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Abstract

We introduce a two-stage stochastic program to handle typical disaster preparedness activities 

under uncertainty from a multi-agency perspective. The model explicitly takes into account 

the number of people without healthcare attention, relief aid, and shelter support. We build a 

function that represents the total number of people at risk of not receiving proper humanitarian 

assistance using a bi-objective approach in which expected logistics costs are also minimized. 

The benefit of our approach is assessed through real flood cases in Mexico in which GIS 

analysis was used to enhance data gathering and to provide risk maps that could be 

potentially used by policy-makers in practical settings. The overall results suggest that 

sheltering decisions have to be closely coordinated with the management of material and 

human resources to avoid an increased number of people deprived of attention and relief aid. 

The Pareto Frontier also reveals that some solutions exhibit a quite interesting  trade-off,  e.g.,  it  

is  possible  to  improve  the  overall  relief  assistance  by almost 17% at the expense of less than 

14% in the logistics costs
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1. INTRODUCTION

As the magnitude and impact of disasters are rather difficult to be predicted prior to

an event, decision-making becomes challenging because of the uncertainty in demand and

supply (Jia et al, 2007). The number of victims is unknown, the number of available skilled

workers is uncertain, and even the amount of relief ultimately depends on the economic

situation and/or political agreements. Preparedness activities based on imprecise data can

thus result in unrealistic or even infeasible solutions, since there is no guarantee that the

disaster will resemble previous ones and there is no knowledge about the conditions of the

aftermath.

Collaborative efforts ranging from local to the international level are mechanisms to man-

age complex environmental problems. The fact that disaster operations are often engaged

by a relatively large number of relief organizations (Nolte et al, 2012; Li et al, 2018), espe-

cially governmental agencies, further complicates an already complex situation because of

the diverse goals, values, and access to resources of the participants (Thompson and Duin-

tjer Tebbens, 2016). Governmental agencies have to liaise with a central coordinator which

directs their activities (Margaret B. and Marilyn M., 2006). Poor interaction among these

organizations can exacerbate the impact of disasters on communities (Haimes, 2012), because

it can lead to both shortage and/or excess of supply (Auf der Heide and Irwin, 1989).

Moynihan (2008) argues that relief operations face uncertainty not only about the task,

but also uncertainty related to the nature of the participants and the structure of the network

itself. This is because of the complex dynamics of the organizations involved (Kalkman and

de Waard, 2017). Uncertainty in supply is particularly relevant because the impact of a

disaster can affect workforce availability (Santos et al, 2014). Koppenjan and Klijn (2004)

introduce substantive, strategic, and institutional uncertainty as three main categories faced

by organizations. The first is related to the situation itself, whereas the other two are

related to the structure of the organizations involved. The perspective adopted by this

article considers uncertainty in demand (i.e. victims) as well as the less studied uncertainty

in supply (i.e. relief agencies). Such uncertainty can cause duplication of relief activities,

shortages, or overcrowding which would impact the service provided to disaster victims.

The purpose of this article is then to present a novel two-stage stochastic programming
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model for disaster preparedness involving multiple governmental relief agencies. Differently

from most papers in the current literature, we model the shortage risk due to the uncertain

outcomes in terms of people deprived of assistance, which comprises of healthcare attention,

relief aid, and shelter support. We build a function that represents the total number of

people-at-risk as the weighted sum of those four terms, and reduce the corresponding shortage

risk. This approach is accounting for the uncertainty in the supply of human and material

resources, with the former being often overlooked in other formulations. Solutions balancing

risk mitigation and logistics costs are devised for the resulting bi-objective model via the ε-

constraint method. A Geographical Information System (GIS) analysis is used to pre-process

the model’s inputs, such as the set of scenarios, and to generate comprehensive risk maps.

Our approach is assessed based on scenarios stemming from real-life floods in the city of

Veracruz, Mexico. In order to provide relevant managerial implications that can be further

discussed with various Mexican authorities to improve the current disaster preparedness

management in the country, we target two questions. First, how should a plan for disaster

response for multiple governmental relief agencies guided by a central coordinator under

uncertainty be prepared for the Mexican case? Second, what is the effect of incorporating

uncertainty in supply, demand, and infrastructure in a plan for disaster response for multiple

governmental relief agencies guided by a central coordinator?

The remaining article is structured as follows. Section 2 introduces a literature review of

relevant studies and Section 3 describes the disaster preparedness problem. Section 4 intro-

duces the two-stage scenario-based stochastic programming model, while Section 5 presents

the application of the model to a real case in Veracruz, Mexico. Section 6 presents the discus-

sion about the value of the stochastic approach, after which the conclusions and remaining

challenges are mentioned in Section 7.

2. BACKGROUND AND RELEVANT LITERATURE

2.1. Humanitarian logistics

Optimization modelling has been one of the preferred methods to support decision-

making in humanitarian logistics, especially looking at the combination of facility location,

stock prepositioning, and relief distribution (Caunhye et al, 2012). Optimization models
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can incorporate challenges inherent to disaster management such as an uncertain number of

victims, poor information, damaged infrastructure, and vulnerability to subsequent disasters

(Alinaghian et al, 2019; Hu et al, 2017). Hence, there are several articles using stochastic

optimization to address the topics studied in this article (Grass and Fischer, 2016; Hoyos

et al, 2015). Two-stage stochastic models have shown significant potential to provide valuable

solutions. Considering uncertain demand and unreliable network information, Döyen et al

(2012) propose a multi-commodity model for the location of local and regional facilities, and

it aims to minimize the total cost of the system including penalties for unmet demand. Hu

et al (2015) propose a location-allocation model minimizing logistics cost and risk-induced

penalties to determine rescues center selection and allocation of pumps in the first-stage,

and distribution to affected areas in the second-stage. Ahmadi et al (2015) consider network

failure to propose a two-stage stochastic program with random travel time to ascertain the

location of distribution centers and routing for last-mile relief distribution. Alem et al (2016)

consider fleet-sizing, procurement and budget allocation decisions to propose a two-stage for-

mulation based on the minimization of cost and unmet demand. The model is focused on

prepositioning and vehicle contracting in the first-stage, and relief distribution and inventory

management in the second-stage. Pradhananga et al (2016) propose a static scenario-based

three-echelon network model for relief distribution looking at uncertainty in demand, sup-

ply, the characteristics of the situation, and in the infrastructure. The model minimizes a

non-linear function of social cost for supply facility selection. Noyan et al (2016) introduce

a formulation determining location and capacity decisions in the first-stage, whilst resource

allocation decisions are made in the second-stage. The objective of their model is to maxi-

mize expected accessibility. Ali Torabi et al (2018) propose a fuzzy-stochastic programming

model to minimize cost, including penalty cost for unmet demand. First-stage decisions are

focused on facility location and pre-positioning, whereas second-stage decisions provide the

post-disaster procurement and distribution plan. Hu and Dong (2019) focus on facility loca-

tion and the stock pre-positioning policy in the first-stage, and support decisions related to

procurement, relief distribution and inventory management in the second stage. The model

minimizes total expected cost including shortage penalties. Noyan and Kahvecioglu (2018)

extend the work of Noyan et al (2016) by considering central and local distribution facili-
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ties to focus on last-mile distribution. The first-stage focuses on location decisions whereas

the second-stage determines transportation decisions. The objective of their model is to

minimize the expected value of an accessibility metric which the authors link to equity.

The discussion about the complexity of disaster operations (Holguín-Veras et al, 2013)

has led to the development of more suitable objectives. Moreno et al (2018) propose to

minimize logistic costs and deprivation costs in their formulation supporting facility loca-

tion, transportation, and fleet-sizing. First-stage decisions are associated to procurement of

vehicles and facility location, whereas the second stage determines inventory and relief distri-

bution decisions. Paul and Zhang (2019) have developed a preparedness two-stage stochastic

formulation for facility location, stock pre-positioning, and distribution. The first-stage of

the model is focused on selecting the location of distribution points, medical stock levels,

and transportation capacity. Second-stage variables are related to transportation decisions.

The aim of their model is to minimize costs, considering deprivation costs in the formula-

tion. However, even with the development of deprivation costs, Beamon Benita and Balcik

(2008) argue that it is difficult to encapsulate the goals of humanitarian operations into a

single objective. Thus, the complexity of humanitarian operations has encouraged authors

to introduce multi-objective formulations to address these issues as well. Tofighi et al (2016)

propose a formulation addressing location and pre-positioning decisions in the first stage,

and a relief distribution plan in the second stage. The aim of the model is to minimize

overall logistics costs in the first stage, and total distribution time, weighted travel time

and cost, including shortage penalties for unmet demand, in the second stage. Manopiniwes

and Irohara (2017) propose a multi-objective formulation minimizing cost and the maximum

response time, the latter accounting for equity among the affected areas. First-stage deci-

sions are focused on facility location and stock pre-positioning, whereas evacuation and relief

distribution decisions are determined in the second-stage.

2.2. Multiple stakeholders

The articles presented so far have failed to consider the interaction between different or-

ganizations directly. The social networks created by these participants are essential to meet

the needs of disaster victims because they involve the resources and activities performed in
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disaster operations (Holguín-Veras et al, 2012). Neglecting the presence of multiple partici-

pants can lead organizations to compete for scarce resources or deploy unnecessary resources

in excess (Balcik et al, 2010; Auf der Heide and Irwin, 1989). Therefore, formulations de-

signed to support humanitarian logistics need to include multiple organizations in the analysis

(Rodríguez-Espíndola et al, 2018a). This becomes essential when uncertainty in supply is

considered, because human resources are crucial to provide services in safe facilities.

2.2.1. Game theory

The discussion about the use of decentralized systems and the interaction of different

stakeholders has led to an increase in articles on game theory within disaster management

settings (Seaberg et al, 2017). Game theory considers different stakeholders with individual

goals, which can aim to maximize their own objectives (non-cooperative games) or to create

strategic alliances to maximize pay-offs (cooperative games)(Muggy and L. Heier Stamm,

2014). In the context of non-cooperative games, Adida et al (2011) aim to minimize stock-

piling cost for medical equipment in collaborating hospitals. Nagurney et al (2016) have

developed a General Nash Equilibrium model focusing on relief distribution. The model

maximizes the utility of each player considering donations and cost-effectiveness. The au-

thors have reformulated the problem as an optimization model and tested it under conditions

based on the impact of hurricane Katrina. Toyasaki et al (2017) have developed a newsven-

dor model with the aim of minimizing cost for inventory management. Gossler et al (2019)

explore the impact of transportation rates and framework agreements in transportation de-

cisions. They use a sub-model looking at minimizing transportation cost and dependency

risk of humanitarian organizations, and another sub-model looking at the behaviour of the

carrier to maximize expected profit and customer satisfaction. The joint participation of

distinct NGOs is addressed by Nagurney et al (2019) through an extension of Nagurney

et al (2016). Their Generalized Nash equilibrium formulation determines the quantity of

supplies to purchase, supplier selection, and relief distribution using a specific freight logis-

tics provider. The authors use variational equilibrium and the Lagrange multiplier theory in

the model and illustrate the behaviour of the model under conditions resembling the impact

of Hurricane Harvey in the US. Muggy and Heier Stamm (2020) propose a centralized and
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a decentralized decision model to decide which facilities will be selected by beneficiaries in

evacuations. Both network congestion games minimize utility comprised of travel distance

and congestion in the facility, with the decentralized model looking at individual utility and

the centralized model considering the overall travel distance and congestion in the system.

This stream of research can be interesting for the competition of resources (i.e. dona-

tions) between two players and to minimize demand congestion as presented in the literature

(Seaberg et al, 2017). However, two common features were found in these articles. The pref-

erence for non cooperative games using monetary metrics captures the competition between

organizations, but it does not account for agencies guided by an upper-level coordinator

(except for the centralized model from Muggy and Heier Stamm (2020)). Additionally, in all

cases the players and resources need to be known in advance and the use of the formulations

can be complicated by the introduction of different sources of uncertainty.

2.2.2. Resource allocation models

Although there are valuable arguments supporting the development of decentralized sys-

tems (Quarantelli, 1988; Scolobig et al, 2015), in most countries there is an umbrella organiza-

tion managing a subset of agencies with similar goals (Takeda Margaret and Helms Marilyn,

2006; Alexander, 2015; Gupta et al, 2016). Resource allocation models have proven useful

to introduce human and material resources in the formulations with multiple participants.

For instance, there are articles coordinating helicopter rescue tours minimizing cost (Bar-

barosoglu et al, 2002), the distribution of heavy equipment minimizing total travel time

(Chen et al, 2011), the delivery of international resources minimizing cost (Adivar et al,

2010), the allocation of disaster refuge staff minimizing total weighted distance (Chou et al,

2014), and allocating teams of volunteers to tasks minimizing cost (Falasca and Zobel, 2012).

Rodríguez-Espíndola et al (2018b) focus on facility location, stock prepositioning, and re-

lief distribution. The deterministic model minimizes cost and maximizes level of service.

The highlight of this formulation is the potential to optimize the number of stakeholders

involved. However, the proposed formulation does not account for uncertainty in supply

nor in demand, which can affect operations (Balcik et al, 2010). Velasquez et al (2019)

use robust optimization to support stock prepositioning in disasters. Their article consid-

6



ers multi-agency collaboration between governmental agencies and other organizations for

procurement, allocation, and inventory. The objective of the model is to minimize the total

demand-weighted distance from distribution centers to dispensing locations and the authors

provide a greedy heuristic algorithm for solving the uncapacitated deterministic version of the

model. Balcik et al (2019) introduce an insurance-based method to support facility location

and stock prepositioning as part of horizontal collaboration. The model includes decisions

about location, premiums and budgets in the first-stage, whereas the second-stage is focused

on transportation and procurement. The aim is to minimize costs and deviation from the

premium paid and the cost expected for the participants and it is solved using Cplex. Arif

et al (2020) focus on the repair after disasters considering uncertainty in demand and repair

times aiming to minimize cost. The first-stage of the model determines the facilities used and

the initial allocation of crews and equipment, whilst second-stage decisions are focused on al-

locating crews to affected areas and ordering new equipment. Although the model considers

the value of human resources, it does not account for congestion and uncertainty in supply.

Introducing multiple objectives, Celik et al (2016) tackle the location-allocation problem

in disaster response, minimizing cost. Their formulation manages location and pre-disaster

procurement decisions in the first-stage, and post-disaster procurement and allocation in

the second-stage. Sarma et al (2019) propose a model for resource allocation and facility

location with resources pooled from NGOs and the government. Uncertainty is represented

in the model using triangular neutrosophic numbers and the objectives of the formulation

are to minimize cost and time. Their article provides a comparison of the neutrosophic

compromise approach, the global criteria method, and the weighted sum method as solution

methods with support from Lingo.

2.3. Research gap

The literature review presented previously shows the approaches undertaken to manage

humanitarian logistics incorporating multiple participants. When uncertainty in supply, de-

mand, and transportation is considered, two-stage formulations have shown significant value.

Additionally, these models can account for the integration of different decisions and their

interaction. However, most of these articles fail to consider the involvement of multiple
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organizations. Game formulations have shown remarkable potential to introduce different

stakeholders with individual goals and to reduce congestion in demand. Nevertheless, in

the context of an upper-level organization working as the coordinator, competition among

agencies becomes less critical and the incorporation of several activities with the correspond-

ing stochastic variables can become challenging. Although material congestion and demand

congestion have been studied in these models, congestion from the perspective of human re-

sources remains unexplored. Resource allocation models have potential to manage multiple

decisions and account for uncertainty when including multiple participants working under

a general coordinator. Nonetheless, the review of game theoretical articles and resource

allocation models shows an absence of articles incorporating uncertainty and congestion in

supply along with the delivery of both products and services. These formulations assume a

set number of participants, rather than the variability encountered in real situations. Over-

all, these articles overlook congestion and stochastic supply. This is relevant because the

provision of services in facilities is an understudied area and the convergence of human re-

sources can create more challenges than solutions. Tables 1 and 2 show a comparison of the

most relevant articles presented in the review with the proposed formulation. To address

the challenges presented, in this paper we model the risk in terms of the number of people

without humanitarian assistance, i.e., overall people at-risk, but we still need to ensure a

minimum-cost solution to carry out the logistics activities as money is a critical resource

in most disaster management contexts. Therefore, instead of merging these two goals in a

single objective function aligned with the idea of social costs, we balance logistics costs and

people at-risk in a bi-objective fashion to generate efficient (non-dominant) solutions that

turn out to be effective from the decision-making point of view. Indeed, recent literature has

pointed out that minimizing aid shortage and logistics costs separately might be appealing

to avoid unnecessary relief aid rationing when resources are still available to meet victims’

needs (Tofighi et al, 2016). Hence, this paper proposes a multi-objective two-stage stochastic

formulation for facility location, stock prepositioning, relief distribution, and resource alloca-

tion considering uncertainty in supply, demand, and infrastructure capable of optimizing the

number of agencies involved to reduce shortages and excess of human and material resources.
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Table 1: Problems addressed by the models reviewed

Article Supply Local Relief Stock Resource Services Multi-

facility facility distri- prepo- allocation objective

location location bution sitioning

Döyen et al (2012) X X X X

Hu et al (2015) X X X

Ahmadi et al (2015) X X

Alem et al (2016) X X X

Pradhananga et al (2016) X X

Tofighi et al (2016) X X X X X X

Noyan et al (2016) X X

Çelik et al (2012) X X X

Manopiniwes and Irohara (2017) X X X X

Noyan and Kahvecioglu (2018) X X X X

Ali Torabi et al (2018) X X X X

Moreno et al (2018) X X X X

Rodríguez-Espíndola et al (2018b) X X X X X X X

Sarma et al (2019) X X X X

Paul and Zhang (2019) X X X X

Hu and Dong (2019) X X X X

Velasquez et al (2019) X X X

Balcik et al (2019) X X X X

Arif et al (2020) X X X X

This article X X X X X X X

Table 2: Features of the models reviewed
Article Multi- Multi- Multi- Uncertain Uncertain Uncertain Human

product modal stakeholders demand supply infrastructure Resources

Döyen et al (2012) X X X

Hu et al (2015) X

Ahmadi et al (2015) X X X

Alem et al (2016) X X X X X

Pradhananga et al (2016) X X X X

Tofighi et al (2016) X X X X

Noyan et al (2016) X X

Çelik et al (2012) X X X

Manopiniwes and Irohara (2017) X X X

Noyan and Kahvecioglu (2018) X X

Ali Torabi et al (2018) X X X

Moreno et al (2018) X X X X X

Rodríguez-Espíndola et al (2018b) X X X X

Sarma et al (2019) X X

Paul and Zhang (2019) X X X

Hu and Dong (2019) X X

Velasquez et al (2019) X X X

Balcik et al (2019) X X X X X

Arif et al (2020) X X X X

This article X X X X X X X
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3. PROBLEM STATEMENT AND MATHEMATICAL MODEL

The formulation to be proposed in this paper considers a centralized decision-making

structure, as the one used by several governments globally (Takeda and Helms, 2006). In

this system, a coordinating body functions as an umbrella to orchestrate the operations of

different agencies (Takeda and Helms, 2006). Resources of the different participants are at

the disposal of this coordinating body and it controls the flow of information to manage

them.

3.1. Preparedness management: The Mexican context

In Mexico, the disaster management structure has been developed around the Civil Pro-

tection National Council (SINAPROC), which is supported by three different branches, as

shown in Figure 1. The Ministry of Interior is the entity responsible for managing the execu-

tive coordination in cases of disaster, involved with agencies on the three government levels,

i.e. National, State and Municipal. Technical coordination refers to agencies with the capa-

bility to provide technical advice for disaster management, whereas co-responsibility refers

to agencies providing supplementary support along with human and material resources to

emergency activities on top of their normal duties (SEGOB, 2006).

Figure 1: Mexican disaster management structure. Source: SEGOB (2006).

Before a potential disaster occurs (e.g. rain season, or the approach of a hurricane), a set

of agencies identify potentially safe facilities to operate as shelters and distribution centers.

Items are prepositioned in prospective distribution centers or warehouses as this strategy

is deemed as the most efficient in the literature (Rezaei-Malek et al, 2016; Hu et al, 2017),

whilst shelters are prepared for the arrival of displaced people. After the disaster strikes,
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the response plan is agreed upon by all the agencies with the coordinating body. Relief aid

along with vehicles and people are sent to the disaster area based on information about the

characteristics of the disaster.

Figure 2 shows the Mexican disaster response process at every stage. If the capacity of the

agencies available at the current level is insufficient to meet demand, the disaster is escalated

to the next level up to involve more agencies. Although this procedure is controlling the

number of participants depending on the level (i.e. local, regional, national or international),

at each stage several agencies are activated simultaneously, which in many cases results in

idle participants.

Considering the potential number of stakeholders, there is a need for decision support sys-

tems to organize and optimize their activities to reduce the risk of people without products

and services. The formulation proposed deals with the management of human and mate-

rial resources under uncertain conditions. Shortages are commonly considered by decision-

makers, but the risk of oversupply is often overlooked. This research is tackling the challenge

of convergence through the optimization of the number of agencies involved in logistics ac-

tivities, which ensures that only the required human and material resources are deployed.

Figure 2: Disaster management process in Mexico. Source: SEGOB (2006)

11



3.2. The role of the two-stage modelling in disaster preparedness

In disaster management it is common to select a number of possible occurrences for

uncertain parameters, thus assuming that the disaster will behave according to those. By

incorporating all these occurrences into an optimization model, it is possible to determine

robust implementable decisions, which are supposedly “good” strategies to hedge against any

materialized outcome, and at the same time, a set of flexible contingency decisions relative

to each outcome. This situation describes a typical two-stage stochastic programming ap-

proach in which uncertainties are modelled as random variables in a given probability space

composed of a set S of realizations of the random variables, or the so-called scenarios, such

that πs refers to the probability of occurrence of scenario s ∈ S, such that
∑

s∈S πs = 1 and

πs > 0 hold for all s ∈ S. In the two-stage framework, variables are divided in either first- or

second-stage decisions. In this research, the Mexican disaster management framework was

employed to identify the stage of each variable according to the sequence of events in real

life, namely preparedness and response, as suggested in previous literature (Manopiniwes

and Irohara, 2017).

First-stage decisions are taken without knowing the precise value of the random variables,

but regardless of the impact or the characteristics of the flood disaster, first-stage decisions

must be feasible and “ready to be implementable”. In our context, that means decisions

have to be made before disaster strikes. A time horizon of at least two weeks before the

disaster strikes is suggested because each activity can be very time-consuming due to the

inherent bureaucracy. Co-responsibility agencies identify and disseminate facilities to be

used for distribution and for sheltering people. The number of people to be expected at each

facility provides information about the number and location of required shelters, whereas the

quantity and location of prepositioned relief is linked to the number and location of opened

distribution centers. These variables inform SINAPROC about the number and allocation of

employees and vehicles required, which can support the decision about the agencies required

in the field. As a result, these variables were labelled as first-stage variables. In this fashion,

resources are prepared and ready to be deployed after the disaster strikes.

During the response, it is possible to remedy the decisions made in the first-stage via

the second-stage decisions for each possible scenario. Second stage decisions are expected to
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support the immediate response after the disaster strikes for one period of time, allowing the

ongoing response plan to be drafted. In the Mexican case, that represents a time horizon

of four days. The objective function must account for the expected cost composed by the

first-stage and the second-stage costs, as part of SINAPROC’s budget. Figure 3 shows a

scheme of the proposed two-stage approach to the disaster preparedness planning proposed

in this paper.

DISASTER

TIMELINE

SCENARIO 1

SCENARIO 2

SCENARIO 𝒔

SCENARIO |𝑺|

⋮

⋮

STAGE 1: PRE-DISASTER

HERE-AND-NOW DECISIONS

STAGE 2: POST-DISASTER

WAIT-AND-SEE DECISIONS

GIVEN A FINITE SET OF SCENARIOS FOR THE

VICTIMS NEEDS AND SUPPLIES...

...DETERMINE THE FIRST-STAGE DECISIONS

ROBUSTLY OVER ALL THE POSSIBLE

SCENARIOS:

• ACTIVATION AND COORDINATION: AGENCY

• LOCATION: DC/SHELTER

• PREPOSITIONING: AID, DC, AGENCY

• ALLOCATION: STAFF AND RESOURCES

2 WEEKS FOR PREPAREDNESS 4 DAYS FOR RESPONSE

GIVEN THE DECISIONS

TAKEN IN STAGE 1,

THEN

FOR ALL

SCENARIOS

FROM 1 TO |𝑺|EVALUATE

NEED FOR

RESOURCES

PERFORM

RELIEF

DISTRIBUTION

ALLOCATE

VICTIMS TO

SHELTERS

MITIGATING

PEOPLE-AT-RISK

DISASTER

STRIKES

Figure 3: Scheme of the two-stage paradigm applied to the disaster preparedness proposed in this paper.

Relief distribution is classified as a second-stage activity. After the disaster strikes,

the co-responsibility branch delivers products from the distribution centers to the shelters.

Therefore, in the second stage the demand for products and services is obtained, and the

model provides SINAPROC with information about quantity of resources to deploy and

shipment mode. Also, potential shortages and surplus of people and products are determined,

which affect the fill rate. Thus, the variables related to these activities were classified as

second-stage variables as well.
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3.3. A preparedness two-stage stochastic model for multi-agency coordination

In order to state the mathematical model, we will define the main entities of our problem

in terms of the following sets: I for the candidate distribution centers (DCs); J for the

candidate shelters; K for the demand areas; M for the transportation modes; N for the

products; O for the agencies; and S for the scenarios. The input parameters and the decisions

supported by the optimization model are described in Tables 3, 4, 5, and 6.

Table 3: Deterministic Parameters.
cdci Opening cost for DC i (monetary units)

csj Opening cost for shelter j (monetary units)

ctijm Unit transportation cost from DC i to shelter j by mode m (monetary units)

c
p
n Unit procurement cost per product n (monetary units)

who Unit wage cost for healthcare team from agency o (monetary units)

w
op
o Unit wage cost for operative personnel from agency o (monetary units)

capsj Capacity of shelter j (people)

capdci Capacity of DC i (m3)

fm Weight vehicle capacity of mode m (kg/trip)

fvoln Volume of product n (m3/product)

fwn Weight of product n (kg/product)

gno Number of products n available from each agency o to be delivered (product)

rdc Space covered per DC employee (m3/employee)

rs Number of sheltered people covered per shelter employee (people/employee)

rh Number of sheltered people covered per healthcare team (people/team)

rem Number of employees required to operate mode m (employee/vehicle)

rop Minimum fraction of personnel required for partial opening of DCs (adimensional)

`ijm Binary parameter equals to 1 if DC i is within an allowed distance from shelter j using mode m (adimensional)

`′kj Binary parameter equals to 1 if demand area k can be covered by shelter j (adimensional)

θn Conversion factor for product n (people/product)

ρn Priority of product n (adimensional)

τm Available number of trips per day per mode m (trip/vehicle)
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Table 4: Stochastic Parameters.
αks Affected population in area k in scenario s (people)

βijms Binary parameter equals to 1 if there is connectivity between DC i and shelter j by mode m in scenario s (adimensional)

γdcos Available personnel from agency o for DC operation in scenario s (employee)

γdos Available personnel from agency o for distribution in scenario s (employee)

γhos Available teams from agency o for healthcare in scenario s (team)

γsos Available personnel from agency o for shelter operation in scenario s (employee)

η
p
os Total operative personnel available per agency in scenario s (employee)

ηvmos Total number of vehicles of type m available per agency o in scenario s (vehicle)

πs Probability of occurrence of scenario s (adimensional)

Table 5: First-stage Decision Variables.

Pnio Quantity of stock of product n to preposition at DC i by agency o (product)

Qdcoi Number of staff from agency o to be allocated to DC i (employee)

Qdoim Number of staff from agency o to be allocated to distribution associated with mode m in DC i (employee)

Qhoj Number of teams from agency o to be allocated to healthcare activities in shelter j (team)

Qsoj Number of staff from agency o to be allocated to shelter j (employee)

Vimo Number of vehicles to be allocated to each DC (vehicle)

Wo Whether to activate an agency o (Wo = 1) or not (Wo = 0)

Xi Whether to open a DC at location i (Xi = 1) or not (Xi = 0)

Yj Whether to open a shelter at location j (Yj = 1) or not (Yj = 0)

Table 6: Second-stage Decision Variables.

Djs Number of people to be allocated to each shelter j and scenario s (people)

D′
kjs People to be allocated from each demand zone k to shelter j in scenario s (people)

D′′
jns Number of products n required at shelter j in scenario s (product)

Usks Number of people from demand area k without shelter in scenario s (people)

Uhjs Number of people without healthcare in shelter j in scenario s (people)

Uajs Number of people without attention in shelter j in scenario s (people)

Urjs Weighted number of people without relief aid in shelter j in scenario s (people)

U ′
jns Relief aid shortage of product n in shelter j in scenario s (product)

Zijmns Flow of products n from DC i to shelter j by mode m in scenario s (product)

Z′
ijms Number of trips from DC i to shelter j by mode m in scenario s (trip)
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The two-stage stochastic programming model for multi-agency coordination in pre-disaster

logistics planning towards mitigating the shortage risk within a given financial budget is

modelled as follows:

Min 〈Risk,Cost〉 , (1)

in which

Risk =
∑
s∈S

πs ·

[∑
j∈J (U

a
js + Uh

js + U r
js)

3
+
∑
k∈K

U s
ks

]
, (2)

and

Cost =
∑
i∈I

cdci ·Xi +
∑
j∈J

csj · Yj +
∑
i∈I

∑
n∈N

∑
o∈O

cpn · Pnio+

+
∑
s∈S

πs ·

[∑
o∈O

(wh
o · γhos + wop

o · ηpos) ·Wo +
∑
i∈I

∑
j∈J

∑
m∈M

ctijm · Z ′ijms

]
. (3)

The use of multiple criteria is useful for decision-making in complex situations (Zhang

et al, 2019). This research incorporates two objective functions to balance the use of resources

and the level of service.

The first objective function (2), called Risk, represents the overall number of victims

without any type of assistance, comprising of relief aid (first term), healthcare (second term),

security and care (third term), and shelter provision (fourth term), which are usually offered

by Mexican authorities (Rodríguez-Espíndola et al, 2018b). Notice that the first part of

objective (2) is divided by three because the three terms represent the needs for sheltered

people, whereas the last term involves the provision of shelter. The function in the most basic

case suggests providing shelter to affected victims if possible. Once that has been fulfilled, the

formulation encourages the provision of as much support as possible among the three initial

terms depending on the constraints. The objective function (2) can account for the people

at risk of not having shelter, or the people allocated to a shelter but at risk of not having

the products/services required. This function encapsulates the balance between location and

distribution decisions addressed by the paper. People at risk of not having shelter would

automatically not have the products/services provided at shelters. Therefore, by minimizing

expression (2), we attempt to mitigate the so-called shortage risk. The objective function is

novel because most articles are focusing on relief shortage, leaving aside service provision in
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shelters. These services, such as healthcare, are essential to provide support for victims (Gu

et al, 2018).

The second objective (3), called cost, aims at minimizing the logistics expenditures

necessary to conduct both pre- and post-disaster operations. The first three terms involve

the first-stage costs due to the location of distribution centers, location of shelters, and

procurement of products, respectively. The last three terms together represent the expected

second-stage costs incurred by personnel allocation and transportation decisions. Here, trans-

portation costs are considered constant across scenarios. Disruptions in the network after a

disaster strikes are captured using βijms, which prevents activating an unavailable path as

expressed by constraint (22). This simplifies the transportation network considerably. Next

we present the constraints for our two-stage stochastic programming model.

The set of equations (4) determines the number of people allocated to shelters and the

potential number of people without refuge. It is worth noting that `′kj allows the decision-

maker to allocate people evacuating from their homes to facilities closer than a maximum

coverage distance. This can be obtained from the combination of a distance matrix and

the maximum travel distance specified by the decision-maker. The final matrix is obtained

assigning a value of 1 to links below the maximum threshold and a value of 0 for longer

distances to prevent people from being allocated far from their living area. Equation (5)

determines the number of people to be served at each shelter and constraint (6) ensures

shelter capacity is not exceeded. Expression (7) determines the demand of products per

shelter based on demand. This constraint converts the potential number of victims to the

number of kits required based on the number of people served per kit.

αks =
∑
j∈J

`′kj ·D′kjs + U s
ks, ∀k ∈ K, s ∈ S (4)

Djs =
∑
k∈K

D′kjs, ∀j ∈ J , s ∈ S (5)

Djs ≤ capsj · Yj, ∀j ∈ J , s ∈ S (6)

D′′jns ≥
Djs

θn
, ∀j ∈ J , n ∈ N , s ∈ S : θn > 0, ∀n ∈ N . (7)

Example 1. Suppose that there are two candidate shelters, j = 1, 2, and one demand area,
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k = 1. Let us assume four cases for `′kj: (i) Both shelters can cover the demand area, i.e.,

`′11 = `′12 = 1; (ii) Only shelter 1 can cover the demand area, i.e., `′11 = 1, `′12 = 0; (iii)

Only shelter 2 can cover the demand area, i.e., `′11 = 0, `′12 = 1; (iv) No shelter can cover

the affected area, i.e., `′11 = `′12 = 0. For all the scenario-dependent constraints, s ∈ S holds

true. The resulting constraints (4) are thus written as follows: (i) α1s = D′11s +D′12s + U ss
1s;

(ii) α1s = D′11s + U ss
1s; (iii) α1s = D′12s + U ss

1s; (iv) α1s = U ss
1s. In the first case, we say that

the affected population αks can be allocated to either shelter 1 or 2; the model will decide

on the best combination between the decision variables D′11s and D′12s. In the fourth case,

because no shelter covers the given demand area, then its affected population αks cannot

be allocated to them, implying that the decision variables associated with the allocation are

both zero, D′11s = 0 and D′12s = 0. Cases 2 and 3 are straightforward. Focusing on case 1,

the overall number of people to be allocated to shelters 1 and 2 is simply given by constraint

(5): D1s = D′11s and D2s = D′12s, such that the shelter capacities given by constraints (6)

are not violated, i.e., D1s ≤ caps1 · Y1 and D2s ≤ caps2 · Y2, respectively. Now, assume we

only have food products to deliver, n = 1. The conversion factor, e.g. θ1 = 4, means that

one unit of this product serves 4 people. Therefore, constraint (7) shows that the quantity

of food products that should be in each shelter is simply the number of people allocated to

this shelter over 4, i.e., D′′11s ≥ D1s

4
and D′′21s ≥ D2s

4
. If D1s = 1000 and D2s = 400, we should

guarantee that there will be D′′11s = 250 food products in shelter 1 and D′′21s = 100 food

products in shelter 2.

For distribution centers, constraint (8) determines the personnel required for their oper-

ation, and constraint (9) ensures storage capacity of these facilities is not exceeded.

rdc ·
∑
o∈O

Qdc
oi ≥ rop · capdci ·Xi, ∀i ∈ I (8)

∑
n∈N

fvoln ·
∑
o∈O

Pnio ≤ capdci ·Xi, ∀i ∈ I (9)

Example 2. Assume that there is one distribution center, i = 1, one food product, n = 1,

and two agencies, o = 1, 2. In addition, rop = 1, meaning that we need to have 100%

of the required personnel to open any distribution center, capdc1 = 3000 (m3), rdc = 60
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(m3/employee), which means that one employee can manage 60 m3 of any distribution

center. Then, by constraint (8), we have 60 ·(Qdc
11+Q

dc
21) ≥ 1 ·3000 ·X1, implying Qdc

11+Q
dc
21 ≥

50 · X1. If X1 = 1, this constraint indicates we need at least 50 employees in distribution

center 1; these employees can come from either organization 1 or 2. rop = 0.9 indicates we

can open any distribution center with 10% less personnel, which means we would need at

least 45 employees in distribution center 1. Based on the same example, let fvol1 = 0.024

(m3/product) be the volume of one unit of food product. Then, by constraint (9), we have

0.024 · (P111 + P112) ≤ 3000 ·X1 → P111 + P112 ≤ 3000
0.024
·X1. Therefore, X1 = 1 implies that

the total quantity of food products prepositioned in distribution center 1 by either agency 1

(P111) or 2 (P112) cannot be greater than 3000
0.024

= 125000. Note that fvoln helps us transform

storage capacity from m3 to units of products.

Expression (10) restricts the availability of procured items for prepositioning and con-

straint (11) ensures that the number of items shipped is less than or equal to the number of

products prepositioned.

∑
i∈I

Pnio ≤ gno ·Wo, ∀n ∈ N , o ∈ O (10)

∑
j∈J

∑
m∈M

Zijmns ≤
∑
o∈O

Pnio, ∀i ∈ I, n ∈ N , s ∈ S (11)

The set of constraints (12) evaluates the relief aid shortage for each product, shelter, and

scenario, as the difference between the number of products required by a given shelter and

the total number of products that were sent to it. Constraint (13) finds the corresponding

weighted number of people without relief aid at each shelter and scenario considering the

priority of the products. Constraints (14) and (15) define the allocation of staff for health-

care and shelter attention, respectively. It is important to define the healthcare team. A

healthcare team is integrated by a medical professional and one member of operative staff for

support according to regulations (PCV, 2014). This team can provide healthcare coverage

to a set number of victims according to governmental guidelines and it is represented by rh.
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U ′jns = D′′jns −
∑
i∈I

∑
m∈M

Zijmns, ∀j ∈ J , n ∈ N , s ∈ S (12)

U r
js ≥

∑
n∈N θn · ρn · U ′jns∑

n∈N ρn
, ∀j ∈ J , s ∈ S (13)

Djs ≥ rh ·
∑
o∈O

Qh
oj + Uh

js, ∀j ∈ J , s ∈ S (14)

Djs ≥ rs ·
∑
o∈O

Qs
oj + Ua

js, ∀j ∈ J , s ∈ S. (15)

Example 3. Suppose we have one candidate shelter, j = 1, one distribution center, i = 1,

two products, n = 1, 2, one transportation mode, m = 1, and two agencies o = 1, 2. For

all the scenario-dependent constraints, s ∈ S holds true. Thus, constraint (12) gives U ′11s =

D′′11s − Z1111s and U ′12s = D′′12s − Z1112s, showing that the relief aid shortage for product 1

(resp. product 2) in shelter 1 is the difference between the number of products required by

this shelter and the total number of products shipped from distribution center 1 through

mode 1 to shelter 1. Both products are required by each victim. Assume now we have the

conversion factors θ1 = 4 for product 1 and θ2 = 100 for product 2, meaning that product

1 serves four people and product 2 serves 100 people. By setting equal priorities ρ1 = 1

and ρ2 = 1, constraint (13) gives U r
1s ≥

θ1·ρ1·U ′
11s+θ2·ρ2·U ′

12s

ρ1+ρ2
= 2 · U ′11s + 50 · U ′12s. This is the

weighted number of people with shortages. Hence, shortage of one unit of product two affects

25 times more people than shortage of one unit of product one after taking conversion and

priority into account. If U ′11s = 25 and U ′12s = 1, U r
1s would be 100, which means a shortage

of products for 100 people (as priorities are equal). That value is optimized in the objective

function, favouring the delivery of more critical items which can cover more people. The

reason for using ‘greater than’ rather than ‘equal to’ in the constraint is because U r
1s is an

integer variable and the constraint can potentially return fractional values.

Expressions (16), (17), (18) and (19) establish the maximum number of personnel avail-

able per agency for the operation of distribution centers, relief distribution activities associ-

ated with each transportation mode, healthcare provision, and shelter care service, respec-

tively.
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∑
i∈I

Qdc
oi ≤ γdcos ·Wo, ∀o ∈ O, s ∈ S (16)

∑
i∈I

∑
m∈M

Qd
oim ≤ γdos ·Wo, ∀o ∈ O, s ∈ S (17)

∑
j∈J

Qh
oj ≤ γhos ·Wo, ∀o ∈ O, s ∈ S (18)

∑
j∈J

Qs
oj ≤ γsos ·Wo, ∀o ∈ O, s ∈ S. (19)

Constraint (20) ensures that the total number of staff from each agency activated falls

within the total operative personnel available per agency in each scenario, including the

term for healthcare teams if and only if the operative member of the team is available for

operative support.

∑
i∈I

Qdc
oi +

∑
i∈I

∑
m∈M

Qd
oim +

∑
j∈J

Qh
oj +

∑
j∈J

Qs
oj ≤ ηpos ·Wo, ∀o ∈ O, s ∈ S. (20)

Constraint (21) determines the required staff for relief distribution based on the number

of trips between facilities determined in constraint (22). Notice that if either `ijm = 0 or

βijms = 0, then there is no flow of products between distribution center i and shelter j using

mode m in scenario s and, consequently, the number of trips is also zero. Constraint (23)

establishes the number of vehicles required for the trips. Notice that τm is a parameter based

on the preferences of the decision-maker and agreements with the agencies involved in the

distribution activities. Eventually, if the number of trips is not an issue for the agencies in

charge of the distribution activities, τm can be set to a sufficiently large number. Expression

(24) ensures the number of vehicles used does not exceed the number of vehicles available.

Vimo ≤
Qd
oim

rem
, ∀i ∈ I, m ∈M, o ∈ O (21)∑

n∈N

fwn · Zijmns ≤ fm · `ijm · βijms · Z ′ijms, ∀i ∈ I, j ∈ J , m ∈M, s ∈ S (22)

∑
j∈J

Z ′ijms ≤ τm ·
∑
o∈O

Vimo, ∀i ∈ I, m ∈M, s ∈ S (23)

∑
i∈I

Vimo ≤ ηvmos ·Wo, ∀m ∈M, o ∈ O, s ∈ S. (24)
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Example 4. Suppose we have one distribution center, i = 1, one shelter, j = 1, one mode,

m = 1, one agency, o = 1, and two products, n = 1, 2. In addition, let re1 = 5 be the number

of employees needed to operate mode 1. Thus, constraint (21) shows us that V111 ≤ Qd111
5

.

Assuming that the number of personnel from agency 1 allocated to distribution center 1 to

operate mode 1 is Qd
111 = 1000, then V111 ≤ 1000

5
= 200, showing that distribution center 1

cannot have more than 200 vehicles (mode 1) allocated by agency 1. Let fw1 = 7.5 and fw2 =

18.2 be the weights (kg/product) of product 1 (food) and product 2 (medicine). In addition,

let f1 = 2500 be the vehicle capacity of mode 1 (kg/trip), `111 = 1 be the binary parameter

indicating that distribution center 1 is within an allowed distance from shelter 1 using mode

1. Finally, let β111s = 1 be the binary parameter indicating that there is connectivity between

distribution center 1 and shelter 1 by mode 1 in scenario s. Then, constraint (22) shows that

fw1 ·Z1111s+f
w
2 ·Z1112s ≤ f1 · `111 ·β111s ·Z ′111s → 7.5 ·Z1111s+18.2 ·Z1112s ≤ 2500 ·Z ′111s. If the

flow of products between distribution center 1 and shelter 1 using mode 1 is Z1111s = 1000 for

product 1 and Z1112s = 1000 for product 2, we have Z ′111s ≥ 7500+18200
2500

= 10.28. Therefore,

the integer number of trips from distribution center 1 to shelter 1 using mode 1 is Z ′111s = 11,

considering that this variable is minimized in one of the objective functions. Now, let τ1 = 8

be the available number of trips per day per mode 1. Using the same set-up, constraint (23)

gives Z ′111s ≤ 8 · V111. If agency 1 allocates 10 vehicles (mode 1) to distribution center 1,

then this constraint limits the maximum number of trips from this distribution center to

shelter 1 to 80. Assume we have two scenarios, s = 1, 2, and let ηv111 = 3 and ηv112 = 10 be

the total number of vehicles mode 1 that can be allocated by agency 1 in scenarios 1 and

2, respectively. Therefore, constraint (24) indicates that if agency 1 is activated (W1 = 1),

then V111 ≤ 3 and V112 ≤ 10, implying that agency 1 cannot allocate more than 3 vehicles

to distribution center 1, since this decision must be done as part of the first-stage.

The domain of the first-stage variables is as follows.
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Wo ∈ {0, 1}, ∀o ∈ O (25)

Xi ∈ {0, 1}, ∀i ∈ I (26)

Yj ∈ {0, 1}, ∀j ∈ J (27)

Vimo ≥ 0 and integer, ∀i ∈ I, m ∈M, o ∈ O (28)

Pnio ≥ 0, ∀i ∈ I, n ∈ N , o ∈ O (29)

Qdc
oi ≥ 0, ∀i ∈ I, o ∈ O (30)

Qd
oim ≥ 0, ∀i ∈ I, m ∈M, o ∈ O (31)

Qh
oj ≥ 0, ∀j ∈ J , o ∈ O (32)

Qs
oj ≥ 0, ∀j ∈ J , o ∈ O. (33)

Finally, the domain of the second-stage variables is as follows.

D′′jns ≥ 0 and integer, ∀j ∈ J , n ∈ N , s ∈ S (34)

Zijmns ≥ 0 and integer, ∀i ∈ I, j ∈ J , m ∈M, n ∈ N , s ∈ S (35)

Z ′ijms ≥ 0 and integer, ∀i ∈ I, j ∈ J , m ∈M, s ∈ S (36)

Djs ≥ 0, ∀j ∈ J , s ∈ S (37)

D′kjs ≥ 0, ∀k ∈ K, j ∈ J , s ∈ S (38)

Ua
js ≥ 0, ∀j ∈ J , s ∈ S (39)

Uh
js ≥ 0, ∀j ∈ J , s ∈ S (40)

U r
js ≥ 0, ∀j ∈ J , s ∈ S. (41)

U s
ks ≥ 0, ∀k ∈ K, s ∈ S (42)

U ′jns ≥ 0, ∀j ∈ J , n ∈ N , s ∈ S. (43)

4. SOLUTION PROCEDURE: THE ε-CONSTRAINT METHOD

In this paper we use the ε-constraint method (Mavrotas, 2009) to solve the bi-objective

model. Our choice was based on the manageability of this method to be implemented within

decision support systems, since its application requires only the estimation of upper bounds
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for the cost-minimization objective. This task is assumed to be straightforward for our main

practitioner, SINAPROC, which would need to analyze whether its residual budget can be

used to further improve the disaster relief operations, thus mitigating the shortage risk. On

the other hand, it would be more abstract for practitioners from SINAPROC to determine

proper weights for the weighted sum method.

Roughly speaking, the ε−constraint method relies on converting a multi-objective op-

timization problem into a single-objective optimization problem. This is performed by se-

lecting one objective function as the primary goal, whereas the others are included in the

problem as constraints, but bounded by a given value or ‘ε’. In this way, we can control how

much we are willing to deteriorate the remaining goals in exchange of having a good objective

value for the primary goal. In our case, we consider that a minimum-solution shortage risk

is our main goal so that the overall logistics costs are upper bounded by the initial costs plus

the ε value, as follows:

min Risk =
∑
s∈S

πs ·

[∑
j∈J (U

max
js + Uh

js + Ua
js)

3
+
∑
k∈K

U s
ks

]
,

s.t.: Constraints (4)− (24)

Cost ≤ Cost? + ε, (44)

in which Cost? can be the minimum cost solution. By parametrically varying the ε value the

efficient solutions of the problem that trade-off shortage risk and logistics costs differently

are then obtained (Mavrotas, 2009). Afterwards, decision-makers can choose the preferred

solution among the different possibilities according to their risk preference. In this case, a

more risk-averse decision-maker would prefer to have a solution with a lower risk of shortage

even at the expense of higher logistics costs. Conversely, a less risk-averse decision-maker

would rather choose a more balanced solution in which a higher risk of shortage is somehow

compensated by relevant cost savings.

5. THE CASE STUDY OF FLOODS IN MEXICO

Hurricane Karl caused severe floods and several deaths in the State of Veracruz, Mexico,

in September 2010. One of the most affected areas was the region Veracruz-Boca del Río.
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The region is located in the center of the State of Veracruz. It has an altitude of 10 meters

above sea level and it is composed of 315 AGEBS (i.e. neighbourhoods) as shown in Figure 4,

which represents the identification number of the AGEBs in different colours. This region is

economically relevant because it hosts one of the most important ports of the country but its

location makes it vulnerable to hurricanes and floods. Due to this disaster event, authorities

declared a state of emergency in the State from 19 September 2010 to 19 October 2010,

which posed a significant challenge for Mexico because a substantial proportion of Mexico’s

maritime trade is shipped from this area.

Figure 4: Veracruz-Boca del Río. (Source: INEGI (2012).

5.1. Data Set

We gathered information from nine government agencies involved in the disaster across

health services (IMSS, SMEXICO and SVERACRUZ), food services (DICONSA), family

services (DIF), military (SEDENA and SEMAR) and civil protection (PC and SEGOB),

along with geographical information from the Mexican National Institute of Statistics and

Geography (INEGI) and the United States Geological Survey (USGS). This information

along with historical data about disasters in the region was used to estimate all the input data

and to design a set of representative scenarios. For the sake of brevity, we will describe the

main parameters associated with the agencies, facilities, and the conditions of the disaster.

For additional details, please contact the corresponding author.

GIS preprocessing. This study considered two kinds of facilities; distribution centers which

are used to prepositioning and dispatch the relief products and shelters that are used to house
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the victims. A total of 9 potential distribution centers and 43 candidate shelters were identi-

fied using Freedom of Information Requests (FOIs) to authorities, the shelter catalogue avail-

able, and the official website of the Ministry of Education (www.snie.sep.gob.mx/SNIESC/).

The latter was used along with Google Maps R© and Bing Maps R© to visually confirm the

locations. The geographical location of shelters and distribution centers in the area can be

seen in the appendix, in Figures 11 and 12, respectively. The location of each facility was

introduced in TRANSCAD R© for network analysis.

Agency. Decision-making in disaster situations in Mexico is centralized, with SINAPROC

as the coordinating body for disaster activities among different participants. As part of

SINAPROC, Table 7 shows the agencies involved and their resources according to FOIs of

the event caused by Hurricane Karl in 2010 and disaster management policies.

Table 7: Agency and their available resources

Agency Employees Vehicles Relief products

Small Medium Large Helicopter Food Medicines

DICONSA 69 10 20 20 0 2500 0

DIF 60 5 1 5 0 0 0

IMSS 123 206 18 1 1 0 22

PC 36 35 19 0 1 0 0

S. Mexico 0 25 0 0 0 0 20

S. Veracruz 0 101 0 0 0 0 0

SEDENA 359 102 77 4 0 0 0

SEGOB 8 3 0 0 0 0 0

SEMAR 141 43 0 0 0 0 0

Scenarios development. The proposed two-stage framework requires the evaluation of

a set of scenarios that reflect the randomness associated with the following parameters:

affected population (αks); connectivity between distribution centers and shelters (βijms);

available personnel for distribution center operation (γdcos ); available personnel for shelter

operation (γsos); available teams for healthcare (γhos); available personnel for distribution

(γdos); total operative personnel available (ηpos); total number of vehicles (ηvmos). To design

plausible scenarios, we perform three steps:

Step 1. Historical data from previous floods in Veracruz was used to generate plausible

realization for the number of victims. Table 8 shows the number of affected people in the
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previous disasters.

Table 8: Historical data of affected people allocated in shelters due to flood disasters in Veracruz, Mexico.

Year 1993 1995 1999 2003 2005 2007 2010 2011 2013

No. of people 20,553 5,000 21,990 5,538 5,434 22,225 12,476 3,935 2,367

The figures in Table 8 were further categorized based on a territorial classification pro-

vided by the technical report published by Cervera and Rangel (2015). Table 9 shows the

classification of the disasters, which occurred in the study area. The occurrence probability

of each range is based on its relative frequency.

Table 9: Categorization of the affected people based on the real-data sample from flood disasters in Veracruz,

Mexico.
Range of Number of Relative Average Median

victims realizations frequency

0 ≤ µ < 2, 500 1 11.11% 2367 2367

2, 500 ≤ µ < 15, 000 5 55.56% 6477 5434

15, 000 ≤ µ < 100, 000 3 33.33% 21589 21990

100, 000 ≤ µ 0 − − −

Step 2. In order to incorporate some variability in the small real-data sample, we first

performed a distribution-fitting for our real-data sample using the input analyzer tool from

the Arena simulation software. The result indicated that the Weibull distribution (with

α = 0.464, β = 3, 000 and offset = 2, 370) suited the data best. Afterwards, we simulated

a sample of 10,000 realizations based on the proposed Weibull distribution and categorized

them according to INEGI (2012), as illustrated in Table 10. It is worth noting that the

simulated sample now contains some realizations that fall within the last range, which might

be important to evaluate the preparedness decisions in very pessimistic scenarios.

Step 3. The proposed scenario-tree comprises the combination of the aforementioned

eight random variables. The random affected population was approximated by the average

and median values given by the simulation step illustrated in Table 10. As in the range

0 ≤ µ ≤ 2, 500 median differs from the average value in 0.54%, we only consider the worse

realizations given by the average value. From the second range onwards, both average and

median figures were used to compose the scenario-tree. In those cases, the probability of each
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Table 10: Categorization of the affected people based on the simulated sample.

Range of Number of Relative Average Median

victims realizations frequency

0 ≤ µ < 2500 2013 20.13% 2410 2397

2500 ≤ µ < 15000 6589 65.89% 5882 4736

15000 ≤ µ < 100000 1333 13.33% 27,309 24039

100000 ≤ µ 65 0.6500% 140415 125905

range was split in two equiprobable realizations, e.g., both 5,882 and 4,736 have the same

probability of occurrence equals to 0.32945, totalling 0.6589, which represents the probability

of the range 2500 ≤ µ ≤ 15000.

In order to further generate the number of victims in each one of the 315 neighbourhoods

shown in Figure 4, we use the information regarding their population. We then round up

the obtained fractional numbers to the next integer values based on the perspective that

it is better to hedge against worst-case values for the number of victims. This caused the

minor differences in the number of victims shown in Figure 5. For the remaining resources

variables, we investigate the current situation of the organizations and three possible alter-

natives were considered: pessimistic, realistic, and optimistic. The realistic values refer to

the resources that the agency owned at the time, the pessimistic and optimistic values refer

to a percentage 20% below and above from the realistic values, respectively. For the available

personnel for distribution center operation and distribution, though, we generated only two

options because there is no option for increasing the number of workers. Thus, realistic and

pessimistic values (20% below) were introduced. If the number of victims is 4,893 and if

the expectation of the resources is pessimistic, thus this combination provides the fourth

scenario of the scenario-tree depicted in Figure 5.
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  SCENARIO     𝜶   𝜷   𝜸𝐝𝐜   𝜸𝐬   𝜸𝐡   𝜸𝐝   𝜼𝐩   𝜼𝐯   𝝅   

                                            

  1     2,549   572   634   579   479   634   634   214   0.0201   

                                            

  2     2,549   857   796   727   599   796   796   260   0.1510   

                                            

  3     2,549   1,476   796   796   668   796   841   697   0.0301   

                                            

  4     4,893   572   634   579   479   634   634   214   0.0330   

                                            

  5     4,893   857   796   727   599   796   796   260   0.2471   

                                            

  6     4,893   1,476   796   796   668   796   841   697   0.0495   

                                            

  7     6,037   572   634   579   479   634   634   214   0.0330   

                                            

  8     6,037   857   796   727   599   796   796   260   0.2471   

                                            

  9     6,037   1,476   796   796   668   796   841   697   0.0495   

                                            

  10     24,182   572   634   579   479   634   634   214   0.0067   

                                            

  11     24,182   857   796   727   599   796   796   260   0.0500   

                                            

  12     24,182   1,476   796   796   668   796   841   697   0.0100   

                                            

  13     27,461   572   634   579   479   634   634   214   0.0067   

                                            

  14     27,461   857   796   727   599   796   796   260   0.0500   

                                            

  15     27,461   1,476   796   796   668   796   841   697   0.0100   

                                            

  16     126,051   572   634   579   479   634   634   214   0.0003   

                                            

  17     126,051   857   796   727   599   796   796   260   0.0024   

                                            

  18     126,051   1,476   796   796   668   796   841   697   0.0004   

                                            

  19     140,572   572   634   579   479   634   634   214   0.0003   

                                            

  20     140,572   857   796   727   599   796   796   260   0.0024   

                                            

  21     140,572   1,476   796   796   668   796   841   697   0.0004   

                                           

 Figure 5: Scenarios comprising the affected population and the seven aforementioned parameters related to

resources. All the figures refer to the aggregate values over zones, agencies, and so forth. Note . Darker

scenarios indicate more pessimistic ones.

5.2. Results and discussion

The optimization model was coded into GAMS R© 24.0.2 using CPLEX R© 12.5 as default

solver. The stop criteria for the branch-and-cut algorithm of the CPLEX was set at 3600

seconds and/or 1% of relative gap. All the tests were performed on a machine with Intel R©

CoreTM i7computer with 16 gigabyte RAM and MS-Windows 7 operating system. The main

objective of the numerical evaluation is to analyse the results of the optimization models,

thus providing relevant managerial implications that can be discussed further with diverse

Mexican authorities in an attempt to improve the current disaster preparedness management
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in the country.

The Pareto frontier obtained from solving the model for the instances presented can be

seen in Figure 6, which depicts the tradeoffs between objective functions. A total of 13 points

were obtained using the ε−constraint. The impact of those trade-offs is very important. For

instance, between points 4 and 5, an investment of over MXP 500,000 represents aid for 861

people. However, between points 10 and 11, the same investment would have a difference of

only 24 people across all scenarios. This serves as an example of the value of multi-objective

approaches.
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Figure 6: Pareto Frontier of the stochastic model

Table 11 shows an overview of some relevant results. There is a trend of increasing

facilities and agencies in solutions which have increased investment, which is reflected in

reduced shortage risk.

Figure 7 shows the number of victims without each type of assistance, namely, healthcare,

attention, relief aid, and shelter, for each solution of the ε−constraint method across all

scenarios. In an attempt to mitigate the overall shortage for assistance, the number of people

without attention and relief aid increases substantially at the same time as the number of

people without shelter reduces dramatically. This is because, as more people enter shelters,

the demand of products and services in shelters increases, thereby increasing the potential

number of people who cannot be completely served in there. However, please note the scale
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Table 11: Summary of the results of the Pareto frontier

Iteration Cost risk Number of Number of Number of

(people) DCs shelters agencies

1 1,573,183 6,388 3 5 3

2 2,058,174 5,849 2 9 5

3 2,567,864 5,605 2 15 5

4 3,060,418 5,445 2 7 5

5 3,573,696 4,584 2 11 7

6 4,073,597 3,813 2 15 5

7 4,573,649 3,536 4 15 5

8 5,069,961 3,409 3 21 7

9 5,573,625 3,293 4 26 8

10 6,068,641 3,204 3 37 8

11 6,553,219 3,181 3 28 8

12 6,877,528 3,143 4 40 8

13 6,869,193 3,134 3 39 8

in each section. The increase in risk of shortage of shelter care and relief is far lower than

the corresponding increase on the number of people allocated to shelters. Despite that, the

results show that healthcare becomes a priority because of the trade-off between objectives.

Adding one extra healthcare employee has more impact in the number of people served

compared to shelter personnel and relief sent and it is more cost-effective.
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Figure 7: Number of victims without healthcare, attention, relief aid, and shelter for all the 13 iterations of

the method. For each iteration, we plot the solution for all the 21 scenarios.
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It is expensive to activate shelters, which is the reason cheaper solutions include fewer

facilities compared to more service oriented solutions, as shown in Table 11. Figure 8 displays

the most used shelters in the area across iterations contrasted with the population of each

area. Most of the shelters are located towards the center with the purpose to provide a good

balance of capacity and safety for the most populated areas in the north and center. There

are also a couple of facilities serving the highly populated areas in the south. Investment in

these facilities to ensure they are readily available and in good conditions would be relevant

to ensure immediate reaction to a disaster.

Figure 8: Frequency of shelter activation. The squares represent the AGEBs, whereas the circles show the

potential location of shelters.

Relief distribution requires facilities, people, products, and vehicles. Similar to the case

of shelters, Table 11 shows an increasing number of distribution centers for service-oriented

solutions. Figure 9 introduces the frequency of selection of the distribution centers across

the 13 iterations contrasted with the population per area. Distribution centers in use are

in different areas, but the most used one is in the city center. This is due to connectivity

and the level of coverage required to deliver relief, with more possibility to timely serve the

different areas from the center. Beyond that facility, more investment in distribution centers

represents a benefit to surrounding areas because more facilities are activated closer to them.
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Figure 9: Frequency of distribution center activation. The squares represent the AGEBs, whereas the circles

show the potential location of distribution centers.

A key feature of the formulation provided is the potential to manage the number of

agencies deployed to the field to prevent supply congestion. From the point of view of the

coordinating organization, this feature makes it possible to focus on the resources required in

the disaster and allow other agencies to perform their regular activities. In fact, this aligns

to the response policy of different national disaster systems such as the one(s) in Mexico.

These systems favour deploying agencies by layers based on the severity of the disaster.

As it can be seen in Table 11, the number of agencies increases in more service-oriented

solutions when compared to cheaper solutions. Evidently, cost increases more rapidly than

the corresponding reduction in the number of people at risk, but this table shows that after

5 agencies are deployed, the potential improvement of involving more participants is lower,

whereas cost increases considerably. This result suggests that the involvement of agencies

should be carefully analysed considering the cost-benefit ratio. Although it can be rather

expensive to provide an increased relief assistance, some solutions exhibit quite an interesting

trade-off. For example, it is possible to improve the overall relief assistance by almost 17%

at the expense of less than 14% in the logistics costs; this result is due to iteration 6 of the

ε−constraint method (see Figure 13 in the appendix for further details).

Considering the added complexity in collaboration generated by having an elevated num-

ber of participants, it is important to have only the right expertise in place. Auf der Heide

and Irwin (1989) argued that excessive supply can create logistics issues because of conges-
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tion. This is further complicated by the uncertainty on the supply of human and material

resources experienced in disasters (Rodríguez-Espíndola et al, 2020). Incorporating that di-

mension into the optimization model makes it possible to have a more realistic view of the

participants required to reduce the possibility of not only shortages, but also excess. This

has relevant implications for decision-making because the solutions delivered by the model

are more reliable, which can serve to introduce another degree of realism to the model. In the

results of the model, there is a high level of expertise in terms of healthcare, but not enough

staff was available to provide shelter attention despite the number of employees allocated

to that activity. The result from 7 shows the need to introduce more operative support to

activate and manage shelters.

The number of participant agencies also affects transportation decisions. Ranging from

cheaper to service-oriented solutions, the number of used vehicles increased as part of the

added investment and the inclusion of more participants (See figure 14 in the appendix).

In general, the solutions show that different types of vehicles can be used depending on the

resources available, which leads to the belief that heterogeneous fleets can be valuable in

these circumstances. The reason for this is that the variation in terms of distance (range of

the vehicles), the infrastructure state, fleet ownership, and the type of demand areas require

heterogeneous capabilities from the vehicle fleet.

6. ARE THERE BENEFITS OF USING THE TWO-STAGE STOCHASTIC

APPROACH?

In this section, we show that the proposed two-stage stochastic programming approach

brings benefits to the analysis of the disaster preparedness problem under study. Moreover,

we prove that working with simpler approaches might not be a good idea if the mitigation

of people-at-risk is the primary goal. Traditionally, the relevance of two-stage stochastic

formulations is measured in terms of their relative performance in comparison to determin-

istic (’simpler’) approaches. Mathematically, this is done through the analyses of both the

Expected Value of Perfect Information (EVPI) and the Value of Stochastic Programming

(VSS).

Let us assume that the Mexican Civil Protection National Council (SINAPROC) has per-
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fect and accurate information on the victims needs and overall supplies/resources beforehand

the next potential disaster. In this case, we can solve a deterministic problem based on the

information given by scenario s, for example, in order to determine the optimal preparedness

plan for this specific situation. To simulate how good our decisions would be with perfect

information, we solve an optimization problem for each scenario s, which is the so-called

Wait-and-See (WS) problem whose corresponding optimal value is given by zWS
s . In our

case, we would have 21 deterministic problems to solve as a result of our developed scenar-

ios. By taking the expectation over the 21 scenarios, we obtain the expected wait-and-see

value, given by zWS =
∑

s∈S πs · zWS
s . Finally, EVPI is computed as the difference between

the objective function of the stochastic model (zRP) and the expected wait-and-see solution

(zWS), i.e., EVPI = zRP − zWS. As our problem focuses on the minimization of the number

of victims without assistance, EVPI yields the number of people to whom we would be able

to provide further assistance if perfect information is available.

If we replace all stochastic parameters by their average values, we end up with a de-

terministic optimization problem, usually called The Expected Value Problem (EV). EV

is generally easier to solve than the the two-stage stochastic programming problem (RP).

However, using the EV solution means that we will not take advantage of the information

given by each disaster scenario, nor its corresponding probability. Therefore, it would not

be possible to take actions towards minimizing people-at-risk according to each outcome

of the random variables. VSS precisely assesses the effectiveness of the EV solution. For

this purpose, we solve the two-stage stochastic programming problem (RP) and the Expect

Result of Using the EV Solution, or simply EEV problem, and compute their corresponding

objective values zRP and zEEV. It is worth noting that both EEV and RP exhibit the same

mathematical structure, but EEV is a simplified version in which all its first-stage variables

are pre-fixed according to the EV optimal solution. Thus, optimizing EEV means deter-

mining only the optimal second-stage decisions. Mathematically, VSS = zEEV − zRP shows

how good the RP approach is in terms of mitigating the shortage risk in comparison to the

expected value approach.

Table 12 summarizes the main results for both metrics. For all iterations, we have

RP > WS − bear in mind all values are given in number of victims −, showing that
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randomness plays an important role in our problem regardless the fact the minimization

is in favour of costs or shortage risk. Under perfect information, we could provide further

humanitarian assistance to 206 victims on average, which corresponds to almost 5% of the

shortage risk function. In the worst-case (best-case) scenario, the WS approach is able to

fulfil 564 (95) more victims in comparison to the stochastic solution. The analysis of the

(sub)optimal shortage risk objectives given by RP and WS shows that incrementing the

financial budget iteratively has a stronger (better) effect in the RP than in the deterministic

WS problem. In fact, notice that the risk of not satisfying victims needs decreases slightly

faster in RP than in WS, with the exception of the first few iterations. This behaviour

is illustrated in Figure 10. Since EV and WS are both deterministic approaches, their

behaviours are similar, unless in some iterations in which EV experienced relatively high

optimality gaps, e.g., in the 9th iteration.

Remarkably, all the EEV problems turned out to be infeasible when the first-stage de-

cisions were fixed according to the EV solutions. Therefore, taking preparedness decisions

based on a single expected value instead of on the proposed set of scenarios dramatically

increases the shortage risk. Mathematically, we represent VSS→ +∞ to emphasise that the

risk is infinitely higher in EV than in RP, which makes sense from the practical point of view,

as humanitarian assistance cannot be performed in light of the EV solution. One way to find

feasible values for EEV, though, relies on relaxing part of the first-stage decision variables

given by the EV problem. Therefore, we re-solve EEV by unfixing Qdc
oi , Qa

oim, Qs
oj, Qh

oj, and

Vimo, thus keeping the remaining first-stage decision variables Xi, Yj, Wo, and Pnio fixed.

The resulting EEV problem was feasible for all the iterations, suggesting that the number

of personnel and vehicles has a direct impact on the implementability of the expected value

solution, unlike the location and prepositioning decisions. In practice, making decisions ac-

cording to the average number of victims and resources would imply more resources and,

thus, the risk of not assisting victims with a proper assistance would be higher.
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Table 12: Summary of the results associated with both metrics EVPI and VSS.

Iteration RP? WS?? EVPI EV??? EEV VSS EEV† VSS†

1 6388 6,134 255 5,184 Infeasible +∞ 6,535 147

2 5849 5,544 305 4,386 Infeasible +∞ 6,019 171

3 5605 5,233 372 3,788 Infeasible +∞ 5,582 −

4 5445 4,881 564 3,080 Infeasible +∞ 5,564 120

5 4584 4,156 428 3,253 Infeasible +∞ 5,506 923

6 3813 3,703 110 2,868 Infeasible +∞ 5,489 1,675

7 3536 3,441 95 1,599 Infeasible +∞ 3,639 103

8 3409 3,299 110 718 Infeasible +∞ 3,423 14

9 3293 3,187 106 7,752 Infeasible +∞ 7,304 4,011

10 3204 3,102 102 1,113 Infeasible +∞ 3,352 148

11 3181 3,076 104 720 Infeasible +∞ 3,214 33

12 3143 3,029 115 702 Infeasible +∞ 3,190 47

13 3134 3,031 103 702 Infeasible +∞ 3,185 51

Average 4,199 3,986 213 2,759 − − 4,769 620

Minimum 3,134 3,029 95 702 − − 3,185 14

Maximum 6,388 6,134 564 7,752 − − 7,304 4,011

? Maximum elapsed time of 14,400 seconds per iteration; Average optimality gap of

0.7805%; ?? Maximum elapsed time of 3,600 seconds per iteration and subproblem;

Average optimality gap of 1.475%; ??? Maximum elapsed time of 3,600 seconds per

iteration; Average optimality gap of 11.29%.

† Approximate EEV and VSS via relaxing the fixation of Qdc
oi , Q

a
oim, Qs

oj , Q
h
oj , and

Vimo. The average optimality gap is 0.8571% in this case.
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Figure 10: Relationship between the shortage risk given by RP, WS, EV, and EVPI approaches.

7. CONCLUDING REMARKS

The risk of shortage of products in disaster relief has been commonly addressed in the

literature, but the risk of shortage of services needs further investigation, especially in a

multi-disciplinary context. This study has proposed a novel multi-agency stochastic model

for disaster preparedness considering the balance between cost and people-at-risk as conse-

quence of the shortage of human and material resources necessary to alleviate victims in

the aftermath of a disaster. The formulation supports typical preparedness and response

decisions related to the selection of facilities, stock pre-positioning, relief distribution and

organization management in a stochastic environment with uncertainty in several supply

sources and victims’ needs.

A set of scenarios was generated for analysis based on the flood of Veracruz, Mexico,

in 2010. Tests based on 21 variants of the scenario show the capability of the model to

balance resources whilst serving different areas. The results show the value of integrating

uncertainty into a multi-agency setting for disaster management. In fact, if perfect and

accurate information were available, it would be possible to assist almost 5% more of the

overall people-at-risk, which is far from negligible in dealing with a humanitarian supply

chain. Remarkably, we found that making preparedness decisions based on expected values

leads to infeasible solutions in several scenarios, thus undermining the effectiveness of the

relief operations.
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The model solution shows how integrating the decision of the number of agencies can

contradict the instinct of sending all of the resources possible to the affected area. Even

when uncertainty was accounted for, the solutions of the model suggest that the people-

at-risk can be significantly reduced with fewer agencies than the number available. This

is because in most cases participants have a certain expertise, which makes them valuable

for specific activities. Therefore, depending on demand, agencies were activated based on

their capabilities and resources, preventing the deployment of unnecessary participants. In

practice, this can reduce supply congestion and allow to decrease the disruption generated by

having to force agencies to temporarily leave their normal activities to help in the emergency.

Additionally, the results show the trade-off between cost and people-at-risk, which is faced

by decision-makers. The bi-objective nature of the model was justified by these trade-offs,

which shows that the impact of investment in more service-oriented solutions was not nearly

as efficient as it was for cheaper solutions. This finding can help authorities to identify the

need for balance between both measures and incorporate it in their decisions.

The model has the potential to support decision-making under different conditions. In-

troducing uncertainty in demand, supply, and connectivity can provide more confidence in

the suggestions coming from the results. In most disaster situations, resources are scarce

and information imperfect, circumstances in which the model proposed in this research can

provide support. This was the case in the instance presented, in which the available resources

were not enough to fulfil the needs of the different scenarios. Under those circumstances,

the results showed the value of considering services in shelters (shelter care and healthcare)

because of the human resources required for these activities, which limit the number of em-

ployees available for other initiatives. In that sense, it can be noted that medical care seems

to be one of the priorities of Mexican authorities, as they currently seem to have enough

medical teams to cover different scenarios. Conversely, more emphasis must be placed on

planning for shelters and human resources to handle these facilities, as the results showed

shortages of employees to open more facilities and limited availability of pre-approved shel-

ters. Similarly, the stock prepositioning policy should be revised to prepare for a wider range

of circumstances.

We have applied the state-of-the-art branch-and-cut (B&C) method implemented in
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CPLEX 12.5 for solving the ε−constraint iterations. Therefore, we ensure that the ob-

tained solutions are optimal or within 1% of the optimal solution within plausible running 

times. Notice that, considering that our disaster timeline is given in weeks, it might be 

acceptable to have the optimal solutions after a couple of hours. We acknowledge, though, 

that it would be first necessary t o implement our approach i n open source solvers t o allow 

their free use by relief agencies, as well as to build a user-friendly interface to make it more 

appealing for supporting pre-disaster decisions in practical humanitarian contexts. For this 

purpose, we understand that speeding-up the solution approach might be desirable and this 

could be done through heuristics and metaheuristics based on the problem decomposition, 

such as in Moreno et al (2019, 2020), which can be a promising future research. Also, as 

our model is particularly relevant from the multi-agency coordination viewpoint, it would be 

insightful to test it in assisting logistics decisions when there are different types of disasters 

occurring simultaneously. In such cases, the uncertain nature of the concurrent disasters 

naturally imposes additional challenges for coordination and resources deployment.
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APPENDIX

The appendix is a section including mathematical notations, extra results, tables or figures

that were referred to in the main text. The resources introduced in this section can help

improve the understanding about the implications of the research.

Additional data and results. For the location of facilities, a set of shelters and distri-

bution centers based on information from authorities and official guidelines were included.

Candidate shelters and distribution centers are depicted in Figures 11 and 12, respectively.

Figure 11: Location of possibles candidates a distribution center. (Source: Author’s own elaboration)
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Figure 12: Location of possibles candidates a shelter. (Source: Source: Author’s own elaboration)

Figure 13 shows the relative trade-off between the two objective functions, risk and cost.

The axes are given in relative values. Negative variations indicate reduction, whereas positive

variation indicate increase. We highlight the solution given by iteration 6 of the ε−constraint

method in which we see that it is possible to improve the overall relief assistance by almost

17% at the expense of less than 14% in the logistics costs.
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Figure 13: Trade-off between risk and cost for our case-study. The solution of the iteration 6 of the

ε−constraint method is highlighted in red.

Figure 14 shows the overall number and type of vehicles used to satisfy the victims needs

for all the iterations and scenarios. As expected, there is a clear trend in using more small

and medium-sized vehicles as the financial budget becomes more flexible. This result is

particularly evident in scenarios with a larger number of victims and more overall resources,

e.g., scenarios 15, 18, and 21. Apparently, there is an opposite trend in selecting large

vehicles, as suggested by Figure 14. The reason is that more service-oriented solutions tend

to use smaller vehicles to reach the increasing number of shelters. This is also related to the

agencies activated, as larger agencies are deployed for cheaper solutions with larger vehicles,

whereas other agencies provide smaller vehicles in service-oriented solutions. Helicopters are

adopted to perform relief distribution in scenarios 5, 6, 7, and 12, because these vehicles are

considerably more expensive and have more limited reach, so it seems they are only used

when absolutely necessary.
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Figure 14: Number of small, medium and large vehicles, and helicopters for all the 13 iterations and 21

scenarios.

Despite the fact that some studies support claims that relief organizations usually prefer

a homogeneous fleet of vehicles (Martinez et al, 2011), our results show that a heterogeneous

fleet composed of small and medium-duty vehicles is more often used in most scenarios.

The most diverse fleets were obtained in iterations 5, 6, and 7 for those scenarios with a

small number of each type of vehicles, e.g., scenarios 4, 7, 10, 13, and so forth. Therefore,

the heterogeneous fleet was deemed necessary to maintain a reasonable service level. The

amount of aid transported for each mode follows the same rationale than the number of

trips/vehicles, and for this reason, we now focus on the statistics behind these decision

variables. Although medium vehicles are substantially more often used than large ones,

both modes carry out a similar quantity of overall relief aid. On average, small vehicles

transport approximately three times more relief goods than medium and/or large ones. On

the other hand, helicopters transport a negligible quantity of aid in comparison to the other

modes. Even when its capacity is more efficiently used in iteration 12 and scenario 16, its

load corresponds to less than 20% of the small and medium vehicles’ loads combined.
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