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Abstract

Measuring accurate molecular self-diffusion coefficients, D, by nuclear magnetic resonance 

(NMR) techniques has become routine as hardware, software and experimental 

methodologies have all improved. However, the quantitative interpretation of such data 

remains difficult, particularly for small molecules. This review article first provides a 

description of, and explanation for, the failure of the Stokes-Einstein equation to accurately 

predict small molecule diffusion coefficients, before moving on to three broadly 

complementary methods for their quantitative interpretation. Two are based on power laws, 

but differ in the nature of the reference molecules used. The third addresses the uncertainties 

in the Stokes-Einstein equation directly. For all three methods, a wide range of examples are 

used to show the range of chemistry to which diffusion NMR can be applied, and how best to 

implement the different methods to obtain quantitative information from the chemical 

systems studied. 



1. Introduction

Translational diffusion is a fundamental form of mass transport and underpins almost all 

chemical processes. Self-diffusion arises from the random translational movement of 

molecules driven by thermal energy and can be characterised by the (self-)diffusion 

coefficient, D, of a species. Diffusion coefficients give information on the size and shape of 

molecular species. NMR spectroscopy offers a neat, practical method for the measurement of 

diffusion coefficients in solution. With the advent of pulsed field gradients (PFGs) and the 

development of ever more robust, versatile and reliable diffusion NMR pulse sequences, 

particularly since the early 1990s, NMR has increasingly been used to measure diffusion 

coefficients of chemical systems. These data are typically presented and interpreted in a 

qualitative manner. Quantitative interpretation of the measured diffusion coefficients is more 

of a challenge. While there is in principle a simple inverse relationship between 

hydrodynamic radius and diffusion coefficient - the larger a species is, the more slowly it will 

move through solution -in practice the detailed relationship between size and diffusion 

coefficient is more complex. A further challenge is to interpret diffusion coefficients in terms 

of molecular weight, , since this is the parameter of most interest to the chemist. 

Section 2 covers the essentials of diffusion NMR methodology and some vital 

experimental considerations. While advances in instrumentation and techniques have made it 

easier to measure reliable and meaningful self-diffusion coefficients in NMR experiments, 

there are a number of experimental problems that can lead to the acquisition of incorrect data 

and hence misleading diffusion coefficients. These problems are addressed, with particular 

focus on the highly deleterious effects on data quality of sample convection, and potential 

solutions are discussed. Section 3 reviews the Stokes-Einstein equation and illustrates its 

intrinsic assumptions. The Stokes-Einstein equation is the starting point for understanding the 

relationships between diffusion coefficient and physical parameters such as hydrodynamic 



radius. However, as demonstrated in Section 3, it performs poorly at predicting small 

molecule diffusion coefficients on the basis of their molecular weight. To understand how 

and why the Stokes-Einstein equation fails, the assumptions implicit in the equation, and 

where they fail, are discussed and reviewed.

Methods for the estimation of molecular weight from diffusion coefficients fall into 

two broad categories. Section 4 introduces power laws for rationalising diffusion coefficients. 

The diffusion behaviour of macromolecules such as proteins and polymers is well described 

by power laws of the form D = K α. By appropriate parameterisation of the law for a 

given set of macromolecules, molecular weights of species of similar structure can be 

estimated from their measured diffusion coefficients. This can be successfully extended to 

small molecules. The approach needs experimental calibration data to be fitted to the power 

law to obtain values for the two parameters K and α. Power law methods have been further 

categorised here into two distinct subsets. Internal calibration methods use three or more 

compounds, measured in the same sample, to determine the power law parameters. External 

calibration methods use a calibration curve derived from a larger number of separate 

measurements on individual compounds in a given solvent; the molecular weight of an 

unknown is then determined using a measurement on a sample containing the unknown and a 

single reference calibrant. In these experiments, a relative diffusion coefficient or diffusivity 

is often used for the estimation of molecular weight. Section 5 returns to the Stokes-Einstein 

equation, showing how the problems posed by each of the assumptions inherent in its 

derivation can be addressed, either by well-defined analytical solutions or by appropriate 

estimation. This gives a third, much more general, approach to molecular weight estimation 

for small molecules. For each of the three types of method, a small number of key references 

will be discussed in detail. Sections 6 and 7 compare the different methods and discuss some 

related issues, before concluding the review.



The aim of this article is not only to review the various approaches for relating 

diffusion coefficients to molecular weight, but also both to give illustrative examples of their 

successful application to a wide range of different areas of chemistry, and to give the reader 

enough information to use the techniques themselves.  

2. Experimental Measurement of Diffusion Coefficients

Self-diffusion is one of the fundamental modes of mass transport. It arises from the random 

translational motion of particles in a liquid, driven by the thermal energy of the system, and 

the random collisions between particles as they move through the fluid. In the absence of 

flow, the average displacement of a given molecule over time should be zero. This is not true 

of the mean square displacement. The root mean square distance, , a particle is displaced 

by in a time t in n dimensions is given by Eq. (1).  

(1)

The constant here, D, is the self-diffusion coefficient, a measure of the rate of displacement 

of a particle. The study of molecular diffusion in solution, through measurement of self-

diffusion coefficients, offers insights into a range of physical properties of molecules, 

including molecular size and shape [1] as well as aggregation, encapsulation, complexation 

and hydrogen bonding [2-4]. In contrast to spin relaxation times, diffusion coefficients are (in 

the absence of intermolecular exchange) the same for all nuclei in a molecule. While 

relaxation times do depend on the rates of molecular motions, they can be quite different for 

different nuclei in the same molecule, being determined by local structure and motion.

Diffusion NMR data are often presented in a two-dimensional format known as 

diffusion-ordered spectroscopy (DOSY) [5-7]. This is a highly visual format and easy to 

interpret qualitatively, as shown in Fig. 1 where the signals of different components of a 

mixture containing quinine, geraniol and camphene in methanol-d4 can be identified. One 



dimension contains the chemical shift information, the other depicts the diffusion coefficients 

of the species. Species’ signals are thus separated out by size, rather as in a chromatogram. 

DOSY spectra act as both a graphical overview and a summary of a set of diffusion results.

 

Figure 1: 2D DOSY spectrum of a mixture of quinine (Q), geraniol (G), and camphene (C) in 

methanol-d4, with TSP (T) as a reference, acquired on a Varian INOVA 400 MHz 

spectrometer. The DOSY spectrum was produced using HR-DOSY fitting, with 

compensation for the effects of non-uniform field gradients [8]. Reproduced with permission 

from Colbourne et al., J. Am. Chem. Soc. 133 (2011) 7640-7643. Copyright (2011) American 

Chemical Society.

2.1 Pulsed Field Gradient (PFG) NMR

Measurements of diffusion by NMR date back to the earliest pulsed NMR 

experiments [9, 10], but only became widely used with the introduction of pulsed field 

gradients [11]. In most NMR experiments, the magnetic field around the sample is kept as 

homogeneous as possible, in order to obtain narrow, high-resolution signals in the NMR 



spectrum. The Larmor equation (Eq. (2)) gives the resonant frequency of a spin  as the 

product of the nuclear gyromagnetic ratio γ and the local magnetic field strength . Where 

the field  is homogeneous, there will be a single, well-defined, resonant frequency for each 

spin observed. 

(2)

The application of a magnetic field gradient, , along the -axis causes the magnetic field to 

vary along the -axis of the sample. This adds a gradient term to  in the Larmor equation 

above to give Eq. (3). 

(3)

Applying the gradient for a short pulse, of duration δ, introduces an additional evolution of 

the phases of the signals, . When the field gradient is switched off, the spins 

revert to their original precession frequencies. The effect of the linear field gradient pulse is 

to label the spins in the sample with phase angles that depend linearly on their height in the 

sample tube. This phase labelling is the basis of most diffusion NMR pulse sequences. 

While there have been many advances in the design of PFG-based diffusion NMR 

pulse sequences, they all share a number of common features. An initial 90° radiofrequency 

(RF) pulse is used to excite the spins. Spins are now in the xy-plane and relax according to 

the transverse relaxation time T2. A series of RF and magnetic field gradient pulses are 

applied to the sample that wind the magnetisation into a helix, encoding the positions of the 

spins within the sample into their phases. All diffusion NMR pulse sequences then include a 

delay, typically labelled Δ, during which the species move by Brownian motion. A second 

series of RF pulses and PFGs serve to refocus the magnetisation helix prior to spectrum 

acquisition. This refocusing is achieved by ensuring that the second gradient pulse has an 

effective area equal and opposite to that of the first pulse. Any species that have moved 

during the delay period will therefore experience a difference between the encoding and 



decoding effects of the gradient pulses and their magnetisation will not be completely 

refocused. Hence, the signals from the sample are attenuated to an extent governed by the net 

displacement of the species responsible over the delay period. 

While the first pulsed field gradient diffusion NMR experiments date back to the 

1960s [11], it is only since the 1990s that advances in the design and manufacture of NMR 

spectrometers and hardware have made such techniques routinely accessible. The simplest 

diffusion NMR pulse sequence is the PFG spin echo experiment (Fig. 2(a)). In this case, the 

delay Δ contains a single 180° pulse to refocus the precession of the magnetisation and 

ensure that the second gradient pulse has an equal but opposite effect on the spins in the 

sample. After the 90° pulse, the signal suffers from losses due to transverse relaxation. As 

delays of ca. 0.1 – 0.5 s are needed for most small to medium sized molecules, these losses 

due to relaxation can significantly reduce the intensities of the peaks observed. A further 

complication is evolution of coupling, or J-modulation, again when the magnetisation is 

transverse. This leads to signal phase distortions and, when DOSY processing is used, can 

cause peaks to be displaced in the diffusion dimension [12]. 

Most modern diffusion NMR pulse sequences are based on the PFG stimulated echo 

experiment (Fig. 2(b)) [13]. Here, the single 180° pulse is replaced by a pair of 90° pulses. 

The second 90° pulse, applied shortly after the first diffusion-encoding gradient pulse, 

ensures that magnetisation is transverse only for relatively short periods, remaining 

longitudinal for most of the diffusion period Δ. For small molecules, T1 is almost always 

equal to or longer than T2. Signals therefore decay mostly according to the potentially slower 

longitudinal (T1) relaxation rates, and relaxation losses are reduced compared to the spin 

echo. By minimising the time for which magnetization is transverse, the stimulated echo also 

reduces both J-modulation and the susceptibility to any disturbances in the magnetic field. 

Following the diffusion period, the magnetisation is returned to the transverse plane by a 



third 90° pulse for refocusing and subsequent detection. While the stimulated echo 

necessarily throws away half of the signal intensity compared with the spin echo, overall it 

has better performance, for the reasons discussed, and most pulse sequences in current use 

(see Figs. 2(c) and following) are derived from stimulated echoes.

In order to obtain good quality diffusion data, it is important to minimise gradient-

dependent spectral distortions, particularly in signal phase or lineshape. One of the common 

problems with the hardware used for early diffusion NMR experiments was the presence of 

eddy currents in the probe and magnet bore and their effects on the acquired diffusion NMR 

data. When a magnetic field changes, e.g. when a field gradient is switched on or off, eddy 

currents will be induced in any local conductor and create their own magnetic fields. These 

can have a number of effects on the NMR experiment, the most obvious of which is 

disturbance of the field-frequency lock, commonly seen as brief dips in the lock signal level 

following gradient pulses. Eddy currents cause both the magnitude of the main field B0 and 

its shape to be time-dependent. Free induction decays therefore show time-dependent phase 

shifts and accelerated decay. This leads to distinctive effects on the lineshapes of the signals, 

which are typically broadened, slightly displaced, and show a negative dip to one side. While 

changes in pulse sequence, such as the addition of a z-filter just before acquisition of signals 

[14], can reduce the deleterious effects of eddy currents, these are of limited efficacy. Modern 

NMR hardware minimises eddy currents at source, by using actively shielded gradient coils 

and, if necessary, using appropriately shaped gradient pulses to limit the rate of change of 

magnetic field. 

It is also possible to incorporate specific design elements into pulse sequences to 

further minimise lineshape distortions. Bipolar paired pulse gradients are pairs of gradient 

pulses, separated by a 180° RF pulse, which replace a single gradient pulse but have half its 

duration and opposing signs. The two equal but opposite gradient pulses have a net dephasing 



effect for all spins refocused by the 180° pulse. The use of paired pulses generates weaker 

eddy currents as those induced by the first gradient are partially cancelled by those induced 

by the second. In addition to this, as the RF pulse has no effect on the lock signal, the effect 

of the first gradient pulse on the lock channel is almost immediately refocused by the second. 

In contrast a single gradient pulse dephases the lock signal, which then takes hundreds of 

milliseconds to return to its initial level. Fig. 2(c) depicts a stimulated echo pulse sequence 

with bipolar paired pulsed gradients [15]. An important extra consideration here is the need 

for phase cycling; as the number of RF pulses in the experiment increases, so does the length 

of phase cycle [16] required to enforce the desired coherence transfer pathway through the 

pulse sequence. One way to reduce the need for phase cycling is to add a single “spoil” or 

“purge” gradient pulse to the diffusion delay, when the desired magnetisation is longitudinal. 

Adding a single pulse in this way can cause problems: first, it will dephase the lock signal, 

and second, it may inadvertently refocus unwanted coherences which will then interfere with 

the observed peak intensities and lead to inaccurate measurement of diffusion coefficients. 

By using asymmetric bipolar paired PFGs and additional balancing pulses, the 

Oneshot sequence [17] (Fig. 2(d)) sidesteps the requirement for extensive phase cycling. The 

diffusion-encoding and decoding bipolar pulse pairs are unbalanced, with an intensity ratio of 

1+α:1‒α, dephasing any magnetisation that has not been refocused by the 180° pulse. To 

balance this bipolar pulsed pair and mitigate any effects on the lock signal, an additional pair 

of gradient pulses, each of relative intensity 2α, is added within the diffusion period. 

Similarly, to ensure that all gradient pulses are balanced and that the total gradient area of the 

pulse sequence is zero, an additional gradient pulse is added to the relaxation delay at the 

start of the experiment to balance the spoil pulse in the diffusion delay. A final refinement is 

that a further pair of gradient pulses, decremented in strength as the diffusion-encoding pulse 

pairs are incremented, can be added before the relaxation delay. This keeps the net energy 



supplied to the gradient coil by the sequence for a single transient constant, avoiding any 

effects of changes in gradient coil temperature as the diffusion-encoding gradient amplitude 

is changed. 

Fig. 2 shows a selection of diffusion NMR experiments, all described in the preceding 

text, starting with the spin echo and gradually incorporating more features to ensure cleaner, 

less distorted spectra. Note that this is far from a complete list. The four pulse sequences 

described in this section are just the tip of the iceberg and many others exist. Of particular 

note are pulse sequences that also include solvent suppression [18, 19] and those based on the 

perfect echo [20]; the latter can minimise the influence of chemical exchange on the final 

diffusion data [21]. The acquisition of good quality diffusion NMR data does not end with 

pulse sequence selection. Section 2.2 will describe and discuss a number of additional 

experimental factors to be considered when acquiring diffusion NMR data.



Figure 2: Pulse sequence timing diagrams for PFG diffusion NMR experiments. (a) The PFG 

spin echo experiment (PFGSE). (b) The PFG stimulated echo experiment (PFGSTE). (c) The 

stimulated echo experiment with bipolar paired PFGs. (d) The Oneshot experiment. Closed 

rectangles represent 90° pulses and open rectangles represent 180° pulses. 

Obtaining a set of diffusion NMR data is then a case of performing a series of 

experiments using increasing gradient strength, g, with an appropriate PFG NMR pulse 

sequence. It is also possible to run experiments varying diffusion delays, Δ, or pulsed field 



gradient durations, δ, rather than gradient amplitudes, but this approach leads to variable 

attenuation from relaxation losses. Processing of such data needs to take this attenuation into 

account. 

A full treatment of the evolution of the magnetisation during pulsed field gradient 

experiments requires the use of the Bloch-Torrey equations [22]. This set of three-

dimensional partial differential equations describes how magnetization evolves over time 

under the effects of chemical shift, the inhomogeneous magnetic field along the -axis, 

relaxation, unrestricted diffusion, and translation. Fortunately, full expressions for diffusional 

attenuation can be derived analytically for a given pulse sequence. A representative example 

is the Stejskal–Tanner equation (Eq. (4)) [11], which relates the signal, S, measured in a 

pulsed field gradient experiment to the signal measured with zero gradient, S0, the 

gyromagnetic ratio, γ, of the spins being observed, key experimental parameters of the pulse 

sequence used, δ and Δ′, the strength of the magnetic field gradient pulses, g, and the 

diffusion coefficient of the species of interest, D. The effective diffusion time, Δ′, which 

allows for the effects of diffusion during the gradient pulses, depends on the pulse sequence 

used; values have been calculated for a number of widely used sequences [23]. 

(4)

Deriving diffusion coefficients from diffusion NMR data in principle requires the use 

of an inverse Laplace transform, a classic ill-posed problem [24]. The simplest and most 

widely used approach to DOSY, and that used to generate the 2D spectrum in Fig. 1, is the 

high resolution approximation (HR-DOSY) [6]. This method fits a single exponential to the 

decay of each peak in a spectrum. The diffusion coefficient for each peak is estimated by 

least-squares fitting of the peak height decay, and a DOSY spectrum is constructed in which a 

peak is centred at the fitted diffusion coefficient with a width determined by the error 

estimated in the fit. A number of peaks in the proton spectrum of quinine, geraniol and 



camphene overlap, violating the high resolution approximation. Where peaks from different 

species overlap, their net amplitudes will decay multiexponentially and fitting with a single 

exponential will give an intermediate diffusion coefficient. This leads to misplaced peaks in 

the DOSY spectrum, such those observed between 1 and 2 ppm in Fig. 1. The overlap of 

resonances from different components of a mixture may render interpretation of the signals 

difficult, but it will certainly make quantitative interpretation of their diffusion coefficients 

impossible. While it is possible to use biexponential fitting [25], this requires very high 

signal-to-noise ratio data it is much better to use isolated, well-resolved peaks to determine 

diffusion coefficients. The increased availability and use of 3D DOSY sequences may help, 

as peaks in such spectra are spread out in a 3rd frequency dimension, with a commensurate 

improvement in their resolution [26]. 

A number of alternative methods are available for the processing of diffusion NMR 

data. It is possible to obtain an estimate of a distribution of diffusion coefficients through the 

use of constrained, or Tikhonov, regularisation [27, 28], to approximate the numerical 

Laplace transform. As the result tends to take the form of broad peaks and distributions, 

constrained regularisation typically finds wider use in the analysis of diffusion NMR data of 

polydisperse systems such as polymers [29, 30]. The methods discussed so far 

(monoexponential and multiexponential fitting, and constrained inversion) have been 

univariate: each signal in a spectrum is analysed individually. Multivariate methods analyse 

the entire data set as a whole. A defined number of sets of signals with similar attenuation 

behaviour from across the spectrum are identified and grouped as distinct chemical 

components. While the data can be presented as a 2D DOSY spectrum, this is potentially 

misleading. Results are usually presented as a decomposition of the experimental data into a 

set of 1D spectra, each of which represents an individual chemical component of the original 

mixture, and is associated with a single diffusion coefficient. Multivariate methods for 



processing diffusion data include COmponent-REsolved NMR spectroscopy (CORE) [31-33] 

and improved algorithms (e.g. SCORE and OUTSCORE) [34, 35], maximum entropy [36], 

the Direct Exponential Curve Resolution Algorithm (DECRA) [37-39], and blind source 

separation (BSS) [40]. LOcal Covariance Order DOSY (LOCODOSY) [41] and filter 

diagonalization [42] may considered as hybrid methods: multivariate techniques applied to 

spectra which have been broken up into smaller, more manageable chunks of spectrum each 

containing only signals from a few distinct chemical components. A near-complete set of 

methods has been implemented in both the free Matlab-based DOSY Toolbox software [43], 

and its recent successor, GNAT [44].

This introductory section is intended to give an overview of the underlying theory, 

and some practical aspects, of diffusion NMR. A number of important reviews, papers and 

book chapters have been referenced earlier in the Section but a full review of diffusion NMR 

experiments, the Stejskal–Tanner equation, and processing of diffusion NMR data is 

somewhat beyond its scope. Accurate determination of small molecule diffusion coefficients 

is vital: if the original experimental data are flawed, then any interpretation of them will 

necessarily suffer. 

2.2 Experimental considerations

Key to the successful interpretation of diffusion data is the acquisition of good quality 

data in the first place. The experimental data acquired can be vulnerable to a number of 

different influences. Some, such as the calibration and spatial non-uniformity of the pulsed 

field gradients, relate directly to the NMR hardware. These systematic errors can be removed 

by appropriate calibration. Others, such as the presence of eddy currents and the effect of 

pulsed field gradients on the field-frequency lock, result from the interaction of pulsed field 

gradients with the experimental hardware and the NMR spectrometer itself. As discussed in 



the previous section, advances in spectrometer and pulse sequence design can reduce the 

effects of both greatly. The remaining, typically minor, deviations from ideal spectrometer 

behaviour, such as lineshape errors and inconsistencies in RF pulse phase and amplitude, can 

often be corrected for by the use of reference deconvolution [45]. 

A final source of errors comes from the sample itself. Diffusion coefficients are very 

sensitive to temperature. More detrimentally, temperature gradients in a sample lead to 

convection currents and hence an additional source of motion, and thus of signal attenuation, 

in the sample. The following section will discuss some of the more important factors for the 

acquisition of good quality experimental diffusion NMR data, with a particular focus on 

convection. While severe convection in a sample is readily noticeable, mild convection is 

much more common than might be expected and leads to higher apparent diffusion 

coefficients. This, in turn, makes the successful interpretation of such data difficult. 

2.2.1 Temperature control

There are two ways in which temperature directly affects diffusion coefficients. First, 

in the numerator of the Stokes−Einstein equation, the thermal energy driving diffusion is 

given by kBT. The higher the temperature, the more energy the solute and solvent molecules 

have and the faster they move through the solution. Second, and much more importantly, in 

the denominator, the solvent viscosity η depends strongly on temperature. Over the range of 

temperatures likely to be encountered in NMR diffusion measurements, this temperature 

dependence is well represented by an Arrhenius-like equation [46], which can be fitted with 

two parameters. 

It follows that accurate and precise knowledge of the temperature of the sample is 

vitally important for quantitative interpretation of the diffusion coefficients acquired. 

Temperature control in NMR experiments is typically achieved by the flow of gas, either air 



or nitrogen, past a heating element and then around the sample tube. The gas is thermostatted 

using a thermocouple temperature sensor that is typically placed as close to the sample as 

possible. This does not give a direct measurement of the true temperature of the sample; that 

requires an NMR thermometer. NMR thermometers are samples that have a known, 

calibrated temperature dependence of chemical shift or chemical shift difference, often 

arising from the temperature dependence of intermolecular hydrogen bonding. Such 

thermometers can be used to determine the actual temperature of the active sample region. 

Neat ethylene glycol [47] and neat methanol [48] have found use as standard NMR 

thermometers, often being supplied as standard samples by spectrometer manufacturers. 

There are some problems with these samples. The very strong nuclear magnetization in pure 

liquids can produce broad and/or shifted peaks, degrading accuracy of temperature 

measurement. Low-viscosity liquids may be limited in the temperature range they can used 

over due to convection. One effective NMR thermometer is a sample of methanol-d4 in a 

thick-walled tube. This sample has a well-defined quadratic relationship between the 

temperature and the chemical shift difference between the signals of residual CHD2OD and 

CD3OH, and has been shown to measure temperatures accurately from at least 280 K up to 

320 K, the temperature range spanned limited here by the probe used in the original study 

[49]. 

Once the sample temperature has been calibrated, its stability and uniformity are still 

important parameters to control or, at least, to account for. This can be troublesome. Most 

laboratory-scale air conditioning units oscillate in temperature over a range of 1 - 2 K and, 

particularly for aqueous systems, this can have detrimental effects on individual spectra. 

Spectra acquired at even slightly different temperatures will show small differences in 

chemical shift. As the ambient room temperature slowly fluctuates over the duration of an 

experiment, the effects can be observed as “wiggles” in the raw diffusion data [50]. The best 



solution is to minimise temperature gradients by careful temperature control of the 

spectrometer itself and of its air or nitrogen supply. 

2.2.2 Gradient calibration

Key to the acquisition of reliable diffusion coefficients is the accurate calibration of 

the magnetic field gradients used in the diffusion NMR pulse sequences. Rather than 

controlling a pulsed field gradient strength directly, the NMR hardware will control a current 

passing through the gradient coils. The actual gradient strength produced depends on the 

probe, the gradient coil contained within it, and the gradient amplifier. Each gradient probe 

will have its own, different, characteristic gradient strength for a given current value. 

Calibration of the gradient strength for a given probe is therefore vital for acquiring accurate 

diffusion coefficients. 

Several approaches to gradient calibration exist. One is based on obtaining a 1D 

image (i.e. a signal profile) of a sample containing an NMR phantom of known dimensions. 

This is typically a small disk of plastic, such as teflon, positioned in the centre of the RF 

coils. There is no NMR signal from the disk in the 1D image, and the gradient strength can 

then be calculated by comparing the frequency width of the gap in the image with the known 

dimensions of the disk. While this method is potentially an absolute calibration of the 

gradients, there will be distortions of the spectral profile caused by magnetic susceptibility 

discontinuities at the boundaries of the disk, and the thickness and orientation of the disk 

need very tight control. A second, more commonly used, method is to deduce the gradient 

strength from measurements of a standard with a known diffusion coefficient. A number of 

standards have been suggested, with e.g. the residual HDO in a “pure” D2O sample giving an 

expected diffusion coefficient of 1.902 × 10‒9 m2 s‒1 at 298 K [51, 52]. It is also possible to 

use pure solvents, such as cyclohexane and DMSO, which also have well-characterised 



temperature-dependent diffusion coefficients [53], but these can give problems with radiation 

damping. A larger collection of accurately known diffusion coefficients for a range of 

molecular liquids has been provided by Weingartner and Holz [52]; this also includes 

calibrants for nuclei other than 1H. By using a wider range of compounds, a wider range of 

diffusion coefficients are included and the calibration no longer depends on a single 

measurement of diffusion coefficient. While straightforward, the method does require that the 

spectrometer’s temperature control is well-calibrated first. 

Neither of these two methods accounts adequately for a significant instrumental 

problem, however, which is that practical gradient coils generate gradients that are not 

constant over the active volume of the sample [8, 54]. Most gradient coil designs have a 

“sweet spot” in the very middle of the coil that provides the most uniform gradient, but the 

exact nature of how the gradient varies along the -axis (and to a lesser extent as a function of 

x and y) depends on the gradient coil design. The effect of spatial non-uniformity of the field 

gradients means that the experimental signal decay, as described by Eq. (4), deviates from a 

pure exponential. Different parts of the sample will experience different gradients, and hence 

their signals will attenuate as a function of field gradient at different rates. The resulting net 

signal observed will show a diffusional attenuation which deviates increasingly from 

exponential as the attenuation increases. It is possible to map this gradient non-uniformity 

and subsequently use this information to express the gradients as a function of position within 

the probe. Applying a weak “read” gradient during the acquisition of DOSY data makes 

different positions within the sample correspond to different frequencies within the spectrum. 

Given the known timing of the experiment, the known strength of the read gradient, the 

appropriate Stejskal-Tanner equation for the pulse sequence used, and the diffusion 

coefficient of the standard used (collections of known diffusion coefficients can be found in 

[52] and [53]), it is possible to map the spatial dependence of gradient strength and use this 



information to derive a corrected form for the Stejskal-Tanner equation, for example as the 

exponential of a power series in the normal Stejskal-Tanner exponent [8]. This is by some 

margin the most reliable calibration method, and allows accuracies of better than 1 % to be 

obtained.

2.2.3 Convection

Temperature can also affect the measurement of diffusion in a third way. Diffusion 

NMR experiments measure the random movement of the molecules in the sample. Any 

additional motion, such as the flow generated by convection, will lead to over-estimation of 

the diffusion coefficients. Typically, convection is seen as a critical phenomenon [55, 56]. 

When a sample of liquid is warmer at its base than at its top, the warmer, less dense, liquid 

will tend to rise, and the colder, denser liquid to sink. This is known as Rayleigh–Bénard 

convection [57] and, importantly, convection only starts when the vertical temperature 

gradient reaches a certain critical value determined not only by the sample geometry but also 

the dynamic viscosity, thermal diffusivity and thermal expansion coefficient of the liquid 

present in the sample. 

Given the temperature control apparatus of most modern NMR spectrometers 

described in Section 2.1.1, it might be assumed that, so long as the sample temperature is set 

lower than room temperature, the bottom of the tube would always be colder than the upper 

reaches and that no convective flow would form. This is not the case. The highly asymmetric 

space within the probe breaks up the air flow around the tube, leading to the presence of both 

vertical and horizontal thermal gradients. Horizontal temperature gradients also drive 

convection, through Hadley flow [58-60]. Importantly, this convective flow is not a critical 

phenomenon. Additional sources of flow in the NMR sample can, therefore, never be 

completely removed, so care has to be taken in reducing their effect as much as possible. 



Further complicating matters, it has been shown that, while the amount of convection present 

in a liquid NMR sample depends on sample-specific experimental parameters such as the 

fluid’s viscosity, thermal conductivity and expansivity as well as the sample’s size, shape and 

temperature, it also varies widely between different instruments and different probes. The 

parameter χ = βηκ, where β is the volumetric thermal expansion coefficient in K−1, η is the 

dynamic viscosity in Pa s, and κ is the thermal conductivity in W m−1 K−1, is a measure of the 

ease with which a sample of a given liquid convects under a horizontal temperature gradient 

[59, 60].

The effects of convection on acquired diffusion coefficients range from the severe to 

the subtle. Convection can introduce an additional cosine modulation to the diffusional signal 

attenuation. In cases of severe convection, the distortion is obvious - signals acquired with 

higher gradients may well be negative. Mild convection can be indistinguishable from 

unaffected data, and a fit to the expected exponential function will appear to give a good 

result. However, this measured diffusion coefficient will be larger than expected due to the 

additional component of mass transfer. 

Diagnosis of the presence of convection can take a number of forms. Perhaps the 

simplest is to exploit approximate relationship, Eq. (5) [61]. 

(5)

The effect of convection on the acquired diffusion coefficient, , can be approximated by 

adding a term containing the convective flow velocity, , and the diffusion delay time, . 

Diffusion coefficients can be measured with increasing values of  under otherwise identical 

conditions. In the absence of convection, the diffusion coefficients obtained should not 

change. The presence of convection is revealed by a linear increase in the experimentally 

acquired diffusion coefficients with longer diffusion delay times. 



Convection can also be identified, and quantified, by using a modified convection-

compensated double stimulated echo pulse sequence. When used as originally intended, the 

total diffusion encoding period of the latter is split into two equal halves, so that the effects of 

convection in the first echo are exactly cancelled by their reversal in the second echo. If the 

experiment is run asymmetrically, with different periods, Δ1 and Δ2, there will only be a 

partial cancellation of the effects of convection. A series of 1D experiments, where Δ1 and Δ2 

are varied systematically but their sum is held constant, will produce a spectra where the 

signal attenuation is related to the size of the imbalance between the two diffusion periods 

[62]. 

This method can be adapted to produce profiles of convection velocity, as a function 

of sample temperature. Fig. 3(a) shows data acquired from a modified convection-

compensated sequence, based on a 2D J-resolved iDOSY experiment, used for such studies. 

This sequence is designed to cancel the effects of constant flow when the imbalance, ΔΔ, 

between two diffusion delays is zero, allowing diffusion-weighted data to be acquired 

without interference from convection. When ΔΔ is non-zero, the signals from species with 

magnetogyric ratio, γ, moving with maximum z velocity vmax acquire a phase shift 

proportional to that velocity. Since a convecting NMR sample has equal net upward and 

downward flows of liquid, the net result of the phase shifts averaged over the sample is an 

amplitude modulation of the overall signal. A series of 1D NMR experiments is acquired for 

different values of the diffusion delay imbalance, ΔΔ. The experimentally obtained peak 

heights obtained at different values of ΔΔ can be fitted to a sinc (sin(x)/x) function, Eq. (6), as 

in Fig. 3(a), where the convection measurement method is applied to a sample of 99.8 % 

CDCl3 at 313 K to obtain measurements of the residual CHCl3 signal, S, as a function of ΔΔ, 

and hence estimate vmax, at that sample temperature. 



(6)

Measurements over a range of temperatures produce a profile of sample flow velocities as a 

function of sample temperature, as in Fig. 3(b) for samples of 99.8 % CDCl3 in both a 

standard and a thick-walled NMR tube [63].

Figure 3: (a) Experimental measurements of S(ΔΔ) (black circles) and fit to Eq. (6) (red

line) for residual CHCl3 in 99.8% CDCl3 in a standard NMR tube at 313 K acquired using a 

modified convection-compensated sequence based on a 2D J-resolved iDOSY experiment 



(upper). (b) Plot of maximum convection velocity, vmax, as a function of spectrometer 

temperature for 99.8% CDCl3 samples in both a standard NMR tube (red diamonds) and a 

thick-walled NMR tube (blue diamonds) (lower). All data acquired using a Bruker Avance 

300 MHz spectrometer equipped with a 5 mm PABBO BB-1H ZGRD probe. Both figures 

adapted from T.J. Rottreau, Application of liquid state nuclear magnetic resonance techniques 

for the study of porous materials, Aston University, 2018. 

A number of recent studies [59, 60] have used this approach to reveal the nature of 

convective flow in a number of different probes. Essentially, all probes show some evidence 

of convective flow. The presence of Hadley convection, induced by horizontal temperature 

gradients, means that convection is observed at temperatures below ambient as well as 

temperatures above. The effects of convection on measured diffusion coefficients have, 

therefore, been historically underestimated. As a result of the near-ubiquity of convection in 

NMR experiments, a number of experimental methodologies have been developed by which 

its effects can be reduced or compensated for. The thermal conductivity of sapphire is 

approximately 25 times greater than that of borosilicate glass [64], so the use of sapphire 

NMR tubes will greatly reduce the temperature gradients that drive convection. Narrower-

bore NMR tubes also reduce convective flow [65]. The advances in pulse sequence design 

detailed in Section 2.1 also include the development of convection-compensated diffusion 

NMR experiments. By using diffusion-encoding pulse sequence segments with equal but 

opposite velocity encoding, these experiments are designed to cancel the effects of laminar 

flow in the sample, albeit at the cost of loss of half of the signal [66, 67]. It is possible to 

predict how likely a solvent is to convect on the basis of its physical properties. Any 

quantitative study of diffusion coefficients should take care to reduce the effects of 



convection by using narrower bore tubes, convection-compensated diffusion NMR pulse 

sequences, or both if signal-to-noise is sufficient. 

2.3 Other Methods for the Measurement of Diffusion Coefficients

PFG NMR is not the only class of method by which diffusion coefficients of species 

in solution can be measured. An early name for self-diffusion was tracer diffusion, which 

gives a hint as to one method for its measurement [68]. In the tracer, or capillary, method, 

two solutions of the same liquid are prepared, one of which is labelled with a suitable 

radioactive “tracer” isotope. A capillary cell is filled with the tracer solution and then 

immersed in the unlabelled solution for a known length of time, over which normal, 

unrestricted diffusion can take place. The cell contents are then removed, dried thoroughly, 

and the radioactive content measured using standard counting equipment. This method found 

wide historical use in the study of water (light, heavy and super-heavy [69-72]) and the 

mobility of ions in water [73] and, even as recently as 2000, tracer diffusion methods were 

described as the status quo, although the advantages of diffusion NMR methods (faster 

measurement times, smaller sample volumes, easy application to wide chemical, pressure and 

temperature ranges) were noted [53]. 

Light scattering methods are more widely used, and are a common technique for 

particle size analysis in the nanometre range [74-76]. A laser is directed through a liquid 

sample. If there are particles in the sample, the incident laser light will get scattered in all 

directions as it passes through the sample. This scattered light can be detected over time as a 

fluctuating signal. Smaller particles, which move faster, will give rise to more rapid 

fluctuations in the scattered light than more slowly moving, larger particles. However, for 

most light scattering experiments, the intensity of the scattered light increases according to 

the 6th power of particle radius. A particle 10 times wider will give rise to a signal one million 



times more intense. This tends to limit light scattering techniques to nanometre to 

micrometre-sized species, such as nanoparticles, polymers, other colloids and proteins, rather 

than small molecules. 

Diffusion coefficients are used in electrochemical techniques to describe mass 

transport phenomena close to the electrode surface [77]. If an electrochemical process is well-

understood and the number of electrons being transferred is known, then electrochemical 

methods such as chronoamperometry [78], chronopotentiometry [79] and rotating disc 

electrode voltammetry [80] can be used to estimate the diffusion coefficients of the species 

involved. Taking chronoamperometry as an example, an electrochemical experiment where 

changes in electric current are measured as a function of time in response to a step change in 

the potential applied across the electrochemical cell, the measured current depends on the rate 

at which the molecule being studied diffuses to the electrode surface, giving rise to a D½ 

dependence in the current [81]. 

The ability to use standard commercial instrumentation for such measurements on 

routine samples has obvious advantages over these alternative methods, such as radioactive 

tracer studies, for measuring diffusion. NMR techniques allow relatively fast measurements 

over a range of temperatures, in a range of solvents, and require neither specialised handling 

of radioactive isotopes nor specialised electrochemical equipment. The diffusion coefficients 

obtained by the alternative methods described here can still be interpreted by the methods 

introduced in Sections 3, 4 and 5 of this review. The underlying mass transport being studied 

remains the same – Brownian motion. 

3. The Stokes-Einstein Equation

Any discussion of diffusion coefficients of small molecules in solution has to start with Eq. 

(7), the Stokes-Einstein equation [82]. This equation predicts diffusion coefficients, D, at a 



given temperature, T, by considering a hard, spherical particle, with radius , at infinite 

dilution in a continuum fluid with viscosity, η. The thermal energy of the system, kBT, kB is 

the Boltzmann constant, is balanced by the frictional resistance to movement of the particle, 

. 

(7)

A number of related equations exist. A similar equation, Eq. (8), was proposed, at 

roughly the same time, working along similar lines and with similar arguments, by 

Sutherland [83]. One key difference is the introduction of a variable parameter, , that 

determines the amount of friction between solute and solvent. 

(8)

If  = 0, corresponding to a “non-stick” or “slip” boundary between particles, the 

denominator of Eq. (8) reduces to . For larger molecules, the parameter increases until 

 = ∞, a “stick” boundary, and the Stokes-Einstein equation is reproduced. The Stokes-

Einstein-Debye equation [84] has a similar form to both Eqs. (8) and (9), but is used to 

predict the rotational diffusivity, Drot, of a molecule on the basis of its volume V. Wilke and 

Chang [85], in 1955, developed a generalised equation, Eq. (9), for predicting D from 

available properties of dilute solutions. While Eq. (9) is derived from the Stokes-Einstein 

equation, it is empirical in nature. Wilke and Chang’s motivation was to estimate diffusion 

coefficients, D in cm2 s‒1, for engineering purposes.

(9)

In this equation,  and V are the molecular weight and molar volumes of the 

diffusing species, respectively. There are two notable features in this equation. First is the 

introduction of the association parameter, x. This accounts for associated molecules behaving 



like larger ones and therefore diffusing at a lower rate. Different solvents permit different 

degrees of association and values were presented for the most widely used solvents, ranging 

from x = 2.6 for water and x = 1.9 for methanol to x =1 for benzene and heptane. Second is 

the use of explicit power laws for the mass and volume dependence of D. The Stokes-

Einstein equation shows an inverse dependence of the diffusion coefficient on the 

hydrodynamic radius of the diffusing species and, therefore, D would be expected to show a 

cube root dependence on molecular weight if all species had the same density. This cube root 

dependence is not reproduced in the Wilke-Chang equation. While the Wilke-Chang equation 

has been widely used and cited (> 4600 citations as of August 2019, a small number of very 

recent citations are provided for the curious [86-88]), the association parameter causes 

difficulties when new systems are studied. For example, x was seen to fall from 2.6 to ca. 2.3 

for the diffusion of small alcohols and glycerol through water. 

The Wilke-Chang equation is one of a family of similar equations [89-93] that all 

address the same problem: the Stokes-Einstein equation tends to significantly underestimate 

diffusion coefficients for smaller molecules. Fig. 4 compares the viscosity-scaled diffusion 

coefficients of a range of 108 small organic molecules, estimated using the Stokes–Einstein 

equation, with those measured in 5 different deuteriated solvents using diffusion NMR 

techniques [94]. Species were chosen to be representative of those commonly encountered in 

synthetic and pharmaceutical NMR laboratories, but excluded those with heavy atoms (i.e. 

>Cl) or those known to aggregate in dilute solution. In order to calculate Stokes-Einstein 

diffusion coefficients, the molecules were assumed to be spherical in solution, the densities of 

the pure compounds were used to calculate the hydrodynamic radii used in the plot, and a 

packing factor, dependent on whether the pure compound is solid or liquid, was also 

included. As the molecules get larger, the differences between estimated and measured 

diffusion coefficients decrease and the Stokes-Einstein equation works for large molecules 



and particles, but the under-estimation for fast moving, small molecules is clearly shown. 

Similar trends are observed for all five solvents. 

Figure 4: Measured diffusion coefficients plotted against diffusion coefficients calculated 

using the Stokes–Einstein equation for 108 samples of 44 small molecules in five deuteriated 

solvents, as detailed in the figure legend, with a solid line of unit slope. All data acquired on a 

Varian Unity 400 MHz spectrometer using the Oneshot sequence at 298 K. Adapted from 

Evans et al., Angew. Chem. Int. Ed., 52 (2013) 3199-3202. 

Another demonstration of how the Stokes-Einstein equation can sometimes struggle 

to predict small molecule diffusion coefficients can be found in electrochemical research by 

Gonzalez and Valencia [95, 96]. The diffusion coefficients of 29 molecules, a set spanning 

molecular weights from 100 to ca. 350 g mol‒1 and containing quinones and polyaromatic 

compounds such as triphenylene and chrysene, as well as ferrocene and some derivatives, 

were obtained using chronoamperometry. A linear relationship between diffusion coefficient 

and inverse molecular weight was observed rather than the expected cube root relationship. 

To rationalise this, the Stokes-Einstein equation was modified by expanding the cube root 

molecular weight term into a power series. This was facilitated by introducing a molecular 



density parameter, equal to /V, and assuming that the molecules studied were broadly 

spherical. If this molecular density can be assumed to be approximately constant for the set of 

molecules, then a first order series expansion of the Stokes-Einstein equation around a pivot 

mass M0 produces a linear function that fits data over a small range of molecular weights. 

There are two important points to bear in mind here. First, the molecules chosen were almost 

all aromatic or polyaromatic and therefore would be rather inflexible, flat molecules. Second, 

when constructing the Stokes-Einstein equation, the constant on the denominator was not set 

to 6, but left as a variable, n (named the “Sutherland constant” in the text, reflecting the 

presence of the variable  in Eq. (8)). This “constant” was estimated using the diffusion 

coefficients and was found to < 4 for the three solvents studied, rather than the 6 typically 

used in the Stokes-Einstein equation. 

Understanding how and why the Stokes-Einstein equation fails to predict small 

molecule diffusion coefficients is instructive. The original equation is based on two important 

assumptions. First, that the fluid through which molecules diffuse is a continuum, and 

second, that the molecules themselves are hard spheres. Related to this is the difficulty in 

relating the hydrodynamic radius of a molecule to its molecular weight. How these 

assumptions lead to the failure of the Stokes-Einstein equation in accurately predicting small 

molecule diffusion will be analysed and addressed now before moving on to more successful 

methods of predicting diffusion coefficients. 

3.1 Fluid Friction

A continuum fluid is one where the individual, discrete fluid molecules are neglected 

and the fluid is modelled as a single, uniform substance. Real solvents are not continuum 

fluids, but consist of small molecules moving randomly, tumbling as they collide with other 

molecules in the liquid. In chemical systems, the sizes of the solute molecules are likely to be 



in the same order of magnitude as the sizes of the solvent molecules. As implied by Eq. (8), 

differently-sized solute molecules will experience different frictional forces. A transition 

between these types of boundaries is sometimes invoked to explain apparent differences in 

frictional forces between larger and smaller molecules. It is clear that no one denominator 

will work across the entire range of possible molecular sizes. 

3.2 Molecular Shape

The effects of molecular shape also modify the friction experienced by molecules. 

Molecules are not spheres; a better initial approximation is to describe them as as ellipsoids. 

Ellipsoids can be either prolate or oblate, as defined by their aspect ratio, the ratio of the 

minor to the major axis (b/a). For illustration, a rugby ball is a prolate ellipsoid with an aspect 

ratio ca. 1.6, while an athletics discus is oblate and has an aspect ratio of approximately 5. 

The effect of molecular shape were analysed by Perrin [97], who derived analytical equations 

(Eqs. (10)(a) and (10)(b)) for the effect on friction of increasing aspect ratio in ellipsoidal 

shapes, in the form of an extra shape friction factor fs that multiplies the denominator of Eq. 

(7).

prolate ellipsoid

(10)(a)

oblate ellipsoid (10)(b)



For aspect ratios lower than 5, i.e. molecules that are not long thin rods or wide thin disks, the 

effects are typically much less than 10 % and can often be safely ignored.

3.3 Estimation of Molecular Size and Density

The final aspect of the Stokes-Einstein equation to be discussed is the size of the 

molecules themselves. There are a number of methods for characterising the size of 

molecules. The hydrodynamic radius, , only represents the radius of a hard sphere diffusing 

at the same speed as the particle being studied. Real molecular systems under investigation 

can be non-spherical, or can contain cavities and inlets, are flexible to a greater or lesser 

extent, and are solvated. Other measurements of radii exist, such as the van der Waals radius

, the radius of gyration, , the crystallographic radius, , and radii derived from 

density or partial molar volume, . The relationships between these different molecular 

dimensions are not always clear and depend on the molecules themselves. Some distinct 

trends can be observed. The space taken up by the atoms themselves, , is often the lower 

limit for molecular radius. The hydrodynamic radius  can be viewed as a radius of a 

hypothetical hard sphere, which has the same diffusion coefficient as the studied particle. A 

lower limit for  is, therefore, the van der Waals radius, . The two radii are only equal 

in the case of a compact molecule without any cavity inlet. The upper bound of the 

hydrodynamic radius can be estimated by the crystallographic radius , which can be 

obtained by dividing the volume of the crystallographic unit cell by the number of molecules 

contained while assuming a spherical shape for the molecule [1]. Clearly, the actual 



hydrodynamic radius of a molecule in solution depends on its chemical structure and any 

interactions with solvent. 

The Stokes-Einstein equation can still be used in the analysis of large, approximately 

spherical species [98, 99]. However, this is clearly not the case for small molecules. Faced 

with the problems described in this section, empirical methods are required to estimate  

from experimentally measured diffusion coefficients. Two limiting cases exist. For very well-

characterised problems, it should be possible to parameterise the relationship using 

measurements on a series of closely-related species. For more general problems, the 

assumptions inherent in the Stokes-Einstein equation can be revisited in order to find a 

universal, but necessarily more approximate, relationship that works across solvents, 

temperatures, and a wide span of chemistry. Note that both of these methods are based on 

equations that predict diffusion coefficients on the basis of the molecular weights of the 

species involved. The inverse problem of estimating mass from experimentally measured 

diffusion coefficients, whilst more useful to chemists and the interpretation of DOSY spectra, 

comes with increased (approximately tripled) uncertainties in the final molecular weight 

estimations. 

4. Power Laws

One approach to inferring molecular weight from diffusion coefficient is to assume that the 

diffusion coefficient or, often, the relative diffusivity (the measured diffusion coefficient 

divided by that of an internal reference) can be expressed in terms of the molecular weight of 

the species, , raised to an empirical negative power, –α, as in Eq. (11). 

(11)



This use of a power law is reminiscent of Flory theory [100, 101] (Eq. (12)), where the radius 

of gyration of a polymer, , is related to its molecular weight, , through a parameter, 

known as the Flory exponent, δ. 

(12)

The molecular weight of a polymer is an important quantity, because it determines many 

physical properties including the temperatures for transitions from liquids to waxes to rubbers 

to solids and mechanical properties such as stiffness, strength, viscoelasticity, toughness, and 

viscosity. It is tempting to relate the power law relationship to some physical quantity. In 

Flory theory (Eq. (12)), the reciprocal of the exponent, δ, is sometimes taken to represent the 

fractal dimension of the molecular chain. Fractal dimensions can be best understood as a 

measure of the way an object occupies three-dimensional space. While there may not be a 

direct link between a fractal dimension and the exponent obtained in diffusion NMR studies, 

the analogy can be useful in interpreting and understanding the diffusion data and, 

importantly, relating it to molecular structure. A purely one-dimensional object, such as an 

infinite rigid rod, will have a fractal dimension of 1, a completely packed sphere will have a 

fractal dimension of 3, and intermediate values correspond to molecules that partially fill 

empty space. These in turn give rise to limiting values of α of 1 and 0.33. These values can 

also be linked to the values predicted for polymers by Flory theory. Polymers fold differently 

in different types of solvent; the values of α for poor and good solvents are 0.333 and 0.588 

respectively. For Θ-solvents (i.e. those where polymer-polymer interactions are equal to 

polymer-solvent interactions, and the polymer behaves like a Gaussian chain [102]), the value 

of α is 0.500.

Empirically-obtained power laws have found wide use in the study of 

macromolecules, in particular proteins, peptides and polymers, with the scaling parameters 

depending on the molecular structure of the species, as well as on experimental conditions 



such as solvent choice and temperature. A plot of logD against , as in Eq. (13), for a 

series of structurally similar compounds can then be used to infer  for an unknown 

compound of the same class from the measured D. 

(13)

Each power law needs to be parametrized for the distinct class of compounds studied, 

producing a pair of parameters, logK and, more importantly, α. This constant of 

proportionality between logD and log  indicates the relationship between the molecular 

weight of the species and its hydrodynamic relationship in solution. Using a double-

logarithmic plot approach avoids direct discussion of some of the problems discussed in 

Section 2.1 of this review and has achieved good results for a range of macromolecules. 

While not small molecules, the power law relationships exhibited by proteins, polymers and 

oligosaccharides are instructive and give important context to their use in the interpretation of 

small molecule diffusion coefficients. 

Globular proteins are an example of a class of chemical species where values of α 

tend towards 0.33. Over a range of protein sizes spanning several orders of magnitude, two 

studies, one by Augé et al. using diffusion NMR [103] and another by Enright and Leitner 

[104], computing the fractal index for a set of 200 proteins based on structures in the Protein 

Data Bank, both obtained a value of α for proteins of 0.39. Earlier work by Jones and Wilkins 

[105, 106] related the radius of gyration of the proteins, acquired using diffusion NMR, to the 

number of residues, with similar results. The exponents for globular proteins tended towards 

0.33, while measurements in strongly denaturing solutions increased the value of α to 

approaching 0.6, similar to the exponent expected for a polymer in a good solvent. This 

difference in α can be used to distinguish between folded, disordered and denatured proteins. 

Dudás and Bodor [107] acquired diffusion coefficients of 12 globular proteins and 10 

intrinsically disordered proteins with sizes of up 65 000 g mol‒1. This work obtained a value 



of α for globular proteins of 0.381, consistent with previous work and near-spherical 

molecules. Intrinsically disordered proteins had an average exponent of 0.507, commensurate 

with their more extended, loosely packed structures. Small cyclic peptides have also been 

studied with diffusion NMR methods [108]. By closing the ring, these molecules have 

somewhat more constrained conformations compared to linear polypeptides. Two methods 

were used to estimate the hydrodynamic radii of a set of four polypeptides, one using a 

relative diffusion coefficient based on the simultaneous measurement of a small reference 

molecule, the other a direct calculation of radius from the Stokes-Einstein equation, 

estimating the viscosity of the mixed solvents used. The two estimates were found to be in 

close agreement for both peptides. While the analysis of the relationship between peptide 

length, related to , and the measured diffusion coefficient data was simplistic, the work 

shows that diffusion NMR can be readily applied to proteins of very different sizes. Diffusion 

NMR has also been used to estimate the molecular weights of human telomeric 22-mer DNA, 

and related mutants [109]. 

While proteins and oligopetides are constructed from chains of amino acids, with a 

number of different possibilities for each repeating unit, polymers are typically made from 

multiple repeats of the same unit. A number of qualitative applications of diffusion NMR to 

polymers have been proposed [110]. It is an effective and efficient method for the study of 

polymer mixtures [111], the determination of polymer molecular weight distributions [29], 

revealing and characterising colloid-like behaviour in di-block copolymers [112-114], and the 

structure elucidation of block copolymers [115, 116]. DOSY can also be used for the 

evaluation of the efficiency of purification processes, as traces of impurities such as 

unreacted monomers, degradation products and residual homopolymers can be identified not 

only through their chemical shifts but also through their faster diffusion. In addition, a 



DOSY-based protocol was developed by Delsuc and co-workers to access the dispersity, Ð, 

of linear polymers [117].

Quantitative study of polymer molecular weights reveals that macromolecules show a 

wide range of behaviour in solution, with values of α/δ dependent on polymer identity, 

solvent and polymer mass. The relationship between mass and diffusion coefficient for linear 

polymers, including polyethylene oxide, polystyrene, and poly (methyl methacrylate), 

spanning a wide range of molecular weights has been studied in a number of different 

solvents. Comparisons can be made between different species. Table 1, taken from Reference 

103, summarises the power law exponents obtained for polystyrene samples in a number of 

different solvents and for different polymer fractions. From the power law exponent, α, it is 

possible to estimate the fractal dimension of the folded polymer in solution, δ. These data 

show clearly that the structures of polymers in solution depend not only on solvent, as 

expected, but also on molecular weight. 

solvent α δ

toluene-d8 0.41 2.45

acetone-d6 0.47 2.15

CDCl3 (< 20 kD) 0.47 2.12

CDCl3 (> 20 kD) 0.61 1.63

THF-d8 (< 20 kD) 0.50 2.01

THF-d8 (> 20 kD) 0.62 1.61

Table 1: Experimentally obtained values of α and δ = 1/α for a series of polystyrene samples 

measured in common deuteriated NMR solvents. Data adapted from Augé et al., J. Phys. 

Chem. B 113 (2009) 1914 – 1918. 



By showing that the relationship between log  and logD is maintained over 4 

orders of magnitude for a series of polyethylene oxide standards, Augé et al. used double 

logarithmic plots as calibration curves to estimate the molecular weights of a number of 

different polymer samples. This method has since been successfully demonstrated for, e.g., 

polystyrene [118], poly(L-lactide) [119], and poly(N-acryloylmorpholine) [120], as well as 

being used to distinguish between different polymerisation mechanisms in the synthesis of 

poly(methylmethacrylate) [121]. 

Two recent diffusion NMR studies of polymers stand out due to their implications for 

similar studies of small molecules. Solubility is an important consideration in the study of 

polymers. Some combinations of molecular weight, temperature and solvent can render a 

polymer insoluble. However, a wider range of solvents and conditions are available to NMR 

than to chromatographic techniques. Poly(ethylene terephthalate) (PET) is one of the most 

common oil-based plastics, used widely in bottles and other food packaging. Poly(ethylene 

furanoate) (PEF) has been proposed as a bio-based replacement. Molecular weight 

determination for PET and PEF is severely hindered by their insolubility in most common 

solvents. Hot tetrachloroethane, trifluoroacetic acid (TFA), and hexafluoroisopropanol 

(HFIP) have proven to be the only solvents capable of dissolving these two polymers. While 

chromatographic methods are possible, the equipment needs to be resistant to the solvents 

and strict care and attention to health and safety needs to be maintained throughout. Using a 

series of PET standards to generate calibration curves for both Mn and Mw, DOSY NMR was 

used to measure average molecular weights of both PET and PEF samples in TFA-d, 

including those from commercial packaging samples. The diffusion NMR values obtained for 

Mn and Mw match those from light scattering techniques closely, with a near one-to-one 

correlation. The calibration curves revealed a power law relationship with α = 0.54 (δ = 1.85), 



consistent with other polymers studied using diffusion NMR. While measured diffusion 

coefficients were smaller, changing the solvent from TFA-d to HFIP-d2 had very little effect 

on α [122]. With extended π-bonding networks, it might be expected that conjugated 

polymers and copolymers, such as poly(3-hexylthiophene) (P3HT), would have very stiff 

backbones and therefore exhibit diffusion behaviour in solution consistent with an extended 

configuration. Four P3HT samples with distinct molecular weights (Mn of 5, 10, 20, and 40 

kg mol−1) and narrow weight distributions were used to construct a double-logarithmic 

calibration curve, where α = 0.56 (δ = 1.78). This was then used to estimate the molecular 

weights of a series of samples of an alternating copolymer comprising cyclopenta-[2,1-b:3,4-

b′]-dithiophene and pyridal-[2,1,3]-thiadiazole. Note that chromatography is ill-suited to the 

study of these conjugated polymers. First, the stiff backbones and low solubility in most 

common solvents means that they interact with and adsorb onto chromatographic columns. 

Second, the extended conjugated π-bonding network means that they can strongly absorb the 

wavelengths of light typically used in detection. Quantitative validation of the polymer 

molecular weights could therefore not be easily attempted. The molecular weights calculated 

from the acquired diffusion data agreed qualitatively with increasing red shift in the optical 

spectra of the polymers [123]. These two examples show that calibration curves for one 

group of compounds may find use for structurally similar compounds, and that choice of 

solvent can be important, whether by allowing access to otherwise inaccessible materials or 

by changing the structures it forms in its solvated state. 

Poly- and oligo-saccharides can possess more complex structures, with highly 

branched macromolecules common. Polysaccharides such as pullulan [124] and dextran 

[125] have been used as standard examples of linear, water-soluble, polysaccharides to 

demonstrate how diffusion NMR methods can be applied more generally. For pullulan, a 

water-soluble linear polysaccharide consisting of α-1,6-linked maltotrioses, an exponent α = 



0.49 (δ = 2.07) was obtained from the diffusion NMR data for 6 fractions spanning two 

orders of magnitude in molecular weight. The value of the exponent fits well with the fact 

that water is nearly a Θ-solvent for polysaccharides. This power-law information was used to 

characterise both single component samples and mixtures of pullulans and dextrins. It was 

further noted that sucrose, α-, β-, and γ-cyclodextrins, dextrans and a mannose-rich 

oligosaccharide also fitted the pullulan calibration curve. This suggests that the pullulan 

calibration curve could be used to provide rough estimation of molecular weights for both 

linear and slightly branched water soluble uncharged polysaccharides [50]. Hydroxyethyl 

starches are more disperse, branched polysaccharide structures, with both α-1,6- and α-1,4- 

linkages between sugar motifs. Diffusion coefficients for 15 samples were acquired and a 

range of fitting methods applied. These produced values for the power-law exponent between 

0.38 and 0.41, consistent with a more spherical solution state structure [126]. 

The use of power laws is not limited to the analysis of polymers and other 

macromolecules. In theory, the cyclisation of a linear molecule into a ring should have a 

significant effect on the molecular shape. There is a restriction in the conformational freedom 

of the molecules and imposed organisation of the structure. Diffusion coefficients, and the 

interpretation of power laws based on the acquired diffusion coefficients, allow for the effect 

of cyclisation on diffusion to be studied. Diffusion coefficients of a matched set of 

macrocycles, from 12- to 29-membered rings, and their linear analogues were acquired in 

both CDCl3 and DMSO-d6. The compounds were designed to span the molecular weight 

range typically associated with drug molecules (for example, the immunosuppressant 

cyclosporin is a 33-membered ring [127]) and to possess functional groups found in 

biologically-active molecules. The linear analogues all differed from the cyclic compounds in 

the breaking of a single carbon-carbon bond. Plots of logD against log  indicated power 

law relationships for all species, linear and cyclic, in both solvents. As perhaps expected, the 



cyclic compounds all diffused faster than the linear analogues, corresponding to a ca. 10 % 

difference in molecular weight. However, the slopes of the double-logarithmic plots for each 

matched set in a given solvent were very consistent, suggesting that the linear and cyclic 

molecules form similarly packed structures in solution [128]. 

For generic small molecules, such similarities between the packing and folding of 

structures in solution cannot be relied upon. In the previous example, the same functional 

groups are present in both of the paired molecules. Polymers consist of many repetitions of 

the same units, with the same groups repeating. As has been shown in this section, the 

polymer functional groups and solvents interact so as to give polymers different structures in 

solutions, depending not only on functional groups but also on sizes, with the atoms packed 

together differently as a result. Small molecules are much less flexible, and the incorporation 

of different functional groups can impart different degrees of rigidity and polarity into their 

chemical structures. As the next section will show, in the same solvent, small molecules can, 

however, behave similarly enough to one another to allow for the use of power laws in the 

quantitative interpretation of their diffusion coefficients. 

4. 1 Power Laws for Estimating Molecular Weights of Small Molecules

Power laws have also found use in attempts to deduce the molecular weights of small 

molecules from their diffusion coefficients. This is typically achieved by the use of 

calibration curves, double logarithmic plots of diffusion coefficient against molecular weight 

for a particular set of calibrant compounds. Hence, all of the following power law methods 

follow the same general approach. The diffusion coefficients of an appropriate series of 

reference compounds are measured, and appropriate double-logarithmic plots are used to 

generate the two parameters needed for each power law. This calibration is then used to 

predict the diffusion coefficient of a compound on the basis of its molecular weight, or to 



estimate the molecular weight of an unknown species from its diffusion coefficient. Such 

methods can be divided into two distinct categories, depending on whether the multiple 

different reference materials are added to the sample (internal calibration) or measured 

separately (external calibration). Their use in the quantitative study of small molecules was 

first demonstrated by Crutchfield and Harris [129]. There is also an important distinction to 

be drawn between internal and external referencing when calculating the diffusivity of an 

analyte: in the former, the diffusion coefficients of analyte and reference material are 

measured in the same sample, in the latter, in different samples. 

Seeking a quantitative relationship between diffusion and molecular weight for 

common, small, organic and water-soluble compounds, Crutchfield and Harris measured 

diffusion coefficients for two sets of molecules, dissolved in either D2O or CDCl3 with 

residual water or tetramethylsilane (TMS) as internal reference molecules respectively. 

Double-logarithmic plots of the data yielded two different power law relationships between 

relative diffusivity and molecular weight, with the same exponent, 1/α = 1.72 (α = 0.58). The 

test set of molecules spanned a range of molecular weights from 2 to 1300 g mol‒1. These 

data, and the resulting calibration curves, are shown in Fig. 5. Note that a wide range of 

compounds with different sizes and functional groups was included in each calibrant set. 

While the polymer work of the previous section suggests that, for best results, each 

chemically distinct set of compounds would need to be parametrised appropriately, general 

trends can be shown by using a very large number of different compounds. Clear correlations 

are seen between diffusion coefficient and molecular weight for a given solvent, with most 

species having a diffusion coefficient within ±30 % of the average for that MW.



Figure 5: Pair of calibration curves relating molecular weight and relative diffusivity for 

small molecules; diamonds signify the use of TMS as an internal reference (for solutions in 

CDCl3), squares signify HDO (for solutions in D2O). Molecules of abnormally high density, 

CH2Cl2 and CHCl3, or low density, H2 (data not shown in this figure), are not included in the 

fit. The upper figure is a residual analysis plot that retains the same symbols. All data 

acquired on a Bruker Avance 400 MHz spectrometer. Reproduced with permission from C. 

A. Crutchfield and D. J. Harris, J. Magn. Reson., 185 (2007) 179-182. Copyright (2007) 

Elsevier.

Certain aspects of the Crutchfield and Harris methodology warrant further discussion. 

First, the diffusion coefficients are measured relative to the diffusion coefficient of an internal 



reference. This use of relative diffusivity (Eq. (14)) ensures that the measurements are 

independent of sample viscosity and relatively robust to experimental flaws. 

(14)

This relative diffusivity now corresponds to the relative size of the analyte, X, compared to 

the size of the reference molecule. The exponents produced in their studies are then 

analogues of the fractal dimension, and are reciprocals of those used elsewhere. 

A stated aim of the Crutchfield and Harris approach was to minimise experiment time. 

This was achieved by assuming that their data fitted the Stejskal-Tanner equation, so it 

should be possible to obtain an accurate measurement of relative diffusivity from 

measurements with just two gradient values, as in Eq. (15). 

(15)

This approach reduces experiment times to just a few minutes, although at some risk of loss 

of precision in the measurement. A significant amount of attenuation is required in order to 

obtain accurate values, but this comes at the risk of low signal-to-noise in the most attenuated 

spectrum. In the original work, diffusion coefficients obtained in this way were within 2 % of 

those found from non-linear regression of the complete diffusion NMR data set, with 32 

increments of the gradient strength. For samples with low signal-to-noise ratio, caution may 

be well advised. 

Two examples of the methodology applied to practical examples have been 

demonstrated. In the original paper, the methodology was used to study a sample of virgin 

olive oil. The molecular weight of the main component of the oil, oleic triglyceride, was 

estimated to within 7 %. The olive oil sample also contains a number of aldehydic 

components, found at ca. 9.5 ppm in the NMR spectrum, which typically elude identification. 

A number of signals were identified in the spectrum, with a sharp peak at 9.74 ppm and a 



number of smaller peaks found between 9.4 and 9.6 ppm. The average molecular weights 

were estimated to be 350 ± 100 g mol‒1 for the sharp peak, suggesting that it is a larger 

compound than those tentatively assigned to this peak, hexanal and heptanal [130]. The 

smaller peaks were found to be heavier still, ruling out oxidized fragments of oleic acid. The 

molecular weight estimation gives an additional source of information, ruling out certain 

assignments and giving additional insight into possible compounds present. 

A further example of the application of the methodology is the analysis of derivatised 

compounds [131]. Derivatisation of functional groups aids in the analysis of mixtures and 

impurities by removing the original signals and introducing new, functional-group specific 

resonances, in unobscured regions of the NMR spectrum. This can overcome one of the key 

problems in diffusion NMR experiments, when overlap hinders the successful resolution of 

NMR signals and analysis of a sample. Molecular information beyond the immediate vicinity 

of the functionalised groups may be difficult to obtain, but the accurate estimation of 

molecular weight provides additional information for the classification of molecules, 

particular in chemically cognate groups of molecules and homologous series. 

In this work, two different derivatisation agents were used. For a sample set 

containing alcohols, thiols, amines and carboxylic acids, trichloroacetyl isocynate (TAI) was 

used. Two calibration curves were generated, with TMS used as a reference for all 

experiments, obtaining the same value of α as in the original study. Difunctionalised 

compounds such as methylsalicylic acid were found to be derivatised with TAI twice, with 

accordingly lower diffusion coefficients. In order to handle the two sets of compounds, and 

two calibration curves, an empirical correction factor, dependent on the number of reactive 

functional groups in the molecule, was added. The second derivatisation agent, 

chlorophosphane, reacts with alcohols and carboxylic acids to introduce a phosphorous-

containing group into the molecule. This allows the use of 31P NMR. The sparser phosphorus 



spectrum reduces the amount of overlap between signals and should allow for better spectral 

resolution of peaks in the spectrum and identification of compounds present. Diffusion 

coefficients were measured for a sample set of alcohols and carboxylic acids in 1:1 

pyridine:CDCl3, with (derivatised) bisphenol-A as the reference compound. Two calibration 

curves were generated, both with the same exponent as in the original study [129] and also 

the TAI-derivatised set of compounds. Difunctionalised compounds such as 1,3-propanediol 

were found to be derivatised with chlorophosphane twice, with accordingly slower diffusion. 

As with the TAI-derivatised set of compounds, an additional calibration factor was added to 

account for the additional molecular weight present. The combination of derivatisation and 

molecular mass estimation was demonstrated with a lubricant oil. First, the oil was 

derivatised with chlorophosphane, then 31P NMR was performed on the derivatised sample. 

Integrals relative to derivatised bisphenol A gave an indication of the relative concentrations 

of the species present. Difunctional compounds could be partially identified from pairs of 

resonances with equal integral areas. A combination of interpretation of chemical shifts and 

additional diffusion coefficient information allowed for the identification of terminal and 

secondary alcohols, phenolic groups, and carboxylic acids, with molecular weights between 

180 and 460 g mol‒1. No further identification of compounds was performed, in spite of 

several peaks in the spectrum corresponding to primary alcohols, with different estimated 

molecular weights. 

The work by Crutchfield and Harris appears to be the first application of the power 

law method to small molecules for deductive purposes. While the use of relative, rather than 

absolute, diffusion coefficient has become quite widespread, as will be seen later, only a 

study of terpene hydroperoxide chemistry in citrus oils has directly acknowledged the 

original methodology [132]. In this study, a new calibration curve was generated from 19 

perfumery compounds in cyclohexane-d12 with TMS as both chemical shift and diffusion 



coefficient reference. This method would now be categorised as an external calibration 

method: the diffusion coefficients of a sample set of representative compounds were 

experimentally measured individually and a double-logarithmic plot of the data generated for 

use as a calibration curve. A single reference compound was used in the sample of the species 

of interest, and its molecular weight estimated from its relative diffusion coefficient. An 

alternative approach would have been to generate the calibration curve using diffusion 

coefficients measured from multiple calibrant compounds added to the sample: an internal 

calibration method. 

4.2 Internal Calibration

Key to the successful use of any power-law based method is an appropriate 

calibration curve. As the name suggests, an internal calibration method uses reference species 

contained within the sample, with the diffusion coefficients measured synchronously with 

those of the species of interest. In much internal calibration work, just three co-solutes are 

added to samples to provide parameters for the power law. Using only two co-solutes, or the 

solvent itself, makes the calibration less reliable and removes any check on internal 

consistency. A fitted curve, based on the experimentally-derived diffusion coefficients for the 

three references, is generated and the molecular weight of the unknown is then calculated 

from this curve. Not all potential reference materials are suitable: they must be inert, soluble, 

non-aggregating, and cover a suitable range of molecular weights around that of the analyte 

being studied. Reactive and coordinating groups (alcohol/amide/ether/carbonyl) should be 

avoided. A suitable range of molecular weights needs to be spanned by the reference 

compounds, for example benzene (  = 78 g mol‒1), cyclooctene (  = 110 g mol‒1), and 

1-tetradecene (  = 196 g mol‒1). This mixture covers diffusion coefficients ranging from 

8.42 × 10‒10 m2 s‒1 (1-tetradecene in cyclohexane-d12) to almost 40 × 10‒10 m2 s‒1 (benzene in 



CD2Cl2). A further requirement is that the signals of the internal references must not overlap 

with those of the other components in the sample. A significant general issue with diffusion 

NMR is that the addition of more signals to the NMR spectrum increases the likelihood of 

spectral overlap, displacing the peaks in the diffusion dimension. This can, for example, rule 

out the use of TMS as an internal diffusion reference as its single peak sometimes overlaps 

with organolithium complexes as well as common impurities such as vacuum grease. 

Temperature dependence is also important. Organolithium compounds, amongst others, are 

typically studied at low temperatures. Changes in temperature mean changes in the rates of 

exchange between structures. In particular, the multiplet structures exhibited by exchanging 

signals can be sensitive to differences in their rates of exchange. 

Proof of principle of internal calibration was achieved using diisopropylamine 

(DIPA), studied in four deuteriated solvents (toluene-d8, cyclohexane-d12, CD2Cl2 and 

CDCl3), with 1-tetradecene, cyclooctene and benzene as internal references, as in Fig. 6(a) 

[133, 134]. All four compounds could be resolved and identified in the DOSY spectrum of a 

sample in toluene-d8 (Fig. 6a), and diffusion coefficients could then be estimated. Fig. 6(b) 

has been adapted from [134] using the experimental data contained within the DOSY 

spectrum and detailed further in the original work. First, a logD-log  calibration curve 

was plotted, here giving the relationship logD = ‒0.7374 log  ‒ 7.2783, with R² = 0.98. 

The diffusion coefficient of DIPA, the “unknown” in this sample, was also measured (D = 

17.9 m2 s‒1) and from this log  and  could then be calculated. For this sample, where 

[DIPA] = 1.12 M, the internal calibration method gave  = 98.5 g mol‒1 for the amine, a 

2.7 % difference from its actual  of 101.2 g mol‒1



 

Figure 6: (a) 1H DOSY spectrum of 1.12 M diisopropylamine (DIPA), and three internal 

references (benzene (BEN), cyclooctene (COE) and 1-tetradecene (TDE)), in toluene-d8 

(upper). All data acquired on a Bruker DRX 400 MHz spectrometer. Adapted from Li et al., 

J. Am. Chem. Soc., 131 (2009) 5627-5634. Copyright (2009) American Chemical Society. (b) 

Internal calibration curve constructed from DOSY spectrum in (a), consisting of a log−log 

plot of diffusion coefficients acquired for BEN, COE and TDE (black diamonds) as a 

function of  and the acquired diffusion coefficient of DIPA (white diamond) 



superimposed with subsequent deduction of molecular weight (lower). Adapted from Li et 

al., J. Am. Chem. Soc., 131 (2009) 5627-5634. 

The first demonstration of the wider utility of the method used a mixed trimeric 

organolithium complex, containing 1 equivalent of n-butyllithium (n-BuLi) and 2 equivalents 

of a lithium amide [135], with  = 678.1 g mol‒1. Diffusion coefficients for the three 

internal references and the complex were acquired for a number of different concentrations. 

Taking the data at 0.248 M as an exemplar set, values for α and logK of 0.552 and ‒7.689 

were obtained. The measured coefficient of the mixed complex was 5.6 × 10‒10 m2 s‒1, 

extrapolated to estimate a  of 673.6 g mol‒1, an error of only 0.7 %. Across all five 

concentrations of complex studied, the molecular weight of the species was estimated to 

within < 2 % in all samples. 

These proof of principle results were part of a larger study of the methodology and, 

importantly, its robustness and reliability [134]. logD-log  curves were parametrised for 

four deuteriated solvents for a range of sample concentrations, for a total of 28 different 

samples. While toluene-d8 and cyclohexane-d12 showed consistent trends in α and logK as the 

concentration fell, the denser CDCl3 and CD2Cl2 did not. It is noteworthy that the trends in α 

and logK as a function of concentration tend to mirror each other, a potential artefact of the 

two-parameter fit employed. However, as the internal calibration methodology plots a 

separate, independent calibration curve for each sample, the actual values of α and logK 

should not matter, albeit at the expense of any physical insight these parameters might have 

provided. Notably, these changes in do not appear to affect the reliability of the molecular 

weight estimation, with R2 values > 0.9 obtained for every sample tested. Sample densities 

and viscosities were also measured for these samples. These behaved as expected, with 

broadly linear changes with composition. Diffusion coefficients were observed to increase 



with decreasing viscosity, again as expected, and there was no clear relationship between the 

measured diffusion coefficients and the sample densities. Solvent identity played more of a 

role in the reliability of the techniques. R2 was observed to fall markedly for the halogenated 

compounds and there was a concomitant increase in the observed values of ΔD, so much so 

that the authors advised against the use of halogenated compounds in these studies. 

4.3 Internal Calibration with Nuclei Other Than 1H

While the high abundance and gyromagnetic ratio of the proton ensure adequate 

signal-to-noise ratio for most diffusion applications, it has already been shown that 1H DOSY 

can suffer greatly from overlapping resonances in the chemical shift dimension. With a 

relatively narrow frequency range and splitting of peaks due to near-ubiquitous homonuclear 

coupling, the addition of a number of internal references will crowd the spectrum further and 

increase the possibility of resonances overlapping. When two peaks overlap, normal diffusion 

processing methods struggle, and fail to provide a reliable diffusion coefficient for either 

signal. In order to avoid this, a range of internal calibration methods using nuclei other than 

1H has been developed. In every case, the aim is to produce a sparser NMR spectrum, with 

fewer overlapping signals, and better resolution of the peaks of interest. Before moving on to 

wider applications of the internal calibration method, these methods will be briefly 

summarised. Analysis of organometallic compounds, such as alkyllithiums, often uses a 

range of different nuclei to probe the chemical structure. This section identifies the nuclei 

used and any special experimental considerations needed. Specific applications and examples 

will follow in Section 4.4. 

4.3.1 13C



The major advantages of using 13C diffusion NMR are better resolution, a wider 

chemical shift range (extending to over 200 ppm), and the absence of any homonuclear 

coupling in natural abundance samples. A proton-decoupled experiment will produce only a 

single peak in the NMR spectrum for each distinct carbon atom in the sample. These 

advantages come at a cost. A low natural abundance, 1.1 %, a low gyromagnetic ratio, ca. 25 

% that of 1H, and long relaxation times conspire to make most 13C diffusion experiments 

prohibitively long in duration if sufficient signal-to-noise is to be obtained. A further problem 

is that the Stejskal-Tanner equation (Eq. (4)) contains a γ2 term in the exponent. To achieve 

an equivalent amount of diffusion encoding, the gradient pulses would need to be 

proportionally stronger or their durations longer. Concatenation with a polarisation transfer 

experiment is one solution, albeit at the expense of losing quaternary signals. Both refocused 

INEPT- and DEPT-based DOSY experiments have been devised. In these experiments, it is 

the proton magnetisation that is spatially encoded by pulsed field gradients, and subsequent 

transfer to the 13C nuclei produces diffusion-encoded carbon spectra [136]. The use of the 

INEPT sequence increases the signal-to-noise according to the ratio of the gyromagnetic 

ratios of the nuclei involved, 4 in the case of 13C and 1H. In the absence of significant J 

modulation, a spin echo can be used to introduce the required diffusion-encoding gradient 

pulses. The two-fold increase in signal-to-noise compared to a stimulated echo results in 

improved resolution in the diffusion dimension in the final 2D DOSY spectrum [137]. 

The combination of the internal calibration method for estimating molecular weight 

and 13C INEPT-DOSY was first demonstrated in a confirmation of the aggregation state of 

lithium diisopropylamide (LDA) in THF [138]. This non-nucleophilic Brønsted base [139] 

has found wide use in organic synthesis, but its polymeric solid state structure was only 

determined in 1991 [140] and, while its solid-state structure and aggregation are well 

established having been determined by X-ray crystallography [141], its solution state 



structure is highly dependent on both solvent and temperature. However, LDA is known to 

exist in a single form in THF: a di-solvated dimer LDA2.THF2. The internal references 

chosen for this proof of principle were 1-octadecene (  = 252.3 g mol‒1), cis-

cyclododecene (  = 166.3 g mol‒1), trans-cyclododecene (  = 166.3 g mol‒1), and 

benzene (  = 78.1 g mol‒1). Ethylbenzene (  = 106.2 g mol‒1) was also present as an 

impurity in the LDA-THF solution. The 2-dimensional DOSY presentation of the data (Fig. 

7(a)) allows for the extraction of one-dimensional spectral slices for each resolved component 

in the DOSY spectrum, showing the spectrum of a component at a given diffusion 

coefficient. This slice contains the complete spectral shift information of that component, aids 

assignment of all the signals of all components, and allows for the comparison of the 

identified components with spectra obtained from pure samples, as in Fig. 7(b). While this 

presentation of the data is certainly possible in the 1H DOSY experiments, the sparser 13C 

spectrum allows for the retrieval of clean sub-spectra with all chemical shift information 

intact. Fig. 7(b) shows that the INEPT spectral slices extracted from the 2D INEPT DOSY 

experiment resolve all the chemical shift information of all the components in the sample. In 

particular, the 13C signals of the oxygen-attached carbons in THF and the LDA methane 

carbons were present in the same slice, confirming that they are present in a single associated 

species. Also of note was the observation that the isomers of cyclododecene were resolved in 

the DOSY spectrum. Individual INEPT spectra of the two isomers could be retrieved. 13C 

INEPT-DOSY has also been used to characterise chiral mixed trimeric lithium complexes 

[133].



  

Figure 7: (a) 13C INEPT DOSY spectrum of THF-solvated LDA dimeric aggregate in 

toluene-d8 with internal references at 298 K (top). (b) Comparison between slices of 13C 

INEPT DOSY spectra (a-f) with 13C INEPT NMR spectra of authentic samples (aʼ-fʼ). (a) 

and (aʼ): (b) LDA dimer with internal references, (b) and (bʼ): LDA dimer without internal 

references, (c) and (cʼ): ODE, (d) and (dʼ): cis- and trans-CDDE mixture, (e) and (eʼ): 

ethylbenzene, (f) and (fʼ): benzene (lower). All data acquired on a Bruker DRX 400 MHz 



spectrometer. Reproduced with permission from Li et al., Acc. Chem. Res., 42 (2009) 270-

280. Copyright (2009) American Chemical Society.

The use of polarisation transfer sequences also allows for spectral editing of 13C 

spectra. The refocused INEPT sequence contains two pairs of delays, the latter of which can 

be altered to edit the acquired spectrum according to the multiplicities of the carbons present. 

By defining an angle, θ = 180JΔ2 , the expected intensities of signals with different numbers 

of protons attached can be calculated as functions of this angle. A delay, Δ2, corresponding to 

θ = 45° produces all responses, while one corresponding to θ = 135° will invert methylene 

groups relative to methyl and methine. The closely-related DEPT experiment allows for 

similar editing, through the modification of the flip angle of the third proton RF pulse. 

Indeed, the same results as INEPT are obtained, with an angle of 45° producing a spectrum 

with all non-quaternary carbons positive, and an angle of 135° inverting the methylene 

signals. As the editing is achieved by manipulation of a pulse flip angle in DEPT, it is more 

robust with respect to differences in one-bond coupling constant. In turn, this means that the 

editing efficiency of DEPT tends to be superior to that of INEPT when a range of J values is 

encountered, as it is in most cases. While INEPT- and DEPT-based sequences have been used 

in diffusion NMR experiments, the use of edited spectra has not yet been reported but may 

prove to be a useful complement to the existing pulse sequences and methodologies.

It is also possible to reduce experiment times by increasing the abundance of 13C in 

the samples [142]. While it is possible to use commercially available 13C-labelled internal 

references, a set of internal references can be synthesised using relatively inexpensive 13C-

labelled iodomethane. While the criteria for internal molecular weight references remain the 

same, the set of compounds previously used as internal references in 13C diffusion NMR 

experiments, barring benzene, becomes less useful as they are neither readily available with 



13C enrichment nor are easy to synthesise or modify with 13C labelled groups. Therefore, in 

addition to benzene-13C6, a set of internally labelled references was synthesised by Su et al. 2-

methoxy-2-methyloctane-13C1 was synthesised from octan-2-one, reacted first with the 13C 

labelled Grignard reagent 13CH3MgI, and then methylated to form the methoxy ether (  = 

159.3 g mol‒1). A second labelled ether was synthesised, albeit with a C23 backbone. In this 

compound, the methoxy-ether was 13C labelled by methylation of a tertiary alcohol (  = 

369.7 g mol‒1). The set of labelled references was completed by heptadec-2-ene, synthesised 

by terminally labelling hexadec-1-yne with 13CH3, followed by partial hydrogenation (  = 

239.4 g mol‒1). As two of the species used were ethers, the possibility of them coordinating 

with the lithium aggregates typically studied had to be ruled out. Any association of the 

compounds would lead to a reduction in the measured diffusion coefficient, rendering any 

logD-log  correlation using these compounds meaningless. The concentration of these 

ethereal, 13C-labeled internal references is many orders of magnitude less than the ethereal 

solvent used in the NMR samples. Additionally, these ethers are sterically hindered, 

especially compared to the solvent. It was therefore assumed that the reference ethers did not 

coordinate with the complexes significantly in either diethyl ether or THF.

To illustrate the use of isotopically labelled compounds, N-Boc-piperidine was 

synthesised, with a 13C label present in the t-butyl group. All species gave resolved signals in 

the DOSY spectrum produced, and a logD-log  plot was generated from the four internal 

references. From the internal calibration curve, the formula weight of labeled N-Boc-

piperidine was deduced to be 179 g mol−1, within 5 % of the actual formula weight of 186 g 

mol−1. In spite of this promising early validation work, the set of internal references was 

revisited. The C23-ether tended to precipitate out of diethyl ether solution at temperatures 

approaching 273 K, making it unsuitable for the variable temperature work typically required 

for organolithium studies. A squalene derivative containing a 13C-labelled methoxy group (



 = 443.8 g mol−1) was typically used instead, with little change to the quality of the 

internal calibration curve. With the 13C-labelled internal calibration method validated, it was 

used to investigate a number of organolithium systems. First, the aggregation state of 

methyllithium (MeLi) dissolved in diethyl ether, with and without the presence of several 

tertiary diamine ligands, was determined. MeLi is observed to exist as a tetramer in diethyl 

ether. As the content of LiI is increased, a range of other structures form, with iodine atoms 

incorporated into the structures. Two separate peaks were observed in the 13C spectrum. For 

the peak assigned as (MeLi)4, the internal calibration method gave a molecular weight of 407 

g mol‒1, suggesting a tetrameric species with diethyl ether coordinating to each Li on the 

vertices of the cube. The method failed for the proposed (MeLi)3(LiI) mixed species, perhaps 

a result of the increased density of the incorporated iodine atom. The successful 

characterisation of complexes incorporating N,N,N′,N′-tetramethylethylenediamine, racemic 

N,N,N′,N′-tetramethyl-1,2-diaminocyclohexane, N,N′-dimethylbispidine, N,N,N′,N′,N″-

pentamethyldiethylenetriamine and (−)-sparteine were also reported [139]. Of note was 

spectral evidence for the presence of minor amounts of mixed dimeric complexes consisting 

of one equivalent of MeLi and one equivalent of LiI in the presence of both N,N,N′,N′-

tetramethyl-1,2-diaminocyclohexane and N,N′-dimethylbispidine. 

4.3.2 2H

The cost and effort of introducing 13C labels into most organic compounds makes the 

approach detailed in Section 4.3.1 expensive and impractical. It is both cheaper and easier to 

label organic compounds with 2H rather than 13C. 2H is fundamentally different to 1H and 13C 

in that it has a nuclear spin quantum number of 1. Nuclei with I > ½ possess a nuclear 

quadrupole moment in addition to their nuclear magnetic moment. While this can cause 

complications with 1D spectra, with broader peaks and hence lower sensitivity, the major 



problem in diffusion experiments is the effects of the quadropolar moment on the relaxation 

of the spins. Quadropolar relaxation depends on a number of parameters, such as any local 

electric field gradients and the rotational correlation time of the species. The latter depends 

on tumbling rate, which depends on the experimental conditions. NMR spectra acquired at 

lower temperatures show longer correlation times, shorter relaxation times, and broader 

peaks. All diffusion experiments contain a delay during which the molecules in the sample 

diffuse through solution. If this delay is too long, longitudinal relaxation will return all of the 

magnetisation back to equilibrium before the end of the delay, and render the experiment 

useless. A further practical limitation of the use of 2H NMR in these studies is therefore that 

the diffusion experiment delay time (Δ) must be shorter than or comparable to T1 for all peaks 

of interest. This does lead to some constraints on the diffusion NMR methodology. It was 

suggested that the T1 times for all 2H signals utilized for molecular weight estimated should 

be longer than 50 ms and that the experimental temperature should not be lower than 253 K. 

For most small molecules, and solvents such as H2O and D2O, diffusion coefficients are 

measured at ambient temperatures. This is often not the case for organometallics, which can 

be studied at temperatures far below 273 K. For larger molecules, the longer rotational 

correlation times may necessitate experiments at temperatures at ambient temperature or 

higher [143]. 

Correlation of diffusion coefficients with molecular weights requires that the 

compounds compared all have similar densities. For atoms in the first period of the periodic 

table, this is usually the case. A deuteron is the same size as a proton but has twice the mass. 

The more deuterium nuclei are introduced into a molecule, the greater its density will be. For 

a given organic compound containing C, H, N and O only, the proton nuclei may well be the 

most numerous in the molecule but will contribute only a small percentage of the compound 

. In order to test the effect of perdeuteriation on any possible logD-log  correlation, 



the diffusion coefficients of four commercially available perdeuteriated compounds (acetone-

d6, ethylbenzene-d10, chrysene-d12, acenaphthene-d10) and a synthetically produced methyl-d3 

oleate ester were measured. The plot of logD against log  gave a straight line for four of 

the compounds, with α = 0.61, with only chrysene-d12 being an outlier. Given the flat shape 

of chrysene and the role shape plays in diffusion coefficients, this was perhaps not an 

unexpected finding. Using a mixture of both partially and perdeuteriated compounds, 2H 

DOSY successfully estimated the molecular weight of lithium diisopropyl amide, known to 

exist as a di-solvated dimer in THF. In 10:1 excess of THF, the  of the species in solution 

was estimated to within 5 % [143]. 

Synthetic deuterium labelling can be an arduous and expensive process. The most 

efficient and convenient method of deuterium labelling is exchange of labile protons with 

solvent deuterons. This is used in amides so as to obtain information about the local structure 

and dynamics of proteins. To test whether this labelling strategy could be used as part of a 

 estimation experiment, the  of acetanilide was first estimated, in the presence of 

small amount of D2O, using 1H DOSY and the 1H NMR references benzene, cyclooctene, 1-

tetradecene and squalene. While the  found in aqueous solution was higher than the 

expected molecular weight of the species, a discrepancy attributed to solvation and 

aggregation, a 2H DOSY experiment in similar conditions reproduced the measurement to 

within 10 %, suggesting that in-situ labelling of exchangeable groups could be a strategy for 

determining  [140]. As the  estimation previously proved robust to the amount of 

deuteriation in the reference compounds, it would not necessarily be required to know the 

number of exchangeable protons in the analyte molecule in advance. However great caution 

should be exercised when using diffusion measurements on exchangeable hydrogens, because 

of the risk of chemical exchange with water leading to faster average diffusion [21].



4.3.3 6Li

As noted previously, one of the most common applications of the internal calibration 

method has been in organometallic chemistry, particularly organolithium chemistry. While 

the initial diffusion NMR studies used the protons present in the complexes, lithium has two 

magnetically active isotopes, 6Li and 7Li. 92.4 % of lithium is 7Li, but it is spin-3/2, with very 

short relaxation times. The remaining 7.6 % is 6Li, a spin-1 nucleus but with only a small 

nuclear quadropole moment, allowing for the acquisition of sharp lines, particularly when the 

Li is in a symmetrical environment. It is therefore possible to use 6Li in diffusion NMR 

studies of organometallics, with rapid and unambiguous assignment of peaks in the NMR 

spectrum, and the diffusion information giving access to aggregation and solvation state. It is 

also possible to synthesise 6Li-enriched compounds, removing one of the drawbacks of the 

technique. While both 6Li NMR and 6Li-15N heteronuclear multiple-quantum coherence 

(HMQC) studies of chiral amide bases give evidence of chemical structures [144], they do 

not easily address the degree of aggregation. Several possible complexes with different 

degrees of aggregation can exist that are consistent with these experimental NMR results. 

Studies of compounds using 6Li NMR have therefore made use of multinuclear, 

multidimensional techniques, such as 6Li heteronuclear Overhauser effect spectroscopy 

(HOESY) [145] and 1H-6Li heteronuclear multiple bond correlation spectroscopy (HMBC) 

[144], to bridge the highly resolved 6Li NMR data to the 1H DOSY experiments from which 

the logD-log  correlation is obtained.

Well-resolved peaks in the 6Li spectra are indirectly assigned to diffusion coefficients 

obtained from 1H DOSY, while well-established references present in the sample provide the 

internal calibration curve. Fig. 8 shows this approach applied to a mixed chiral lithium 

complex that contains three Li atoms. The structure of the complex is shown in an insert in 

Fig. 8(a), along with the 6Li DOSY spectrum. Two distinct peaks, in an approximate 2:1 



ratio, are observed. The correlations of the two lithium atoms to the two different ligands in 

the complex are revealed by the 6Li{1H} HOESY spectrum (Fig. 8(b)). Finally, the 1H DOSY 

spectrum of the internal references, which have well-resolved peaks away from the signals 

produced by the two ligands, can be used to produce a logD-log  calibration curve, from 

which the molecular weight of the complex can be estimated [146]. Such combined 1H/6Li 

NMR strategies will be discussed further in Section 4.4. 

 

 

Figure 8: (a) 6Li DOSY spectra of a mixed lithium complex, shown as inset, in toluene-d8 

(upper). (b) 6Li{1H} HOESY spectra of the same mixed lithium complex in toluene-d8 

(lower). All data acquired on a Bruker DRX 400 MHz spectrometer. Reproduced with 

permission from Kagan et al., Org. Lett., 12 (2010) 520-523. Copyright (2010) American 

Chemical Society.



It is also possible to perform 7Li DOSY experiments, despite its unfavourable 

relaxation times and quadrupole moment. While no formal report of the methodology 

required appears to have been published, 7Li DOSY was used in the first study of n-BuLi, and 

the measured diffusion coefficients were consistent with those acquired by 1H NMR. 7Li 

DOSY experiments have also been reported in studies of mixed-lithium-zinc complexes 

[147]. Combined with, for example, the use of 7Li residual quadrupolar couplings [148] and 

analysis of the 2J(Li-Li) coupling, and its variable temperature behaviour, between 7Li atoms 

[149], there is plenty of scope for the development and wider use of 7Li techniques in the 

study of small molecules and organolithium compounds. 

Where 7Li NMR has found notable recent use is in the characterisation of lithium-ion 

battery electrolytes. A recent combined 1H and 7Li DOSY study of electrolyte solutions has 

determined the solvation state of the component ethyl methyl carbonate in the absence and in 

the presence of LiPF6 [150], as well as characterised common electrolyte solvents according 

to their solvating ability [151, 152]. While described as internally referenced studies,  only a 

single reference, toluene, is used to control for viscosity effects on the acquired diffusion 

coefficients) There is clear potential for wider use of combined multinuclear diffusion NMR 

studies in this field in this area in order to better understand the relationships between 

lithium-ion battery performance and the diffusion behaviour of the species involved [153]. 

4.3.4 19F

Like 1H NMR, 19F NMR uses a spin-1/2 nucleus that is 100 % abundant. A typical 19F 

spectrum consists of sharp peaks spanning a very wide range of chemical shifts. The nucleus 

exhibits a high sensitivity of its chemical shift to local environment, meaning that the likely 

lack of overlap of signals makes 19F DOSY a potentially useful experimental tool for systems 

with fluorine atoms already present. While its gyromagnetic ratio is marginally lower than 



that of 1H nuclei, it is still almost 4 times greater than that of 13C, allowing for efficient 

diffusion encoding of signals.

Chiral Brønsted acids, particularly phosphoric acids, have been shown to act as 

powerful asymmetric catalysts in a number of organic transformations. Key to effective 

enantiosynthesis is close proximity between a chiral element of the catalyst and the reaction 

site. Many Brønsted acid catalysts, such as chiral N-triflylphosphoramides, contain fluorine 

atoms, as do several Lewis acid counterions such as BF4
−, (CF3SO2)2N−, and PF6

−. Many of 

the substrates that are used in catalytic reactions also contain fluorine atoms. Dual labelling, 

with fluorine atoms present in both acid and substrate, should also be possible as many of the 

substrates used in the catalytic reactions also contain fluorine atoms. DOSY spectra of dual 

labelled systems will help in the understanding of the ion pairs, complexes and aggregates 

formed between Brønsted acids and their basic substrates. If extensive complexation occurs, 

with slow exchange, then fluorine signals associated with both substrate and acid will show 

similar, if not the same, diffusion rates. The internal standards chosen were 

trifluoromethylbenzene (  = 146 g mol‒1), 1,4-bis(trifluoromethyl)benzene (  = 214 g 

mol‒1) and 1,3,5-tris(trifluoromethyl)benzene (  = 282 g mol‒1). The method was used to 

infer the molecular weights of three test compounds, all Brønsted acids, to within 5 % 

accuracy [154]. 

With a proof of concept obtained, the method was then applied to a Brønsted acid-

basic substrate system using TFA and a trifluoromethyl-labelled acylimidazole. A 19F DOSY 

spectrum of the system showed that the diffusion coefficient of the TFA fell below that of the 

three standards, to the same as the acylimidazole. This is strong evidence for complexation 

and aggregation. Using the internal calibration method, the  of the acid was estimated at 

343 g mol‒1, close to the expected mass of a 1:1 complex. The analysis was repeated using 

two stronger Brønsted acids, bis(trifluoromethane)sulfonimide and trifluoromethanesulfonic, 



or triflic, acid. When diffusion data could be acquired, the internal calibration method 

indicated a range of 1:1 and 2:2 complexes between Brønsted acids and the basic substrates. 

It is also possible to use singly labelled systems, with diffusion coefficients of 19F-labelled 

acylimidazole acquired in the presence of phosphoric acid. While additional spectral 

information concerning the acid’s diffusion coefficient is lost, the  deduction proved 

robust and suggested a 1:1 complex between the Brønsted acid and substrate base. This 

methodology has subsequently been successfully used in a number of fields, particularly by 

Day and Weaver to help confirm their successful synthesis of 2,3,5,6-tetrafluoro-4-

(nitromethyl)pyridine [155] and by Yousefi et al. to confirm the stoichiometry of complexes 

formed during carbon dioxide capture/cyclization reactions performed using chiral Brønsted 

acid catalysts [156]. 

There have been a number of recent advances in the field of 19F NMR that should aid 

in its wider usage. The wide chemical shift range, while useful in terms of assuring a sparse 

NMR spectrum, cannot all be uniformly excited at any one time. Off-resonance effects lead 

to anomalies even when only a narrow range of the spectrum is being studied. Very- and 

ultra-broadband techniques using swept-frequency “chirp” pulses have recently been 

developed to overcome these issues [157, 158]. Even if only a small region of the chemical 

shift range is being studied, the large 19F-19F couplings, of up to 200 Hz, can lead to J-

modulation of multiplets even when short delay periods are used, resulting in negative signals 

in the spectra acquired and artefacts in DOSY spectra. The Oneshot-45 sequence, a Oneshot 

diffusion NMR sequence extended by a 45° RF pulse, has proved robust enough to remove 

the influence of J-modulation from such spectra [159]. 

4.3.5 31P 



Phosphorus-containing ligands, such as phosphines and phosphine oxides, are widely 

used in organometallic chemistry. The 100 % abundant isotope, 31P, is spin-1/2, making it a 

good choice for NMR analysis. While the gyromagnetic ratio is not as high as that for 1H, it is 

still higher than that of 13C, so acquisition of spectra, and diffusion NMR data, is relatively 

rapid. With relatively sharp, well-resolved peaks and a very wide chemical shift range, 31P 

DOSY also avoids the severe overlap often observed in 1H DOSY. Proof of principle 

experiments were performed using dimethylphenylphosphine (  = 138.15 g mol‒1), 

triphenylphosphine (  = 262.29 g mol‒1), and tri-n-octylphosphine (  = 370.64 g mol‒1) 

as internal references, and hexamethylphosphoramide (HMPA) as a test analyte. All four 

components had well-resolved peaks in the chemical shift dimension, and correspondingly 

well-resolved peaks in the diffusion dimension of the resulting DOSY spectrum. A linear 

logD-log  plot was produced from the acquired diffusion coefficients, with values for α 

and logK of 0.7246 and ‒8.0263 respectively. This method successfully gave the  of the 

test analyte, 179.2 g mol‒1, to within a percentage point [160]. When trying to characterise 

the complex formed by lithium hexamethyldisilazide (LiHMDS) and HMPA, only a single 

HMPA peak was observed in the 31P spectrum, coincident with the chemical shift of free 

HMPA in solution. However, the diffusion coefficient of HMPA in this sample was notably 

lower than that observed for the free compound, indicating that HMPA remains complexed 

with LiHMDS in solution. Integration of the 1H signals of the two species indicated a 1:1 

stoichiometry and the  estimated from the diffusion coefficient, 598 g mol‒1, was 

consistent with a [(LiHMDS)•(HMPA)]2 complex. The coincident chemical shifts suggest 

binding between the oxygen of the phosphorus compound and the lithium complex [160].    

Further complications were soon noticed in the study of manganese complexes, as 

phosphorus-containing ligands, such as phosphines, have a strong tendency to bind to metals. 

The 31P spectra of phosphine oxides were observed to broaden and overlap when the latter 



were added to a sample containing a manganese complex containing phosphine ligands. In 

order to ensure absolutely no interactions between the internal references and the compounds 

being studied, it proved necessary to physically separate the references from the rest of the 

sample. This can be achieved, for example, by the inclusion of glass capillaries within a 

standard 5 mm NMR tube. While diffusion coefficients do depend strongly on sample 

temperature and viscosity, it can reasonably be expected that the sample temperatures in both 

tubes will be the same and that, if low concentrations of material are used, then the viscosities 

in a capillary and in the main sample will also be the same. A 31P DOSY spectrum resolved 

the three phosphine oxide internal references, trimethyl phosphate (  = 137 g mol‒1), 

triphenylphosphine oxide (  = 297 g mol‒1) and tri(n-octyl)phosphine oxide (  = 370 g 

mol‒1), and a suitable logD-log  calibration curve was generated. Three manganese 

complexes, all containing phosphorus ligands, were successfully characterised to within 8 % 

of their molecular weights. The physical separation of references is therefore a powerful 

supplementary methodology for systems where interactions between references may be 

difficult to avoid [161]. 

4.4 Internal Calibration – Examples and Applications

An important area in which DOSY, and the internal calibration method in particular, 

has been used to characterise composition, solvation and aggregation state is organolithium 

chemistry. The aggregation states of organolithium compounds in solution remain one of the 

fundamental unknowns of the area [162]. Access to both aggregation state and solvation 

degree helps in understanding and controlling their reactivity as bases or nucleophiles. Solid 

state measurements do not necessarily reflect the solution state structure, and any structures 

formed are likely to be highly temperature- and solvent- dependent. While X-ray 

crystallography remains the most widely used method for solid-state structure determination, 



there will always be questions concerning how a material behaves in solution. Does the 

structure change? Is there any exchange between different structures? Does the compound 

form several species in solution, of which the solid-state characterisation only represents one, 

if that? Reactive intermediates stretch this issue further. As the name suggests, they tend only 

to form for a relatively short period of time. Analysis of the X-ray crystal structures of many 

organolithium compounds showed that they typically have similar densities (~ 1.0 g cm‒3) 

and approximately spherical structures. This markedly simplifies the use of the Stokes-

Einstein equation, and allows for a general logarithmic relationship between D and .  

The first demonstration of diffusion NMR in organolithium chemistry was the 

identification of both dimeric and tetrameric structures in THF-solvated n-BuLi [163]. While, 

strictly, this is not a demonstration of a power law related method, it is a good demonstration 

of the general utility of diffusion NMR methods. Theoretical values for the diffusion 

coefficients were calculated on the basis of both gas-phase and crystal structures. These 

predicted a difference of ca. 10 % between the tetramer and dimer, a small difference but a 

measurable one. 1H NMR spectra of 0.2 M n-BuLi in THF-d8 were acquired at 189 K. 

Resonances assigned to α-CH2 groups could be identified at ‒1.00 and ‒1.22 ppm. The 

DOSY spectrum of the sample resolved these peaks, with the dimeric species moving with a 

greater diffusion coefficient (10.1 × 10‒10 m2 s‒1) than the tetrameric (8.83 × 10‒10 m2 s‒1). It 

was also possible partially to resolve the β- and γ- CH2 signals at 1.5 ppm although, as 

expected, peaks not resolved in the NMR spectrum (i.e. -CH3 groups at ca. 1.0 ppm) were not 

resolved in the diffusion dimension. While the 7Li spectrum showed two distinct peaks, 7Li 

DOSY failed, in this report, to reproduce the signals of the dimeric species. 

The combined use of 6Li and 1H NMR allows unambiguous assignment of resonances 

to specific species and aggregates in n-BuLi systems. n-Bu6Li was synthesised from 6Li 

metal, artificially increasing the abundance of the required isotope. Using squalene, 



cyclooctene and benzene as internal references, two aggregates, with different chemical shifts 

and diffusion coefficients, were identified in both 1H DOSY and 6Li DOSY experiments. A 

6Li{1H} HOESY experiment showed cross-peaks from the upfield n-Bu6Li peak in the 1D 1H 

NMR to the upfield n-Bu6Li peak in the 1D 6Li NMR, and also from the downfield n-Bu6Li 

peak in the 1D 1H NMR to the downfield n-Bu6Li peak in the 1D 6Li NMR, confirming that 

the peaks had been assigned correctly. Molecular weight estimations were attempted, which 

confirmed the presence of a tetrasolvated dimer, a tetramer, and also the presence of free 

THF [164]. The combined 1H/6Li approach was also applied to LiHMDS, where the observed 

diffusion coefficient indicated the presence of an unsolvated dimer in toluene-d8 [146], and 

provided evidence from NMR that isopropyllithium (iPrLi) forms a 1:2 monomer-dimer 

mixture in THF-d8 [165]. 

The typically broad multiplets found in 1H NMR lead to extensive overlapping of 

component spectra in a mixture, even at the highest fields. Pure shift 1H NMR seeks to 

replicate the resolution of 13C NMR, by suppressing the effects of homonuclear coupling, and 

collapsing multiplets into singlets [166-169]. A pure shift spectrum consists of a single peak 

for each chemically distinct site, effectively increasing the resolution of the signals by almost 

an order of magnitude. The deleterious effects of signal overlap on DOSY spectra have 

already been discussed. Pure shift DOSY techniques have been developed as a response to 

this problem [170, 171]. The increase in resolution achieved by pure shift acquisition means 

that individual peaks in the 1H spectrum now do not overlap even with very near neighbours, 

and well-resolved peaks are produced in the DOSY spectrum. These more advanced NMR 

methods revealed additional information about the complex aggregates formed by a mixed n-

BuLi/n-BuOH system. Even in the first reports of NMR studies of the n-BuLi equilibrium, an 

unidentified signal was observed at ca. 0.8 ppm. This signal was found to depend on trace 

concentrations of oxygen, leading to a tentative assignment to a butoxide or butylperoxide 



species. Addition of n-BuOH increased the intensity of this peak, confirming the initial 

assignment, but introduced additional peaks into the spectrum. The region of the spectrum 

corresponding to α-CH2 peaks rapidly became too crowded to interpret. These changes in the 

NMR spectra correspond to the successive replacement of alkyl groups by alkoxy groups in 

the tetrameric n-BuLi structure. The degree of solvation and the aggregation states of the 

compounds eluded analysis by standard 1H methods. First, the 1H pure shift (PS-)DOSY 

spectrum of LDA and n-BuLi in THF-d8 using three internal references (squalene, 

triphenylbenzene and cyclododecene) was acquired. This experiment confirmed that LDA is 

present in solution as a series of di-solvated LDA dimers. The 1H PS-DOSY spectrum of n-

BuLi/n-BuOLi in THF-d8 using four internal references (squalene, triphenylbenzene, 

cyclododecene and LDA) showed efficient separation of eight components that could be 

clearly identified in the proton dimension. The corresponding peaks in the DOSY spectrum 

were also well resolved. The DOSY spectrum suggested the presence of a number of lithium 

species, both homogeneous and mixed. The internal references were used to generate a 

calibration curve, allowing estimates of molecular weight for all four species. This data 

suggested the presence of a tetrasolvated mixed tetramer (n-BuLi)2/(n-BuOLi)2•THF4 (  = 

589 g mol‒1), a tetrasolvated homogeneous tetramer (n-BuLi)4•THF4 (  = 534 g mol‒1), a 

disolvated homogeneous dimer (LDA)2•THF2 (  = 312 g mol‒1) and a disolvated mixed 

dimer (LDA/n-BuLi) •THF2 (  = 300 g mol‒1). Overlap still hindered the analysis of the 

full 1H spectrum. A third experiment, this time without added LDA, was used to identify two 

further species in this region. Molecular weight estimates suggested that these were a tetra-

solvated mixed tetramer (n-BuLi)3/(n-BuOLi)1•THF4 (  = 579 g mol‒1) and tetra-solvated 

homogeneous dimer (n-BuLi)2•THF4 (  = 490 g mol‒1). This analysis is consistent with 

known organolithium chemistry: LDA forms dimers, while cubic aggregates of the n-Bu and 

n-BuO species are also observed, in which case, lithium atoms are all monosolvated [172]. 



Other organolithium complexes characterised using an internal calibration method 

include chiral enolate aggregates [173], THF-solvated 1,4-dienolates [174], 2,2,6,6-

tetramethylpiperidides [175, 176], pinacolone enolate [177], aryl and alkyl gem-dilithium 

phosphido-boranes [178], chiral lithium amides derived from valinol derivatives [179, 180], 

N-isopropyl alaninol [181] and S-valine [182], as well as the identification of hexameric and 

octameric sec-butyllithium/sec-butoxide mixed aggregates [183]. Such studies are not limited 

to single metal complexes. Because they easily form mixed aggregates with other 

organometallic species, lithium halides are known to exert a significant influence on the 

behavior of organometallic reagents, affecting both the reactivity and the selectivity. In the 

case of MeLi, known to form a tetrameric species in solution, the effects of the addition of 

LiCl were studied using a combination of combined 1H and 7Li variable temperature NMR 

spectroscopy on monolabeled and doubly labelled 13CH3
6Li, quantum mechanical 

calculations and diffusion NMR. Results indicated the formation of a single heterodimeric 

species, trisolvated in THF [184]. A related area in which internal calibration methods have 

been widely used is the field of Grignard (RMgX) [185] and turbo-Grignard (RMgCl·LiCl) 

[186] reagents. Mixed metal species such as Grignard reagents and mixed lithium-cadmium 

compounds have also been characterised through their diffusion coefficients in solution, with 

molecular weights deduced by the internal calibration method [187, 188]. Further discussion 

of diffusion NMR-based molecular weight characterisation of these, and related, 

organometallic compounds will be found in Section 4.6. 

Thus far, the use of diffusion NMR has only confirmed the aggregation state and 

estimated the likely numbers of solvent molecules coordinated. Diffusion NMR also allows 

access to the binding constants, Ka, of the aggregation process. Such experiments are 

common in supramolecular chemistry [4], where there is a significant difference in diffusion 

coefficients between the large, supramolecular, host molecule and the smaller guest 



molecules. This can also be the case for higher-order aggregates of organolithium complexes. 

While a titration experiment monitored by chemical shift will access very similar 

information, diffusion coefficients are used because they are less sensitive to the presence of 

impurities than are chemical shifts. LiHMDS was chosen for a preliminary study [189]. It 

forms an unsolvated dimer in toluene-d8 in the absence of any additional ligands, while the 

addition of even a small amount of an ethereal ligand leads to the formation of a range of 

solvated (LiHMDS)n aggregates. Binding constants can be estimated by titrating LiHMDS to 

a fixed concentration of ethereal ligand L and observing the change in diffusion coefficient of 

the ligand. A general equilibrium binding constant, , between a LiHMDS molecule and 

ligand, L, to form a LiHMDS-ligand complex can be expressed by Eq. (16) 

a  + b   c  

(16)

where  represents the LiHMDS−ligand complex,  is the 

concentration of free LiHMDS, and is the concentration of free ligand. The likely 

aggregates were characterised by the use of a series of internal references and logD-log  

calibration curves generated from the acquired diffusion coefficients. Different aggregates 

were observed for different ligands. LiHMDS solvated by THP, methyl tertiary-butyl ether, 

or tert-butyl acetate forms a 1:1 complex (a = b = c = 1, in Eq. (16)) while LiHMDS solvated 

by THF or diethyl ether forms a 2:1 complex (a = c = 1 & b = 2 in Eq. (16)). The appearance 

of 1H NMR spectra is dependent on both Ka and the rate of ligand exchange. Here, only a 

single peak is seen for the ligand, suggesting that this system is in the fast exchange regime. 

Therefore, concentrations of free and bound [L] and [ ] can be estimated by titrating 

LiHMDS to a fixed concentration of ethereal ligand L and measuring the diffusion coefficient 

of the ligand. The observed diffusion coefficient of the ligand peak ( ) is the weighted 



average of bound ( ) and free ( ) ligands (Eq. (17), sometimes called Lindman’s 

Law [190]), and xB, the fraction of bound ligand, can be calculated from these diffusion data 

(Eq. (18)).

 (17)

xB =   (18)

For both 1:1 and 2:1 models, Ka for the association equilibria can be estimated by 

determining xB from a series of measured diffusion coefficients and then performing a non-

linear fit to Eq. (19)(a) for the 1:1 model and to Eq. (19)(b) for the 2:1 model. 

xB =   
(19)(a)

xB =   (19)(b)

Fig. 9 shows the diffusion coefficients of methyl tert-butyl ether acquired in a series of 

titration experiments, where LiHMDS was added to the sample in increasing amounts (Fig. 

9(b)), and the calculated fraction of bound ether molecules for each experiment, from which a 

value of  was estimated using a non-linear fit of the data to Eq. (19)(a). Using this method, 

binding constants between LiHMDS and five ligands, THP, methyl tert-butyl ether, tert-butyl 

acetate, THF and diethyl ether were estimated. LiHMDS showed a greater affinity for cyclic 

ligands (THP,  and THF, ) than for non-cyclic 

(diethyl ether,  and methyl tert-butyl ether, ). 

Both methyl tert-butyl ether and tert-butyl acetate contain bulky groups. The higher binding 

constant for tert-butyl acetate ( ) can be attributed to the strong 

coordination between lithium atoms and carbonyl group. 



 

 

Figure 9: (a) Diffusion coefficients of methyl tert-butyl ether acquired in a series of titration 

experiments with increasing concentration of LiHMDS (left). (b) Fraction of methyl tert-

butyl ether bound to complex calculated using Eq. (19)(a) for each titration experiment given 

that Dcomplex is (1.03 ± 0.04) × 10−10 m2 s−1 and Dfree is 2.87 × 10−10 m2 s−1. (right). 

Reproduced with permission from Tai et al., Org. Lett., 82 (2017) 6223-6231. Copyright 

(2017) American Chemical Society.

While most of the applications of the internal calibration method demonstrated here 

are found in organometallic chemistry, the method should find use in any field which can use 

diffusion NMR methods. Biodiesel is a renewable and biodegradable alternative to petrol, 

and is derived from the oils and fats of plants and animals [191-193]. Its production relies on 

the transesterification of a triglyceride to form methyl esters and glycerol, often in the 

presence of a suitable catalyst [194]. Mono- and di-substituted species are formed as 

intermediates in the process. Standard 1D 1H analysis of these reaction mixtures is 

complicated by the severe overlap of signals from similar chain length species. The extent of 

transesterification will correlate strongly with molecular weight, with a diacylglycerol 

moving faster than a tri- substituted one and a monoacylglycerol moving faster still. In order 



to prove that the methodology could work, the individual 1H spectra of the acylglycerols were 

examined to identify peaks that could be resolved in a mixture. While relatively close in 

terms of their chemical shifts, methylene peaks in the triolein (δ = 4.26 ppm), 1,3-

dioleoylglycerol (δ = 4.02), 1,2-dioleoylglycerol (δ = 3.78 and 3.49), a methine signal of 1-

oleoyl-rac-glycerol (δ = 3.64) and a strong methyl signal (δ = 3.35) in the methyloleate 

product were selected as readily identified signals that would not overlap. Diffusion NMR 

data of a test mixture containing triolein, 1,3- and 1,2- dioleoylglycerol, 1-oleoyl-rac-

glycerol, squalene, methyl oleate and benzene, in toluene-d8, were acquired [195]. As 

expected from the analysis of the 1D spectra, enough peaks were resolved in the proton 

dimension to produce a well-resolved DOSY spectrum, with all five species resolved, and 

diffusion coefficients measured. Squalene and benzene were added to the sample to act as 

internal references, alongside the triolein starting material. While the method worked well for 

the ester product and the singly transesterified product, it worked less well for 1-oleoyl-rac-

glycerol. This was only analysed via the distinctive multiplet signal of the methine group. 

The method was further tested on two mixtures produced from transesterification reactions on 

virgin olive oil and waste cooking oil. Prior to heating with methanol, the samples showed 

the presence only of triacylglycerols. In both cases, the presence of both methyl ester 

products and 1,3- substituted products was identified. The identity of the products was 

confirmed by logD-log  analysis yielding the  of the products to within 6 % in both 

samples. 

Much of the molecular weight estimation work discussed so far was carried out in 

non-aqueous solvents, such as tetrahydrofuran. Different sets of internal diffusion references 

are needed for different solvents. The same requirements for suitable internal references in 

aqueous solution apply as for organic solutions: the references must span a reasonable range 

of molecular weights, must have a reasonable spread of chemical shifts, avoiding overlap if 



possible, must be soluble, and must not interact with the analyte. The relatively limited range 

of available functional groups and soluble species compatible with these requirements 

severely limits the range of possible references. An initial set of references, based on 

tetraalkylammonium salts, failed as higher molecular weight salts, such as 

tetrahexylammonium chloride, were found to be barely soluble. The high likelihood of 

longer-chain salts forming aggregates in solution also limits their potential utility. A second 

set of compounds, tris-(hydroxymethyl) aminomethane (TRIS,  = 121 g mol‒1), 2-(N-

morpholino) ethanesulfonic acid (MES,  = 195.2 g mol‒1), 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES,  = 283.3 g mol‒1) and piperazine-N,N′-bis(2-

ethanesulfonic acid) (PIPES,  = 302.4 g mol‒1), all based on biological buffers, was then 

tested. The strong similarities in chemical structure between MES, HEPES and PIPES lead to 

severe overlap between signals between 2 and 4 ppm. In the light of this, MES and HEPES 

were replaced with t-butanol (  = 74.12 g mol‒1) and the resulting DOSY spectrum 

resolved all three components, allowing for the generation of a linear logD-log  

calibration graph with the R2 value for the data again approaching 1. The physical separation 

of samples finds further use in aqueous systems. In a study of two complexes, one rhodium 

and one manganese, both containing hydroquinone (HQ), the analytes were placed in 

capillaries, which were in turn placed within an NMR tube. The 1H DOSY spectrum of the 

internal references matched that obtained in the absence of the analyte capillary. The rhodium 

complex, Rh(HQ)(cyclooctadiene), dissolved in D2O, exhibited signals for both the 

cyclooctadiene and the hydroquinone signals. The major component was estimated to have a 

 = 300 g mol‒1, within 10 %.  of the true value. Of the two remaining ligand signals, the 

hydroquinone was found to be consistent with free hydroquinone, while the cyclooctadiene 

was found to be consistent with a single molecule bound to rhodium. This evidence suggests 

some dissociation of the complex in D2O. The manganese complex (Mn(CO)3HQ) exhibited 



similar behaviour, as shown in Fig. 10, with the molecular weight of the complex correctly 

estimated to within 1 %, and evidence of dissociation with free HQ found in the sample 

[196]. 

Figure 10: 1H DOSY spectrum of (Mn(CO)3HQ) in D2O with physically-separated references 

PIPES, TRIS and t-BuOH. Additional signals due to free hydroquinone can be found at ca. 7 

ppm. All data acquired on a Bruker DRX 400 MHz spectrometer. Reproduced with 

permission from Li et al., Org. Lett., 12 (2010) 2698-2701. Copyright (2010) American 

Chemical Society.

4.5 External Calibration

With the constraints on choice of internal calibration references highlighted in the 

previous sections, calibration curves produced external to the sample are the logical next step 

[197, 198]. Instead of three or four additional reference compounds placed within the sample, 

and a calibration curve based on the acquired diffusion measurements, the diffusion 

coefficients of a suitably large number of compounds can be acquired to generate an external 

calibration curve. An internal reference compound is still needed for calculating diffusivity, 

but now only a single species need be added to the NMR sample. The calculation is a two-

step process. First, the relative diffusivity, as defined by Crutchfield and Harris [129], is used 

to reduce the influence of solvent and of some types of experimental uncertainty (including 



gradient calibration, but not gradient non-uniformity) that can affect diffusion NMR. A 

linear, normalised, equation (Eq. (20)) is then defined. 

(20)

In this equation, the measured diffusion coefficient of the analyte is  and the measured 

diffusion coefficient of the reference is . In order to produce a normalised diffusion 

coefficient, a fixed value for the diffusion coefficient of the reference,  is needed. Eq. 

(20) produces a normalised relative diffusion coefficient for the analyte,  which can 

then be used in Eq. (21), a reiteration of the power law, where logK and α are the parameters 

determined from the relevant external calibration curve (ECC). 

(21)

As with the power laws discussed in Section 4.1, the values of logK and α produced depend 

strongly on the nature of the solvent and also on the shape of the molecule being studied. 

4.5.1 Classification of Shapes

Different classes of molecules can exhibit subtly different behaviour in solution, reflecting 

differences in conformational freedom and solvation as well as shape, resulting in different 

relationships between molecular weight and molecular size for a given solvent. While the 

shapes of molecules studied are an important consideration for both methods, the ECC 

method addresses it directly. For each solvent studied, three different ECC curves were 

produced, with different power law parameters for each shape class, as in Fig. 11(a). These 

three different ECC curves therefore distinguish between “compact spheres” (CS, blue), 

“expanded discs” (ED, green), and “dissipated spheres and ellipsoids” (DSE, red), 

intermediate in shape between the previous two. The three curves are coincident for a range 

of intermediate molecular weights, but deviate at the extremes. A single merged ECC curve 



can be generated from all data acquired, but it works less well away from the intermediate 

MW region. An additional sub-classification was made for DMSO-d6 and cyclohexane-d12, 

where linear fitting of logD for molecules classified as compact spheres resulted in a poor fit. 

To resolve this, molecules were further sub-divided into hydrocarbons, and those containing 

other elements such as nitrogen or silicon [197, 198]. Fig. 11(b) shows the two further CS 

calibration curves generated and the resulting improvement in fit. Table 2 contains values for 

logK and α obtained for the three shapes classes of molecules in Fig. 11(a), the sub-

classification in Fig. 11(b), and a single merged curve, in cyclohexane-d12. Similar tables 

exist for a wide range of deuteriated solvents (toluene-d8 and THF-d8 in [197], benzene-d6, 

CDCl3, CD2Cl2, DMSO-d6, cyclohexane-d12 in [198]). 



Figure 11: (a) Three external calibration curves (ECCs), plots of log  vs log

, for 30 model compounds in cyclohexane-d12, sorted by their molecular shape 

(“expanded discs” (ED, green); “dissipated spheres and ellipsoids” (DSE, red) and “compact 

spheres” (CS, blue)) (upper). (b) Two further ECCs for purely hydrocarbon (PCS, red) and 

non-hydrocarbon (NCS, black) compact spherical model compounds for C6D12 (lower).  

Values of logK and α for all five curves presented here, and the merged calibration curve, are 

reproduced in Table 2. Data acquired on two spectrometers: (1) Bruker Avance 400 MHz 

spectrometer and (2) Bruker Avance III HD 400 MHz spectrometer. Reproduced with 

permission from Bachmann et al., Chem. Eur. J., 22 (2016) 8462 – 8465. Copyright 2016 

Wiley-VCH. 

cyclohexane-d12

Shape logK α

expanded discs (ED) ‒6.59 1.04

dissipated spheres and ellipsoids (DSE) ‒7.41 0.707

compact spheres (CS) ‒7.76 0.572

purely hydrocarbon CS ‒7.47 0.732

non-hydrocarbon CS ‒7.73 0.580

merged ‒7.62 0.620

Table 2: Compilation of values of logK and α in cyclohexane-d12 for calibration curves for 

the three shape classes of molecules in Fig. 11(a) and for hydrocarbon and non-hydrocarbon 

CS species; and values of logK and α in cyclohexane-d12 for a merged curve for all the 

species studied. Data adapted from Bachmann et al., Chem. Eur. J. 22 (2016) 8462 – 8465 



and S. Bachmann, Estimating Molecular Weights of Organometallics in Solution with 

Diffusion NMR Techniques, George-August-Universität Göttingen, 2017.

The values of α obtained are consistent with both those obtained by Crutchfield and 

Harris, and with the polymer data listed in Table 1. For the more spherical molecules, α tends 

towards its lower limit of 0.333. As molecules become flatter and more disk-like, the value of 

α increases. Clearly the accuracy of molecular weight estimation depends on correct 

classification of the shape of molecule. This classification of molecules can be done on an ad 

hoc basis. Compact small molecules, highly symmetrical species, and those that are densely 

packed are best described as compact spheres. Most molecules can be described as 

ellipsoidal, even if they possess cavities or projecting functional groups. Small disc-shaped 

molecules can be classified as ellipsoid, but larger disc-shaped molecules need to be 

classified separately. Incorrect classification may well lead to incorrect estimation. Use of 

either the dissipated sphere or the merged curve is likely to avoid the biggest errors. It is 

possible to quantify the shapes of the molecules on the basis of the moments of inertia of the 

molecule. Two methods exist. Given a set of three principal moments of inertia (Ixx, Iyy, and 

Izz), it is possible through Eq. (22) to calculate the relative anisotropy of the molecular shape, 

. 

(22)

The value of  will always lie between 0 (a perfectly spherical molecule) and 1 (a 

perfectly linear one). Relative anisotropies for the set of molecules used to generate Fig. 11 

were calculated and found to lie between 0 % (TMS, Si(Si(Me)3)4) and ca. 14 % (2-

phenylpyrene and anthracene). It is also possible to quantify the anisotropy of the molecule 

based on the relative sizes of the three perpendicular moments of inertia. If they are broadly 



the same (Ixx = Iyy = Izz), then  tends towards 0. Two other classes of molecule can be 

distinguished by this method, both of which have two similar moments of inertia and one that 

is significantly different (Ixx < Iyy ≈ Izz and Ixx ≈ Iyy < Izz). Whilst not perfect, the approach 

allows for some quantification of shape, as spherical and linear compounds can be 

differentiated from one another. While most compounds fit the compromise curve, those 

closest to the extremes of spherical and linear shapes do not. These are easily identified by 

the use of either of the methods described [199]. 

4.5.2 Reference Molecules

The original external calibration paper [197] specified two possible reference 

molecules, adamantane (ADAM) for use in toluene-d8 and 2,2,3,3-tetramethylbutane (TMB) 

for use in THF-d8. There is a wide range of possible reference molecules for each solvent. 

First, the residual solvent signals (i.e. the signals from residual protons in deuteriated 

solvents) can be used. These have been demonstrated to also give excellent estimation of  

[197]. Any of the molecules used to generate a calibration curve could also be used as a 

reference. However, both ADAM and TMB can be used in a wider range of solvents than just 

toluene-d8 and THF-d8, and it is likely that a standard NMR reference, such as TMS, will be 

used in most NMR experiments. Values of log  for a number of molecules have been 

summarised in Table 4 of [197] and Table 4 of [198]. The values of log  for these three 

possible references in all seven solvents are shown in Table 3, as well as data for solvent 

residual proton signals. The entry n/a indicate a lack of such measurement reported in the 

original paper, where insolubility meant that the material could not be used as a reference. 

log 

compound solvent TMS ADAM TMB



toluene-d8 ‒8.73 ‒8.74 ‒8.85 ‒8.80

THF-d8 ‒8.63 ‒8.70 n/a ‒8.77

CD2Cl2 ‒8.52 ‒8.63 ‒8.70 ‒8.68

CDCl3 ‒9.18 ‒8.72 ‒8.82 ‒8.79

benzene-d6 ‒8.69 ‒8.71 ‒8.88 ‒8.78

cyclohexane-d12 ‒8.88 ‒8.88 ‒9.02 ‒8.98

DMSO-d6 ‒9.18 ‒9.21 ‒9.33 ‒9.30

Table 3: Compilation of values for reference diffusion coefficients of three possible reference 

molecules and residual solvents in seven common deuteriated solvents. Data adapted from 

Bachmann et al., Chem. Eur. J. 22 (2016) 8462 – 8465. 

4.5.3 Concentration and Temperature Dependence

Both internal and external calibration methods work best for dilute solutions. The 

Stokes-Einstein equation is strictly only valid for infinitely dilute solutions. Higher 

concentrations mean increased interactions between solute molecules as well as the 

possibility of obstruction effects. While obstruction effects are more easily observed in 

solutions of large molecules such as surfactants [190] and proteins [200], they can still have 

an effect on the diffusion coefficients of small molecules at high concentrations. Increasing 

the concentration of the analysed species from 15 mM to 120 mM had only a small effect on 

the average deviation of estimated  [197]. The biggest errors were observed with species 

likely to exhibit intermolecular interactions such as aromatic compounds. 

The effects of temperature gradients and changes on experimentally acquired 

diffusion coefficients has been covered in Section 2.1.3. If convection can be avoided or, at 

the very least, mitigated through the use of narrow-bore NMR tubes and/or convection 



compensated pulse sequences, then the external calibration method should be applicable over 

a range of temperatures. Viscosity changes can be compensated for by the use of an internal 

reference species. Care must be taken in the choice of the reference: at lower temperatures, 

intermolecular interactions have a much greater effect. The use of residual THF signals 

produced significant errors in  estimation, whereas the use of ADAM or toluene-d8 gave 

no such errors. This is likely due to interactions between polar THF molecules [197]. 

4.5.4 Incorporating Heavier Atoms

The external calibration curves devised and discussed above were all derived for 

simple organic molecules. By restricting the chemical structures studied to molecules 

containing only C, H, O and N, the molecules can be assumed to have very similar average 

molecular densities. As Fig. 12(a) indicates, the densities of atoms, estimated from van der 

Waals volumes, increase down the periodic table. The presence of Cl, P and S atoms within a 

molecule makes the reliable estimation of  more difficult. Fig. 12(a) even suggests that a 

high number of N and O atoms, common in organic chemistry, will have a detrimental effect 

on estimation of . It is however possible to generate ECCs for specific groups of such 

compounds, for example mono- or di-brominated compounds. As expected, increasing the 

average density of the molecule by incorporating increasingly denser atoms leads to steeper 

slopes in the logD-log  curves. Fig. 12(b) shows plots of logD against log  for four 

different groups of compounds dissolved in benzene-d6. The blue curve shows the original, 

merged, calibration curve for simple organic molecules. The other curves correspond to 

monobromo- (black), dibromo- (red) and monoiodo (green) molecules. The parameters of fit 

using these curves are comparable to those in the original study. For systems where, for 

example, the nature and degree of halogenation are known, this method should be reliable for 

 estimation [201]. 



Figure 12: (a) Plot of  against van der Waals volume, VvdW, for a selection of elements. 

The red line corresponds to elements in the first and second periods of the periodic table 

(upper). (b) Plots of logDx,norm against log  for different categories of compounds in 

benzene-d6. The blue fit shows the original merged ECC established with simple organic 

molecules. The other fits correspond to mono- (black) and dibrominated (red) as well as 

monoiodated (green) compounds respectively (lower). Data acquired on two spectrometers: 

(1) Bruker Avance 400 MHz spectrometer and (2) Bruker Avance III HD 400 Mz 

spectrometer. Reproduced with permission from Kreyenschmidt et al., ChemistrySelect., 2 

(2017) 6957-6960. Copyright (2017) Wiley-VCH.



A more general approach has been suggested that might find wider use, particularly in 

the study of transition metal and organometallic systems [201]. First, det, the molecular 

weight is estimated using the merged calibration curve for the solvent being used. This 

estimated molecular weight is then scaled by a correction factor,  (Eq. (23)(a)) to obtain 

an improved estimate calc. This factor   for a given molecule is estimated from the 

molar van der Waals density, MD, of the molecule, in units of g cm‒3, through a saturation 

growth equation, Eq. (23)(b), stated here for C6D6. A different set of three parameters will be 

required to generate similar equations for use with different solvents such as THF-d8.

calc =  det (23)(a)

(23)(b)

It should be noted that Eq. (23)(b) is purely empirical, as an analytical correlation between 

MD and  could not be determined. However, for this particular set of experimental data, 

containing mostly brominated and iodated compounds in C6D6, it has proven effective, 

particularly for other highly halogenated compounds. It performed less well for transition 

metal complexes. Where different oxidation states of transition metals might be present, the 

model failed to give reliable estimates, presumably because of uncertainties in the van der 

Waals radii of the metal ions involved. 

4.6 External Calibration – Examples and Applications

As with the internal calibration method, the external calibration method for estimating 

molecular weights from diffusion coefficients should be applicable to many different fields of 

chemistry. It has found wide use in the characterisation of organometallics, including 

organolithium compounds similar to those described in Section 4.4. This section will first 

focus on the application of the external calibration method to organolithium compounds, 



before moving on to cover other s-block metals, mixed metal complexes and selected 

transition metals, before finishing with some examples from organic and environmental 

chemistry. 

Prior to the development of the external calibration method, diffusion NMR had been 

used in the qualitative analysis of organolithium compounds, for example illustrating how 

hexameric trimethylsilylmethyllithium interacts with different solvents to give chiral 

tetrameric species in diethyl ether and tert-butylmethyl ether but only a dimer in the chelating 

solvent dimethoxyethane [202]. The introduction of the external calibration method allowed 

quantitative interpretation of diffusion coefficients and more definite assignment of degree of 

aggregation. Accurate s for small molecules with different geometries, independent of 

differences in temperature or viscosity, can be obtained. A first example of the application of 

external calibration curves to organolithium chemistry is in the further characterisation of 

LDA [203]. Variable temperature 1H NMR spectra of LDA in toluene-d8 show a range of 

different multiplets. At temperatures below 248 K, at least three multiplets can be observed in 

the spectrum. As the temperature increases, the peaks broaden and merge until only a single 

peak is observed at 373 K. Molecular weights of the species were estimated from diffusion 

coefficients acquired at three different temperatures, consistent with the presence of tri-, tetra-

, penta- and, potentially, hexameric species at 198 K. Only signals from the tri- and 

tetrameric aggregates were observed at room temperature, with integration of the two 

multiplets indicating a 2:1 ratio of trimers to tetramers. The diffusion coefficient of the single 

peak observed at higher temperatures suggested a molecular weight consistent with a trimeric 

species. The additional information concerning the molecular weights and, therefore, 

aggregation states obtained gives a clear indication both of the aggregation of LDA in toluene 

and of the temperature dependence of aggregation. LDA is present as a mixture of different 

aggregates, ranging from trimers and tetramers through to higher oligomers. As the 



temperature decreases, successively larger aggregates form. The lower the temperature, the 

closer the solution structure approaches the polymeric solid-state structure. 

While ferrocene may lay claim to being the most well-known cyclopentadienide, its 

discovery in 1951 [204] post-dates that of both sodium and potassium cyclopentadienides by 

over 50 years [205]. Alkali metal cyclopentadienidyl complexes (CpM) are important starting 

materials in organometallic synthesis, used to synthesise both sandwich and half-sandwich 

transition metal complexes, which go on to have a wide range of further applications. Crystal 

structure analysis shows that the compounds, in the absence of any chelating agents, form 

polymeric chains that are linear for lithium and sodium, but bent for potassium, rubidium and 

caesium. Complementing a 1D NMR study using 1H, 13C, 6Li, 7Li, 23Na and 133Cs, that 

confirmed the presence of a number of species, low temperature diffusion NMR experiments 

were performed to estimate the molecular weights of all five known group 1 CpMs in THF. 

Molecular weights were estimated from the diffusion coefficients measured in THF and 

compared to the possible molecular weights of likely monomeric [CpM.THFn] and dimeric 

aggregates [(CpM)2•THFn] with n = 0–4 for M = Li, Na, K, Rb, and Cs. The “dissipated 

spheres and ellipsoids” calibration curve [197] for THF was considered the most appropriate. 

As an additional check, the densities of the proposed structures were checked to ensure that 

they were consistent with the test set of molecules and would not induce any deviations in the 

 estimation. Given that Cp and THF have similar molecular weights, it is worth noting 

that it proved impossible to distinguish between metallocene complexes (i.e. containing two 

Cp groups) and those containing only a single Cp group and an additional THF molecule 

solvating the metal ion. The diffusion NMR data acquired, and subsequent molecular weight 

estimations, best fitted monomeric species with either two, for Li and Rb, or three, for Na and 

K, THF molecules bound. The Cs analogue, on the other hand, exhibited diffusion 

coefficients consistent with penta- or hexameric aggregates [206]. A range of s-block metal 



complexes, containing ligands such as hexamethyldisilazide [207], the bulky bis(4,6-

tbutylbenzoxazol-2-yl)methane [208], and 1 (trimethylsilyl) cyclopropyllithium [209] have 

all successfully been characterised by a combination of diffusion NMR and external 

calibration calculations. 

The success of diffusion NMR methods in organolithium chemistry is a result of 

lithium’s place in the periodic table, tucked in between H and C. Molecular weight estimation 

from diffusion coefficients has also been applied to both heavier s-block metals, and alkaline 

earth metals such as magnesium. Already introduced in Section 4.4, organomagnesium 

compounds, such as Grignard reagents and Hauser bases, find wide use in organic synthesis. 

Grignard reagents are formed by the reaction of magnesium metal with alkyl or alkenyl 

halides, producing a compound with typical formula RMgX. They are good nucleophiles, 

reacting with electrophiles such as carbonyl compounds (aldehydes, ketones, esters, carbon 

dioxide, etc) to form new carbon-carbon bonds. In addition, they are also very strong bases. 

Hauser bases are similar to Grignard reagents but contain an amido group instead of 

an alkyl one, producing a compound with the typical formula R2NMgX. It was soon 

discovered that the addition of LiCl to both sets of reagents improved their solubility and also 

enhanced their reactivity. Understanding the solution phase structures formed, and the role 

the additional lithium plays in them, is vital to better understanding and use of both turbo-

Grignard and turbo-Hauser reagents. Grignard reagents RMgX in ethereal solutions undergo 

disproportionation (the Schlenk equilibrium) to afford both R2Mg and MgX2. As part of a 

wider study also using mass spectrometry, conductivity measurements and quantum 

mechanical predictions of the structures formed, diffusion NMR of a series of Grignard 

reagents, where R = Et, Bu, Hex, Oct, Dec, and iPr, was used to characterise the structures 

formed by the reagents in THF-d8 in the absence and in the presence of LiCl. The molecular 

weights estimated from the diffusion coefficients measured in the absence of LiCl matched 



those calculated for the di-solvated Grignard, [RMgCl•(THF)2], very well. Only BuMgCl was 

studied in the presence of LiCl. 1H and 13C NMR revealed no differences in spectra after the 

addition of LiCl, while the single peak in 7Li was shifted slightly compared with that 

observed for pure LiCl. The molecular weight estimated from the 1H DOSY spectrum was 

consistent with a 1:1 complex between LiCl and [RMgCl•(THF)2]. The other experimental 

methods suggested that a more complicated series of equilibria were actually occurring in 

solution [210]. Similar studies were conducted on other mixed metal complexes, such as the 

Hauser bases, iPr2NMgCl [211] and TMPMgCl [212] and their turbo-derivatives, revealing 

that the Schlenk equilibrium can be replaced by a more complicated series of equilibria 

between different aggregations states and identifying the effect of more hindered amides 

[213] on the solution phase structures. Other alkaline earth metal species characterised by 

diffusion NMR methods and external calibration calculations include s-block bimetallic 

catalysts containing two magnesium atoms, stabilised by differing amounts of Na(THF)3 

depending on the solvent used [214], and multinuclear complexes of calcium- and containing 

π ligands [215]. 

The accuracy of the ECC approach is highly dependent on the choice of model 

parameters. As demonstrated by Fig. 12, the density of an element is related to its position in 

the periodic table, and the presence of a heavier atom in a molecule or complex can render 

the use of a purely organic calibration curve inappropriate. Thus in the study of species 

containing heavier metals, an appropriate calibration curve containing a range of model 

compounds with similar densities to the expected complexes needs to be generated. This 

approach is well demonstrated in the case of gold (I) complexes [216]. The interactions 

between cationic gold(I) complexes, their counter-ions, and the chosen substrate play an 

important role in the use of such complexes in homogeneous catalysis. With a van der Waals 

radius of 166 pm and an atomic weight of 196 g mol‒1, a gold atom has a molecular density 



of 1.03 × 1031 g mol‒1 m‒3 (17.1 g cm‒3), far outside the range covered by carbon, hydrogen 

and other elements found in simpler organic molecules. As expected, calibration curves based 

on a selection of compounds containing only C, H and O lead to failures in  estimation. 

Instead, external calibration curves were constructed using 13 mono- and di-gold complexes. 

Separate curves, with different values of logK and α, were required for the two separate 

classes of gold complex. The reason for this difference may not be due to the single 

additional denser atom. Indeed, a comparison of the molecular densities of the mono- and di-

gold species shows that the average molecular densities for the two groups of complexes 

differ by less than 3%. Their shapes, on the other hand, do differ markedly: qualitatively, 

monometallic complexes are mostly spherical-like molecules, while di-gold complexes have 

a more elongated shape. Fig. 13 shows the 1H DOSY spectrum of (Ph3P)AuCl in CD2Cl2 with 

adamantane as a reference molecule. The  of the gold complex diffusion coefficient can 

be estimated using values of logK and α taken from the appropriate calibration curve (‒7.30 

and 0.65 respectively) and a normalised logarithm of the diffusion coefficient,  = 

‒9.04, to give an estimate of molecular weight within 1 % of the actual weight of the 

complex. The curves were also used to estimate the molecular weights of species formed by 

the interaction of the gold complexes, (JohnPhos)AuCl, (IPr)AuCl and (Ph3P)AuCl, with 

AgOTf. For all complexes, the diffusion coefficients measured indicated the presence of an 

ion pair. This observation was validated by 1H and 19F diffusion NMR experiments, both of 

which produced the same measured diffusion coefficient. Adding an excess of an alkyne to 

these samples makes them representative of gold-catalyzed alkyne transformations. Both 

(JohnPhos)AuCl and (Ph3P)AuCl formed monogold species with the alkynes and AgOTf. On 

the other hand, the diffusion coefficient and corresponding molecular weight for the species 

in the sample containing (IPr)AuCl, AgOTf and phenylacetylene did not correspond to a 

simple monogold complex. Instead, better agreement was found with the digold complex 



[{(IPr)Au}2(η1,η2-C≡C−C6H5)]+[OTf]−. Similar approaches have also proved successful for 

tantalum [217] and could prove useful for studies of other coinage metals (copper [218] and 

silver [219]).  

Figure 13: 1H DOSY NMR spectrum of (Ph3P)AuMe complex in CD2Cl2, with adamantane 

as an reference compound. Estimation of molecular weight of (Ph3P)AuCl is described in the 

main text. All data acquired on a Bruker Avance 600 MHz spectrometer. Reproduced with 

permission from Hamdoun et al., Organometallics, 37 (2018) 4692-4698. Copyright (2018) 

American Chemical Society.

The external calibration method is not limited to organometallic chemistry, and has 

been used to investigate glycosylation reactions at low temperature [220], the hydrolysis and 

dehydration of inulin in water [221], and the observed reduction of carbazole fluorescence in 

the presence of isolable carbenes [222]. Samples in more complicated aqueous solutions have 



also been studied. Phosphorous-containing compounds are common in environmental 

chemistry, and can be crucial for plant nutrition. Soil samples can contain up to 3 g of 

phosphorous per kilogram of soil, with species such as phosphate diesters, monoesters and 

phosphonates reported. Chemical shifts of phosphorus species can depend on sample matrix 

properties such as pH and ionic strength. Multidimensional NMR approaches, such as 31P-1H 

correlation spectroscopy, can offer a route to firm identification of species. Diffusion NMR 

has recently been shown to be an effective additional spectroscopic tool for such analysis 

[223], using a mixture of 14 different model phosphorus compounds, including phosphonic 

acids, phosphate and pyrophosphate salts. Three “unknown” compounds were also included 

in the sample: lipoteichoic acid (LTP) from Staphylococcus aureus, RNA, from torula yeast 

Type VI, and DNA, from salmon testes. Some of the compounds, notably the RNA, degraded 

in solution introducing additional signals to the spectrum. However, the sparse phosphorus 

spectrum allowed the resolution of almost every peak in the 1D 31P spectrum. A logD-log

 plot was produced using this set of compounds, with an exponent, α, of 0.455, consistent 

with many of the logD-log  correlations shown so far in this review. The masses of the 

two remaining “unknowns”, DNA and LTP, could then be estimated, as 75.7 kDa and 2.4 

kDa respectively. Further interpretation of these diffusion coefficients requires caution. These 

species are not single, well-defined molecules but distributions of macromolecules with 

different sizes. The signals observed will stem from phosphorus nuclei in species with a 

broad range of molecular weights and, therefore, diffusion coefficients. Analysis of these 

peaks as if the species were monodisperse will give poor fits to the Stejskal-Tanner equation, 

large errors in estimated diffusion coefficients and large uncertainties in the estimated 

molecular weights while not correctly describing their dispersity. Here, the difference in size 

of over a power of ten between DNA and LTP does allow for the two species to be 

distinguished. If information about the range of molecular weights present is required, some 



of the methods used in the study of polymers may prove useful [27, 29, 117]. For the smaller 

molecules in the sample, the accuracy of the  estimation was within 10 % of the true 

weights for all species. While this proof of principle work measured all reference species in a 

single DOSY spectrum, arguably providing a comprehensive internal calibration curve, the 

number of model compounds used means that it could also be used to provide an external 

calibration curve. 

The external calibration method and all related ECCs have been implemented as both 

an Excel spreadsheet and a standalone Java package, available for free download from 

http://www.stalke.chemie.uni-goettingen.de/mwestimation/. 

5. A Return to the Stokes-Einstein Equation

The much more general problem of estimating the MWs of unknown species in a 

range of solvents can be approached from a different angle by returning to the discussion of 

the Stokes-Einstein equation. Each key assumption in the equation can be isolated and 

appropriate modifications made. This approach is both more general than the use of a power 

law to describe the diffusion of a particular class of species in a particular solvent, and, 

necessarily, more approximate. 

The first problem to address is that of the finite size of solvent molecules: the 

breakdown of the continuum model has a large effect on predicted diffusion coefficients. The 

effect of changing particle size on the friction experienced by a solute species can be included 

in the Stokes-Einstein equation by the introduction of a variable friction factor, f to the 

denominator of Eq. (7), just as Perrin did for the effect of solute shape.  For solute species 

much smaller than the solvent, the denominator of Eq. (7), corresponding to friction acting on 

the solute, will change to , corresponding to a “slip” boundary between solute and 

solvent rather than a “stick” boundary. Two expressions have been proposed to describe the 



transition between these limits, both expressed as functions of the ratio of the radius of 

solvent to the radius of molecule, . The first, developed by Gierer and Wirtz [224] (Eq. 

(24)(a)), uses microfrictional theory, the second, described by Chen and Chen [225] (Eq. 

(24)(b)), was obtained by converting the Gierer-Wirtz expression into one containing only a 

single term in , with two adjustable parameters determined by fitting diffusion data for a 

small set of model compounds.  

(24)(a)

(24)(b)

Using the same test set of compounds used in Fig. 4, these variable friction approaches can be 

tested, as shown in Figs. 14(a) and 14(b). Diffusion coefficients of the small test set of 

molecules used to generate Fig. 4 were estimated using the Stokes–Einstein equation 

modified by the Gierer-Wirtz (Fig. 14(a)) and Chen-Chen (Fig. 14(b)) methods, and then 

compared with those measured using diffusion NMR. 



Figure 14: Measured diffusion coefficients plotted against diffusion coefficients calculated 

using (a, upper) the Gierer-Wirtz (Eq. (24)(a)) and (b, lower) the Chen-Chen (Eq. (24)(b)) 

modifications to the Stokes–Einstein equation (Eq. (7)) for 108 samples of 44 small 

molecules in five deuteriated solvents, as detailed in the figure legend, together with a solid 

line of unit slope. All data acquired on a Varian Unity 400 MHz spectrometer using the 

Oneshot sequence at 298 K. Adapted from Evans et al., Angew. Chem. Int. Ed., 52 (2013) 

3199-3202.

Why the Gierer-Wirtz model fails to accurately predict the experimental diffusion 

coefficients is important. Both methods succeed in flattening the data onto something 

approaching a unit slope. The Gierer-Wirtz approach, which has no adjustable parameters, 

overshoots, predicting faster diffusion than is actually measured, i.e. the solute molecules 

have larger hydrodynamic radii in solution than expected. By using two adjustable 

parameters, the Chen-Chen method corrects the overshoot. It should be noted that attempts to 

extend the Chen-Chen model to crown ethers and alkanes in ethanol and butan-1-ol were less 

successful [225]. One obvious problem with the Chen-Chen equation is the choice of crown 



ethers as the calibration set of compounds. Such molecules are highly flexible and, 

particularly for the larger species, will show increased hydrodynamic radii. 

In principle it should be possible to calculate f directly from the known molecular 

structures of solute and solvent, but this would be a formidable challenge. A more tractable 

alternative is to use a simplified “bead” model of solute structure and, with the aid of 

empirical parameters optimised for a suitable training set of species, use hydrodynamic 

calculations to find a diffusion tensor and hence the value of f  [226]. As expected, the values 

of f obtained tends towards 1 as solute molecules increase in size; they are close to those 

obtained by Gierer and Wirtz and, in all cases, lower than the Chen and Chen modification. 

The second problem is that the effective hydrodynamic radius of a solute species is 

determined not only by its MW, but also by its effective density, shape, solvation and 

flexibility. The effect of shape on the shape frictional coefficient fs can typically be safely 

ignored for aspect ratios lower than 3, which covers the great majority of small molecules, 

but in the absence of prior information factors such as composition, solvation and flexibility 

cannot be treated explicitly. In seeking a general relationship between D and MW, therefore, 

one important simplification is to restrict the search to species that do not contain heavy 

atoms, and hence may be assumed to have an effective density typical of organic molecules. 

A second simplification is afforded by restricting the range of species considered to small to 

medium-sized (up to ca. 1 kDa) molecules. Solutes are therefore all assumed to be hard 

spheres with a density ρeff that is treated as a sole parameter to be optimised. This empirical 

effective density will be lower than would be predicted from a consideration of molecular 

mass and geometry, because the effects of solvation and flexibility will increase the solute 

hydrodynamic radius.

This thus provides a mechanism for estimating a hydrodynamic radius for a given 

MW, which can be used together with the Stokes-Einstein equation Eq. (7) and the Gierer-



Wirtz equation Eq. (24)(a) to calculate a diffusion coefficient D. The Gierer-Wirtz equation 

requires knowledge of the solvent to solute radius ratio , but since the solute radius is 

being estimated using the hard sphere approximation with an effective density ρeff, it is 

reasonable to apply exactly the same logic to estimating the solvent radius. The radius ratio 

then simplifies to the cube root of the ratio of the solute and solvent solute molecular weights. 

These modifications to the Stokes-Einstein equation thus lead to Stokes-Einstein-

Gierer-Wirtz estimation (SEGWE), Eqs. (25)(a) and (25)(b), which links the diffusion 

coefficient expected in a solvent with a given viscosity η at a given temperature T to the 

solute and solvent molecular weights  and S, through a single adjustable parameter, 

the effective density ρeff:

α

α

πη
πρ

(25)(a)

α
(25)(b)

where NA is the Avogadro number. 

The problem of deriving a general relationship between molecular weight and 

diffusion coefficient then reduces to that of finding an optimum value for the effective 

density ρeff. The original study [94] used a training set of experimental diffusion coefficients, 

D, all measured at 298 K, for 109 combinations of 44 test compounds and 5 common 

solvents. Fig. 15 compares the viscosity-scaled diffusion coefficients of the same set of 109 

small organic molecules as in Fig. 4, estimated now using SEGWE, with those measured in 5 

different deuteriated solvents using diffusion NMR. Numerical optimization was used to 

estimate the required effective density, ρeff = 0.619 g cm‒3. As expected, this is much smaller 

than the typical densities of solid or liquid organic materials, because of the effects, in 



roughly decreasing order of importance, of solvation, flexibility and shape. These would all 

make the molecule effectively larger in solution than when solid. The systematic errors 

observed in Fig. 4 have been successfully removed, and the root-mean-square difference 

between estimated and experimental diffusion coefficients for the training set of 

measurements was 14.6 %. This can be contrasted with a value of 45 % for the corresponding 

Stokes-Einstein prediction (Fig. 4). 

Figure 15: Measured diffusion coefficients plotted against diffusion coefficients calculated 

using the SEGWE modification (Eqs. (25)(a) and (b)) of the Stokes–Einstein equation (Eq. 

(7)) for 108 samples of 44 small molecules in five deuteriated solvents, as detailed in the 

figure legend, with a solid line of unit slope. All data acquired on a Varian Unity 400 MHz 

spectrometer using the Oneshot sequence at 298 K. Adapted from Evans et al., Angew. Chem. 

Int. Ed., 52 (2013) 3199-3202.

More recently, the model has been tested further by incorporating measurements of 

small molecules in dilute systems drawn from literature studies of small molecule diffusion 

[4, 35, 52, 53, 95, 129, 134, 143, 197, 198, 227-239] in the training set. With 548 additional 

measurements, this set of data spans a wider range of chemical space than the initial training 



set, increases the range compound masses up to ca. 1.5 kDa, increases the number of solvents 

covered from 5 to 23, and removes the previous temperature restriction of 298 K. Not all of 

the available sources of data were used. Five criteria were used to determine the likelihood 

that literature data were reliably acquired and, therefore, suitable for inclusion in the literature 

data set. 

Systematic Miscalibration. Sections 2.2.1 and 2.2.2 discussed a number of possible sources 

of systematic errors in diffusion NMR experiments [230, 240]. If a paper contained evidence 

of lack of, or mis-, calibration, its data were excluded from the literature data set. In 

particular, sets of experimentally acquired diffusion coefficients with systematically large 

deviations from prediction in every measurement reported were excluded.

Evidence of Convection. The most likely source of unreliability in acquired experimental 

diffusion NMR data is convection. Section 2.2.3 has detailed how it is not a critical 

phenomenon in diffusion NMR experiments, but is likely to be present to some degree in 

almost every NMR experiment. The presence of convection in a sample is likely to lead to 

higher diffusion coefficients than expected [59, 60]. Variable temperature studies, or those in 

solvents particularly prone to convection, that showed systematically higher diffusion 

coefficients than predicted were excluded from the literature data set. 

Inconsistent Diffusion Coefficients. Related to the first criterion, if a repeated measurement 

of the same species had inconsistent diffusion coefficients reported within a single 

experimental report, it is highly likely that there were significant problems with the 

experiments, and the data were excluded from the literature data set.

Scope. Solutes with molecular weights greater than 1.5 kDa were not included. (The use of 

diffusion NMR in characterizing proteins and polymers was discussed in Section 4.1).

Evidence of Aggregation. Species that form aggregates diffuse more slowly than single 

molecules. Systems that might be expected to aggregate and that had lower diffusion 



coefficients than predicted were therefore excluded from the literature data set. The use of 

diffusion NMR in the study of aggregation is an interesting topic in its own right; a number 

of reviews and papers are recommended [2-4, 237, 241]. This criterion meant that one datum 

included in the original data set, trimesic acid (benzene-1,3,5-tricarboxylic acid) in DMSO-

d6, was excluded from later analysis and from Figs. 4, 14, 15 and 16 presented here. This 

compound exhibited a diffusion coefficient ca. 60 % smaller than predicted, indicating 

significant aggregation. This should have been expected; trimesic acid is known to form 

extended self-assembled structures in both the solid state [242] and at liquid−solid interfaces 

[243], producing extended hexagonal networks with either “chicken wire” or “flower” 

structures.

Fig. 16 compares the measured diffusion coefficients of both the original set of 108 

small organic molecules, and an additional 558 diffusion coefficients taken from the literature 

[244], with those estimated with SEGWE using the same optimized effective density, ρeff = 

0.619 g cm‒3 as derived from the original data set. 

Figure 16: Measured diffusion coefficients plotted against diffusion coefficients calculated 

using the SEGWE modification (Eqs. (25)(a) and (b)) of the Stokes–Einstein equation (Eq. 

(7)) for 108 samples of 44 small molecules in five deuteriated solvents (original data set, 



filled red squares) and 558 samples in 23 solvents, in both deuteriated and protiated solvents 

(literature data set, filled blue diamonds), together with a solid line of unit slope. Adapted 

from Evans et al., Anal. Chem., 90 (2018) 3987-3994.

Certain subsections of the literature data warrant closer inspection. In Section 3, 

electrochemically-acquired data were discussed, as they appeared to show an inverse 

correlation between D and  [95, 96]. These data was included in the further testing of the 

SEGWE model. For the larger dataset [95], containing a total of 59 diffusion coefficients of 

29 molecules measured in three different solvents, acetonitrile, dimethyl sulfoxide and 

dimethyl formamide, SEGWE performed admirably, with an RMS error of well under 5 %. 

The temperature dependence of the SEGWE predictions can also be tested. In order to 

estimate diffusion coefficients at different temperatures, an Arrhenius model for solvent 

viscosity was used with Eq. (25)(a). For all liquids used in the literature data set, as well as 

protiated analogues of all deuteriated solvents, two parameters were used to fit the solvent 

viscosities as exponential functions of temperature. The effectiveness of this extension can be 

judged by considering the data contained in [129], a compilation of 200 diffusion coefficients 

measured in D2O and in CDCl3 at both 298 and 303 K. While some systematic trends were 

observed, all diffusion coefficients were estimated by SEGWE to within 25%. As the 

temperature dependence of viscosity is likely to be independent of the other modifications to 

the Stokes-Einstein equation incorporated in the SEGWE model, it is perhaps not surprising 

that the temperature dependence of diffusion is well represented. Some small deviations are 

observed, mostly increased experimental diffusion coefficients for samples in CDCl3; these 

are likely to be the result of sample convection. As a consequence of its viscosity, density and 

thermal expansion coefficient [60, 244], CDCl3 is over ten times more likely to convect than 

D2O under the same thermal conditions. 



SEGWE has been implemented as an Excel spreadsheet and as a standalone Matlab 

package, as well as being incorporated into the GNAT processing software, all available for 

free download from http://nmr.chemistry.manchester.ac.uk/. 

5.1 Stokes-Einstein-Gierer-Wirtz Estimation – Examples and Applications

As with both the external and internal calibration methods, the SEGWE estimation 

model has found use in organometallic chemistry as well as in more traditional organic 

chemistry and in the identification of natural products [245, 246]. Its application has tended 

to be more fragmentary than both internal and external methods where distinct classes of 

reagents were subjected to concerted, methodical characterisation. 

One particular aspect of its utility is as a check on whether species are aggregating or 

not. Aggregation processes have been found to affect the absorption and distribution of 

bioactive molecules in vivo. DOSY spectra of a fluorescence-based Cu+ sensor developed by 

Giuffrida et al. were therefore acquired to test for the presence of aggregates. The diffusion 

coefficient acquired, D = 3.51×10‒10 m2 s‒1, for a 1 mM sample of the sensor in D2O was 

consistent with both the predicted hydrodynamic radius and the molecular weight of the 

compound [235]. On the other hand, the method has been used to identify the presence of 

dimers and larger aggregates, as in the cases of π-stacked [247], halogen- [239] and 

hydrogen-bonded [248-251] species in solution. Indeed, rather large and complex aggregates 

can be monitored and characterised. 5-ureidosalicylic acid is known to form cyclamers in the 

solid state. DOSY spectra confirmed the persistence of at least a trimeric species in acetone-

d6 [252]. Larger still are the oligomeric aggregates of shuttlecock-like penta-modified C60 

fullerenes. At increasing concentrations, diffusion coefficients consistent with aggregates of 

up to seven modified fullerenes were measured [253].



While the SEGWE method was explicitly designed for small molecules, containing 

only lighter atoms such as C, H, and O, this has not stopped its use in the analysis of 

compounds and complexes containing aluminium [254-256], cobalt [257], copper [258, 259], 

gold [260], heavy alkaline earth elements [261], all heavier Group 14 elements [262], iridium 

[263], nickel [264], palladium [236, 265, 266], samarium [267], selenium [268], silver [269, 

270], titanium [271], uranium [272], yttrium [273, 274], and zinc [275, 276]. While caution 

might be well advised in the extrapolated use of an effective density optimised using a 

training set consisting solely of small, organic molecules, it was noted in [259] that for the 

species studied therein, the ligand units used made up the bulk of the molecular weight, 540 g 

mol−1, compared with the heavier Cu (64 g mol−1) atom and halides (35 g mol−1 for Cl, 127 g 

mol−1 for I). 

The utility of the SEGWE model depends on the research question being asked. For 

example, diffusion NMR analyses of the complexes of tris(pyridylcarboxylate)-1,4,7-

triazacyclononane ligands with yttrium showed that the estimated  depended on the 

solvent used. In polar solvents, DMSO-d6 and methanol-d4, the estimated molecular weights 

were very similar, but the estimated mass in CD2Cl2 was twice as large and the estimated 

mass in CDCl3, the least polar solvent used, was a further three times larger. This is perhaps 

unsurprising: solvation of the complex is weak in CDCl3, and hydrophobic π–π stacking can 

freely occur between the aromatic rings. Other aspects of the study were hindered by severe 

line-broadening, presumably due to the slow rate of molecular tumbling of the very large 

complexes formed in this solution. The DOSY experimental data and SEGWE calculation 

provided valuable additional information, but only as part of the wider, multiple technique, 

study [273]. 

6. Discussion



6.1 Interpreting Size or Interpreting Weight?

The relationship between diffusion coefficient and molecular size is relatively simple: 

there is an inverse relationship, made clear in the Stokes Einstein equation (Eq. (7)). The 

complication, addressed by all the approaches described in this review, remains clarifying the 

link between molecular size and molecular weight. A neat example of this can be found in the 

recent paper by Zaccaria et al. [277]. Diffusion NMR data were acquired for a series of 

transition metal bis-cyclopentadienyl complexes Cp2MCl2 (M = Ti, Zr, Hf). In spite of a 

nearly 50 % increase in , the diffusion coefficients of the complexes were found to be the 

same, within experimental error. Here, the changing metal core does not materially affect the 

size of the overall species. 

So what effect does introducing heavier atoms into molecules have? In the previous 

section, SEGWE was shown to have been used, quantitatively, in the analysis of species 

containing a range of increasingly heavy metals. The diffusion NMR study of gold complexes 

in [216] showed that, while a different calibration curve was needed for di-gold complexes, 

their average molecular densities only changed by ca. 3 %. Furthermore, Zaccaria et al. [277] 

generated a calibration curve, using a wide range of chemistry from small molecules to 

aluminium complexes, a silsesquioxane diol and a zirconium complex containing a t-butyl-

substituted-bis(indenyl)dimethylsilane. While an excellent degree of fit was achieved for this 

particular set of 11 compounds, the calibration curve failed to work for three seemingly 

similar compounds. The silsesquioxane was reacted with Ti(OiPr)4 to form a species that 

consisted of two cages, bridged by a single Ti atom. The indenyl ligands in the zirconium 

complexes were substituted with smaller groups, such as methyls, or replaced with smaller 

cyclopentadienyl groups. These changes in structure and shape lead to very poor estimations 

of  from the original calibration curve. Just because a good linear logD-log  



correlation is obtained for a certain group of molecules, it does not imply that it can be used 

as a reliable calibration for all similar molecules. 

In supramolecular chemistry, there is also the issue of cavities in molecules. While 

diffusion NMR and DOSY spectra can be of great use in the characterisation of molecular 

cages and self-assembled systems, the existence of a hollow space in the centre of the 

molecule may complicate matters. A neat example is the case of ring-in-ring, or Russian doll, 

complexes consisting of a nested assembly of two different macrocycles [278]. The diffusion 

coefficient of the larger zinc-containing dodecameric ring was not observed to change when a 

smaller ring was assembled within it. Clearly, the hydrodynamic radius of the new complex 

remained - as expected - broadly the same as its precursor.  

6.2 Quality Control

Together with the increasing numbers of studies acquiring small molecule diffusion 

coefficients as part of their characterisation, the development of the external calibration 

method and SEGWE have also generated and collated large sets of molecular diffusion 

coefficients. A key theme of this review, covered in detail in Section 2, has been that 

diffusion coefficients have to be measured carefully. Convection and aggregation, in 

particular, will lead to diffusion coefficients higher and lower than expected, respectively, 

while miscalibrations of the pulsed field gradient will lead to systematic errors in the 

diffusion coefficients acquired. Reference 244 developed a series of criteria that sets of data 

should pass before inclusion in any test literature data set. A quick “sanity check” of any set 

of acquired diffusion coefficient data according to these criteria should reduce any doubts as 

to the quality and self-consistency of acquired data, and aid in the later quantitative 

interpretation of the data. The same paper also collated the Arrhenius parameters of solvent 

viscosity for all deuteriated and protiated solvents used in the literature data set. This library 



of variable-temperature viscosity data will also help with better understanding and 

interpretation of acquired diffusion coefficients. 

6.3 Competing Methods

The various literature reports of quantitative estimation of molecular weight from 

small molecule diffusion coefficients, and vice versa, have been broadly grouped into three 

competing methods. These have been introduced, discussed and specific applications 

highlighted to show how each technique works, and to give some idea as to what it can be 

applied to in the future. Each method has found a particular niche in the quantitative 

interpretation of small molecule diffusion coefficients. 

SEGWE is necessarily an approximate approach and tends to have the largest 

uncertainties in its predictions. However, as the majority of its published applications show, it 

is still precise enough to be capable of resolving simple chemical arguments: Are these 

species associating? Is the compound a monomer or a dimer? What is the approximate 

molecular weight of my unknown? While SEGWE needs robustly acquired and accurate 

diffusion coefficients, this review has addressed the key difficulties of temperature control, 

gradient calibration and convection. It is strongly recommended that any diffusion NMR 

study addresses these three issues before the acquisition of any data. 

While a clear antecedent, the internal calibration method has not been completely 

superseded by the external calibration method. As the reference compounds are present in the 

same tube as the analyte, so long as the NMR signals do not overlap, the effects of many 

experimental imperfections will be compensated for. Where NMR spectra are suitably sparse, 

there is still room for this methodology to be used. 

While the ECC method will likely find wide use for generic small organic molecules 

as well as for organometallic chemistry, it is essential to generate a specific calibration curve 



for the range of species to be studied. For series of compounds with similar structures and 

containing atoms with similar atomic densities, the ECC approach to molecular weight 

estimation should be robust and accurate. 

7. Summary 

NMR measurements of diffusion coefficients, such as in diffusion-ordered spectroscopy 

(DOSY) experiments, have historically been used only in a qualitative manner, separating out 

signals in a manner akin to chromatography. The Stokes-Einstein equation implies that the 

relationship between diffusion coefficient and molecular size is simple. It is the relationship 

between hydrodynamic radius and molecular weight that is most uncertain for small 

molecules. This is not the case for macromolecules. While this review nominally concerns 

only the estimation of small molecule molecular weights, there is plenty of overlap with the 

application of diffusion NMR methods to macromolecules, such as proteins, polymers and 

polysaccharides, and a small section on these areas has been included. The power laws that 

govern the relationships between the molecular weights of these species and their diffusion 

coefficients in solution give insight both into the interactions between solvent and 

macromolecule, and into the three-dimensional structures these large, polymeric species fold 

into. They also give important context for the later small molecule work

Three different general methods for estimating molecular weight from acquired 

diffusion coefficient have been detailed in this review along with guides as to their use and 

the calculations required. Two are based on power law methods, differing only in how the 

diffusion of the unknown compound is compared to that of known reference molecules. The 

third method, a direct modification of the Stokes-Einstein equation, is more general and, as a 

result, more approximate, but highlights the importance of making pragmatic decisions about 

the systems being studied. All three methods discussed have their merits. As this review has 



described and discussed, there is an ever-growing body of work, spanning almost the entire 

periodic table, of on the use of experimentally-acquired diffusion coefficients for estimating 

and validating small molecule and organometallic molecular weights. This, in turn, allows for 

the solution of many chemical problems, including identification and quantification of 

aggregation, determination of association constants, solvation, ion pairing, determination of 

effective sizes and structures of reactive intermediates, and the characterisation of 

organometallic systems and complexes. 

While writing this review, three points became clear. First, this is not a new problem. 

The failure of the Stokes-Einstein equation to quantitatively predict small molecule diffusion 

coefficients was spotted very early on, and attempts to correct it started almost immediately. 

The Wilke-Chung equation, in particular, is still widely used and cited, even though it 

handles and simplifies the assumptions within the Stokes-Einstein equation in a completely 

empirical manner. Second, care and attention in the acquisition of diffusion NMR data reaps 

dividends. This review has summarised some of the important experimental considerations 

that need to be both before any experimental work begins, and during acquisition of data. In 

particular, convection can be the bane of experimental diffusion NMR studies, but it can be 

identified, it can be measured, and it can be compensated for. As increasingly reliable 

measurements of diffusion coefficient can be made, so can increasingly quantitative uses of 

the measured diffusion coefficients. NMR spectrometers are now ubiquitous in modern 

chemical research labs, and most are equipped with the hardware necessary for diffusion 

NMR experiments. The experiments themselves are increasingly robust, and can be used to 

acquire good quality, accurate diffusion coefficients. Finally, the range of distinct areas of 

chemistry where diffusion coefficients, acquired by NMR or otherwise, have been used to 

estimate molecular weights and, hence, solve chemical problems, is vast. The range of 

organometallic chemistry probed by diffusion NMR techniques and molecular weight 



estimation would be worthy of comprehensive review on its own. This review has tried to 

highlight historically interesting studies and key aspects from an NMR point of view, but 

could not hope to cover, or do justice to, the full range of complexes and reagents reported in 

the literature. What is clear is that there is significant scope, and great opportunity, for the 

increased use of diffusion NMR and all of the various molecular weight estimation 

methodologies described in this review. 
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Glossary & Abbreviations

CORE component-resolved NMR spectroscopy

Cp cyclopentadienyl

CS compact spheres

DECRA direct exponential curve resolution algorithm

DEPT distortionless enhancement by polarization transfer

DIPA diisopropylamine

DMSO dimethylsulfoxide

DOSY diffusion-ordered spectroscopy

DSE dissipated spheres and ellipsoids

ECC external calibration curve

ED expanded discs

GNAT general NMR analysis toolbox

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HFIP hexafluoroisopropanol

HMBC heteronuclear multiple bond correlation spectroscopy 

HMPA hexamethylphosphoramide

HOESY heteronuclear Overhauser effect spectroscopy 

HQ hydroquinone 

HR-DOSY high-resolution diffusion-ordered spectroscopy

INEPT insensitive nuclei enhanced by polarization transfer

IPr 1,3-bis(2,6-bis(diisopropyl)imidazol-2-ylidene

iPrLi isopropyllithium

JohnPhos (2-biphenyl)-di-tert-butylphosphine



LDA lithium diisopropylamide

LiHMDS lithium hexamethyldisilazide 

LOCODOSY local covariance order DOSY 

LTP lipoteichoic acid 

MES 2-(N-morpholino)ethanesulfonic acid

OUTSCORE optimized unmixing of true spectra for component resolution

P3HT poly(3-hexylthiophene)

PEF poly(ethylene furanoate)

PET poly(ethylene terephthalate)

PFG pulsed field gradient

PIPES piperazine-N,N′-bis(2-ethanesulfonic acid)

PS pure shift

TAI trichloroacetyl isocynate

TFA trifluoroacetic acid

THF tetrahydrofuran

THP tetrahydropyran

TRIS tris-(hydroxymethyl)aminomethane

RF radio frequency

SCORE speedy component-resolved NMR spectroscopy

SEGWE Stokes-Einstein-Gierer-Wirtz estimation
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Graphical abstract

Highlights

• Quantitative interpretation of diffusion coefficients remains a challenge. 

• Stokes-Einstein equation poor at estimating small molecule diffusion coefficients. 

• Power law methods can be successfully applied to small molecules. 

• Power law calibration is either internal to or external from the NMR sample.

• Modification of the Stokes-Einstein equation offers an alternative approach. 


