A shortage risk mitigation model for multi-agency coordination in logistics planning

Abstract

We introduce a two-stage stochastic program to handle typical disaster preparedness activities under uncertainty from a multi-agency perspective. The model explicitly takes into account the number of people without healthcare attention, relief aid, and shelter support. We build a function that represents the total number of people at risk of not receiving proper humanitarian assistance using a bi-objective approach in which expected logistics costs are also minimized. The benefit of our approach is assessed through real flood cases in Mexico in which GIS analysis was used to enhance data gathering and to provide risk maps that could be potentially used by policy-makers in practical settings. The overall results suggest that sheltering decisions have to be closely coordinated with the management of material and human resources to avoid an increased number of people deprived of attention and relief aid. The Pareto Frontier also reveals that some solutions exhibit a quite interesting trade-off, e.g., it is possible to improve the overall relief assistance by almost 17% at the expense of less than 14% in the logistics costs.

Publication DOI: https://doi.org/10.1016/j.cie.2020.106676
Divisions: College of Business and Social Sciences > Aston Business School
College of Business and Social Sciences > Aston Business School > Operations & Information Management
Additional Information: © 2020, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Uncontrolled Keywords: Disaster relief,Humanitarian logistics,Multi-agency coordination,Preparedness management,Two-stage stochastic programming,General Computer Science,General Engineering
Publication ISSN: 1879-0550
Last Modified: 10 Sep 2024 07:11
Date Deposited: 15 Jul 2020 10:05
Full Text Link:
Related URLs: https://www.sci ... 220304101#ak005 (Publisher URL)
http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2020-10-01
Published Online Date: 2020-07-22
Accepted Date: 2020-07-13
Authors: Rodríguez-Espíndola, Oscar (ORCID Profile 0000-0002-4889-1565)
Alem, Douglas
Da Silva, Lucas Pelegrin

Export / Share Citation


Statistics

Additional statistics for this record