Evans, Robert (2020). The interpretation of small molecule diffusion coefficients: Quantitative use of diffusion-ordered NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 117 , pp. 33-69.
Abstract
Measuring accurate molecular self-diffusion coefficients, D, by nuclear magnetic resonance (NMR) techniques has become routine as hardware, software and experimental methodologies have all improved. However, the quantitative interpretation of such data remains difficult, particularly for small molecules. This review article first provides a description of, and explanation for, the failure of the Stokes-Einstein equation to accurately predict small molecule diffusion coefficients, before moving on to three broadly complementary methods for their quantitative interpretation. Two are based on power laws, but differ in the nature of the reference molecules used. The third addresses the uncertainties in the Stokes-Einstein equation directly. For all three methods, a wide range of examples are used to show the range of chemistry to which diffusion NMR can be applied, and how best to implement the different methods to obtain quantitative information from the chemical systems studied.
Publication DOI: | https://doi.org/10.1016/j.pnmrs.2019.11.002 |
---|---|
Divisions: | College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry College of Engineering & Physical Sciences > Aston Institute of Materials Research (AIMR) |
Additional Information: | © 2019, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Uncontrolled Keywords: | DOSY,Diffusion NMR,Molecular weight,Stokes-Einstein equation,Analytical Chemistry,Biochemistry,Nuclear and High Energy Physics,Spectroscopy |
Publication ISSN: | 0079-6565 |
Last Modified: | 07 Jan 2025 08:28 |
Date Deposited: | 05 Dec 2019 14:28 |
Full Text Link: | |
Related URLs: |
https://linking ... 079656519300585
(Publisher URL) http://www.scop ... tnerID=8YFLogxK (Scopus URL) |
PURE Output Type: | Review article |
Published Date: | 2020-04-01 |
Published Online Date: | 2019-11-26 |
Accepted Date: | 2019-11-20 |
Authors: |
Evans, Robert
(
0000-0003-1471-201X)
|
Download
Version: Accepted Version
License: Creative Commons Attribution Non-commercial No Derivatives
| Preview