temporal trace data
from a nonlinear fiber optics experiment. We have shown that
computational complexity is a precursor which anticipates the
formation of coherent structures initially embedded in noise,
before they reach a distinguishable size and before the auto-
correlation of the time traces and other well-known and used
statistical indicators reveal appreciable variations. We have
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furthermore shown that computational complexity correlates
with the phenomenon of the statistical signature of FPUT
recurrences consistently with other established statistical indi-
cators. We anticipate that computational complexity could be
used to provide relevant information about different MI and
complex systems’ behavior, both in photonics, for instance,
to characterize the buildup process of pulses in mode-locked
lasers and the nonlinear dynamics in optical resonators, and in
other disciplines too, shedding light not only on the interplay
between coherent structures and noise but also on statistical
properties of asymptotic states.
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