Microencapsulated phase change materials in solar-thermal conversion systems:understanding geometry-dependent heating efficiency and system reliability


The performance of solar-thermal conversion systems can be improved by incorporation of nanocarbon-stabilized microencapsulated phase change materials (MPCMs). The geometry of MPCMs in the microcapsules plays an important role for improving their heating efficiency and reliability. Yet few efforts have been made to critically examine the formation mechanism of different geometries and their effect on MPCMs-shell interaction. Herein, through changing the cooling rate of original emulsions, we acquire MPCMs within the nanocarbon microcapsules with a hollow structure of MPCMs (h-MPCMs) or solid PCM core particles (s-MPCMs). X-ray photoelectron spectroscopy and atomic force microscopy reveals that the capsule shell of the h-MPCMs is enriched with nanocarbons and has a greater MPCMs-shell interaction compared to s-MPCMs. This results in the h-MPCMs being more stable and having greater heat diffusivity within and above the phase transition range than the s-MPCMs do. The geometry-dependent heating efficiency and system stability may have important and general implications for the fundamental understanding of microencapsulation and wider breadth of heating generating systems.

Publication DOI: https://doi.org/10.1021/acsnano.6b07126
Divisions: College of Engineering & Physical Sciences
College of Engineering & Physical Sciences > Aston Institute of Materials Research (AIMR)
College of Engineering & Physical Sciences > Energy and Bioproducts Research Institute (EBRI)
Additional Information: This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acsnano.6b07126
Uncontrolled Keywords: emulsification,encapsulation ratio,microencapsulation,nanocarbons,PF-QNM,phase change materials,solar-thermal conversion,Materials Science(all),Engineering(all),Physics and Astronomy(all)
Publication ISSN: 1936-086X
Last Modified: 17 Jun 2024 07:23
Date Deposited: 19 Aug 2019 10:09
Full Text Link:
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2017-01-24
Published Online Date: 2016-12-23
Accepted Date: 2016-12-21
Submitted Date: 2016-10-21
Authors: Zheng, Zhaoliang
Chang, Zhuo
Xu, Guangkui
McBride, Fiona
Ho, Alexandra
Zhuola, Zhuola
Michailidis, Marios
Li, Wei (ORCID Profile 0000-0003-4036-467X)
Raval, Rasmita
Akhtar, Riaz
Shchukin, Dmitry



Version: Accepted Version

| Preview

Export / Share Citation


Additional statistics for this record