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ABSTRACT 

The performance of solar-thermal conversion systems can be improved by incorporation of 

nanocarbon-stabilized microencapsulated phase change materials (MPCMs). The geometry of 

MPCMs in the microcapsules plays an important role for improving their heating efficiency and 

reliability. Yet few efforts have been made to critically examine the formation mechanism of 

different geometries and their effect on MPCMs-shell interaction. Herein, through changing the 

cooling rate of original emulsions, we acquire MPCMs within the nanocarbon microcapsules 

with a hollow structure of MPCMs (h-MPCMs) or solid PCM core particles (s-MPCMs). X-ray 

photoelectron spectroscopy and atomic force microscopy reveals that the capsule shell of the h-

MPCMs are enriched with nanocarbons and have a greater MPCMs-shell interaction  compared 

to s-MPCMs. This results in the h-MPCMs being more stable and having greater heat diffusivity 

within and above the phase transition range than the s-MPCMs do. The geometry-dependent 

heating efficiency and system stability may have important and general implications for the 

fundamental understanding of microencapsulation and wider breadth of heating generating 

systems. 
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Solar-thermal conversion, where solar irradiation is harvested and converted to heat for 

beneficial usage, has gained renewed interest in the past decade and made it a special asset in 

energy conversions due to its operational simplicity and high energy conversion efficiency.
1-4

 

Microencapsulated phase change materials (MPCMs, 1-100 µm diameter), often considered 

unique micrometer-scaled composites with a superior performance of latent heat thermal storage 

as compared with bulk PCMs, are currently emerging as positive additives/dopants to the solar-

thermal conversion systems. Nanocarbon-stabilized MPCMs are of particular interest as they 

combine the advantages of nanocarbons for their outstanding energy conversion/transfer 

performance,
5-7

 MPCMs with an accelerated heat storage/release due to a relatively high surface-

area-to-volume ratio
8-13

 and the PCM-nanocarbon interactions which often fosters an enhanced 

enthalpy and better crystallinity.
14,15

 A new avenue is therefore opening to enhance the heat-

generating efficiency at a output temperature within and even higher than the solid-liquid phase-

transition range (PTR).
16-18

 By constantly storing and retracting latent heat,
19

 the MPCMs are 

expected to maintain the dynamic equilibrium of output temperatures when the surrounding 

temperature is around the PTR. More attractively, since the liquid PCMs above PTR store a 

higher accumulative energy (latent heat + sensible heat) but exhibit a much lower specific heat 

capacity than the PCMs within PTR,
20,21

 the temperatures of PCMs and heat-generating 

structures would increase synchronously.
22-28

 Consequently, a higher energy storage capacity 

will be achieved;
17

 meanwhile, more heat will be emitted from the MPCMs above PTR to 

eliminate the convective heat dissipation in the heat-generating systems,
29

 resulting in an 

increased the overall output temperature.
16

 

Despite the highly promising applicability of MPCMs to the solar-thermal conversion systems, 

manipulating their geometry in microcapsules to maintain stable encapsulation of PCMs and 
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effective thermal diffusivity is still challenging.
30

 The solid microspheres with a high surface-

area-to-volume ratio are prevailing among the MPCMs covered by thick and non-nanocarbon 

capsule shells.
9,31,32

 The relevant statistics on the nanocarbon-stabilized MPCMs is largely 

unclear due to the difficulty in achieving the stable encapsulation of PCMs with flexible 

nanocarbon materials, for example graphene oxide (GO) or carbon nanotubes (CNTs), and even 

the nanocarbon-polymer composites. Furthermore, the undefined wettability between PCMs and 

nanocarbons
28

 induced by molecularly C-H···π interaction
33-35

 increases the complexity to 

examine the geometry of nanocarbon-stabilized MPCMs, its formation mechanism and influence 

on the heating performance. We hypothesize that solving these issues would benefit: (1) 

Confinement of the melted MPCMs within the micrometer-scaled nanocarbon microcapsules 

without leakage, leading to a reliable heat-generating performance and (2) Maximizing the 

utilization of the MPCMs per unit mass or volume within and above the PTR, which is a major 

drawbacks among the current MPCMs.
10,18,36,37

  

In our previous study, we adopted CNT-reinforced GO hybrids as shell materials to encapsulate 

the alkane-type PCMs.
16

 The correlation between the C-H···π interaction and the thermal 

properties of MPCMs has been investigated, with a pronounced C-H···π interaction leading to 

stable encapsulation and fast thermal diffusivity. However, the geometry of MPCMs, which 

should have mediated the C-H···π interaction and the heating performance of MPCMs, and 

introduced a degree of complexity to the whole system, has not yet received the attention it 

deserves. In this work, by simply varying the cooling rates of emulsions, we realize the synthesis 

of controllable geometry of MPCMs within the nanocarbon microcapsules with a hollow 

structure of MPCMs (h-MPCMs) or solid PCM core particles (s-MPCMs). The structural 

variations between h- and s-MPCMs are then revealed by comparing carbon sp
2
/sp

3
 molar ratio 
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and surface mechanical properties of microcapsules. The structural effect of C-H···π interaction 

is quantified. The stark contrast in geometry may lead to differences in thermal storage capacity 

of the PCMs within PTR, stability of shell materials and position of the melted MPCMs above 

PTR, which have been confirmed by thermal analysis methods. The geometry-dependent 

efficacy of h- and s-MPCMs in energy conversion systems is investigated by using a graphene-

based three-dimensional (3D) solar-thermal conversion system and a solar energy harvesting 

MPCM slurry as model, for a comprehensive understanding of the underpinning role of MPCM 

geometry on the overall performance, including heating performance and system reliability. 

RESULTS AND DISCUSSION 

Fabrication of h- and s-MPCMs. To synthesize the MPCMs with controllable geometry, we 

modified the reported method
16

 by cooling down the ultrasound-induced nanocarbon-stabilized 

PCM (oil-in-water) emulsions (~40 °C) at two cooling rates (Materials and Methods). n-eicosane 

was utilized as a typical PCM for its moderate PTR (32 – 36 °C) and widely referenced structural 

and thermal property data. The dominant shape of emulsion droplets is near-spherical owing to 

the isoperimetric inequality
38

 during emulsification. To acquire h-MPCMs, the freshly-made 

emulsion was immediately cooled with ice water (~2 °C), leading to an exponential-like decrease 

of temperature (y) as a function of time (x):   0.21.2/exp3.31  xy , with correlation factors 

higher than 0.995 (Figure 1a). The plateau referred to as the PTR of eicosane could barely be 

detected in the temperature plot, reflecting that the solidification finished almost instantaneously 

and the heat within the original liquid PCMs was extracted instantly in the presence of a 

relatively large T contrast. The resulting product preserves the original spherical morphology 

(Figure 1b) whereas the cross-sectional images (Figure 1c and S1) reveal a dominantly self-

supporting hollow structure with a void ratio at around 80% that is determined by solid density 
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analysis (see Supporting Information). The thickness of MPCMs within the solid phase is 100 to 

200 nm, and thinner than the minimum requirement (300 nm) for a plastic interfacial phase that 

directs the formation of regularly shaped alkane microparticles.
39

 Meanwhile, the C-H···π 

featured MPCMs-shell interaction is unlikely to induce freezing adsorption layers at the interface 

due to the mismatch of molecular structures between alkanes and nanocarbons.
40

 As such, the 

instant adhesion of eicosane onto the inner surface of nanocarbon shell should be a direct 

preservation of original state of liquid MPCMs within the emulsion droplets. In comparison, the 

naturally cooled emulsion showed a clear PTR along at a much slower cooling rate: 

  203.17/exp2.17  xy , resulting in s-MPCMs. The morphology is that of shrivelled-pods-

like nanocarbon shells wrapping the irregular eicosane particles without clear boundary between 

capsules (Figure 1e, f). It is clearly shown that the slower cooling rate allows the long-chain 

alkane molecules to assemble into compact structures with a minimal MPCMs-shell contact area. 

Furthermore, thermogravimetric (TG) analysis (Figure S2) revealed the eicosane content in the 

microcapsules was higher for s-MPCMs (87.5 wt%) than h-MPCMs (75 wt%), reflecting a 

marked underutilization of nanocarbons in the s-MPCMs.  

Characterization of h- and s-MPCMs with XPS. We employ X-ray photoelectron 

spectroscopy (XPS) to elucidate the effect of the geometry of MPCMs on the capsule shell 

composition. XPS C1s analyses of nanocarbon shell materials, h- and s-MPCMs were 

performed, as shown in Figures 1g-i. A typical spectrum of nanocarbons contain several 

components related to C=C (sp
2
, 283.6 eV), C-C (sp

3
, 285.0 eV), C-O (hydroxyl and epoxy, 

285.7 and 286.7 eV), C=O (carbonyl, 287.5 eV), O-C=O (carboxyl, 288.6 eV) and pi-pi* (π-π*, 

290.0 eV) groups.
41,42

 The relative atomic ratio of carbon sp
2
/sp

3
 is generally 1.0/45.3. However, 

more than half of the positions analyzed for the h-MPCMs sample exhibit a surprisingly high 
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sp
2
/sp

3
 ratio up to around 1.0/0.7. We cannot exclude the possibility of the removal of oxygen 

species during emulsification because the s-MPCMs sample has shown its increased sp
2
/sp

3
 ratio 

of around 1.0/17.5 and oxygen-species concentrations of the two MPCM samples have indeed 

decreased. However, since the XPS detection depth is ~10 nm and the thickness of nanocarbon 

capsule shell is 4.5 – 17.5 nm for h-MPCMs (Figure S3), such a high sp
2
/sp

3
 ratio detected can 

be mainly due to an enrichment of conjugative species from nanocarbons. The enrichment of 

nanocarbons would make the MPCMs-shell interaction more pronounced in the h-MPCMs than 

the s-MPCMs.  

Mechanical properties of h- and s-MPCMs. We then examined the mechanical properties of 

capsule shells to quantify the MPCM-shell interaction. The atomic force microscopy (AFM) 

based Peakforce-Quantitative Nanomechanical Mapping (PF-QNM) enables real-time collection 

of topography (Figure 2a and S4) and mechanical properties that include elastic modulus (Figure 

2b) and deformation (Figure 2c).
43

 Analysis of the capsule surface from topographic images 

disclosed a much rougher outer surface of h-MPCM capsules than that of s-MPCMs, with the 

surface roughness (Ra) at around 60 and 15 nm, respectively. This result can be explained by the 

rapid cooling which prompts the instantaneous solidification of eicosane close to the inner wall 

of capsules without enough time for the surface alkane molecules to form smooth facets. 

Furthermore, the fact (Figure 2a-2) that self-supporting nanocarbon shells are preserved even 

after removal of MPCMs, confirms the contribution of nanocarbons enrichment at the capsule 

shell. The overwhelming bright green colour of s-MPCMs in Figure 2b-3 indicates the highest 

elastic modulus among the samples. Consistent with Ra, h-MPCMs and nanocarbon shell 

(Figures 2c-1 and 2) show a similar heterogeneous distribution in the deformation mappings. 
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Such heterogeneity disappeared for s-MPCMs, as depicted in Figure 2c-3, which is in agreement 

with the alternation from hollow spheres to compact micrometre-scaled particles. 

As shown in Figure 3a, the averaged deformation is greater for h-MPCMs (3.5 nm) than for 

either s-MPCMs (2.8 nm) or eicosane microcrystals (2.9 nm), which is consistent with the 

formation of a hollow structure. The self-supporting capsule shell deforms more than 6 nm, 

confirming the additional structural support of the MPCMs-shell interaction to the nanocarbon 

shell. The elastic moduli were also compared (Figure 3b).  h-MPCMs (1094 MPa) and 

nanocarbon shell (671 MPa) exhibit lower moduli by more than one order of magnitude 

compared to that of s-MPCMs (11559 MPa) and eicosane microcrystals (11524 MPa). For 

hollow structures (Figure 3c, left), the elastic modulus of a quasi-2D composite perpendicular to 

the probing direction ( hE ) can be calculated by Equation 1: 

h.,inter

h.,inter

eico

heico,

h,carbon

hcarbon,

h

hsolid,

E

C

E

C

E

C

E

C
                                                 (1) 

where hcarbon,C , heico,C  and h.,interC  represent the volumetric ratio of nanocarbons, free 

eicosane and the interfacial zone between them, respectively; h,carbonE , eicoE  and h.,interE  are 

the corresponding elastic moduli. For simplicity, PCM confined inside CNT is not taken into 

account, and the effective interaction distance from the surface of GO or CNT is set at 4.3 Å.
7
 In 

the case that the volumetric ratio of solid phase hsolid,C  is only 20 vol%, hcarbon,C , heico,C  and 

h.,interC  can be calculated to be 2.46, 16.5 and 0.25 vol%, respectively (Table S1). According to 

Equation 1, h.,interE  is estimated at around 19 MPa, which is almost 20 times higher than that in 

bulk PCM-nanocarbon composites.
44

 Although its value is still small in comparison to h,carbonE  
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and eicoE , the supporting role of h.,interE  to the capsule shells has been witnessed. Moreover, 

the volumetric fraction of CNTs in solid phase is estimated at around 0.37 vol% which is much 

higher than the initial feed ratio (0.03 vol%), again confirming the enrichment of nanocarbons in 

close proximity to the capsule shell.  

For s-MPCMs, the simplified model of elastic modulus ( sE ) of the microcomposite can be 

expressed as (Figure 3c, right): 

s.,inters.,intereicoseico,CNTsCNT,s ECECECE                                 (2) 

because the nanocarbon shell has little effect on the mechanical properties of s-MPCMs but 

CNTs may still be embedded in the eicosane matrix due to the C-H···π interaction.
26,28

 The 

volumetric fraction of CNTs ( sCNT,C ) varies between 0 to 0.03 vol.% and modulus of multi-

wall CNTs was reported to be 900 GPa.
45

 If s.,interE ≈ h.,interE ≈ 19 MPa, sCNT,C  in Equation 2 

would be as low as 0.003 vol%, which is two orders of magnitude lower than that in h-MPCMs.  

Thermal properties and structural stability of h- and s-MPCMs. The impact of geometry 

on the thermal properties of h- and s-MPCMs was examined by differential scanning calorimetry 

(DSC). In Figure 4a, h-MPCMs exhibit a rapid heat response to temperature variations without 

delayed solidification or subcooling circle in the freezing process,
46

 whereas s-MPCMs 

differentiates with a wider and delayed exothermic peak. The fast heat exchange between h-

MPCMs and the environment may be due to the extensive C-H···π interaction surrounding the 

inner surface of microcapsules, which is consistent with literature reports that the C-H···π 

interaction enhances the interfacial thermal conductance.
16,28,47

 The average latent heat of h-

MPCMs in PTR remains around 218.3 J/g, leading to an encapsulation ratio of eicosane as high 
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as 99.4% compared to the bulk state enthalpy (219.5 J/g). Despite the high cooling rate, h-

MPCMs resemble s-MPCMs and bulk eicosane in crystallinity (Figure S5), forming a sharp 

contrast to the conventional MPCMs that often suffer from poor crystallinity as a result of slow 

thermal diffusivity and a lack of heterogeneous nucleation sites. As a consequence of the greater 

degree of crystallinity, more specific heat of MPCMs will be stored in the PTR. We compared 

the encapsulation ratio and size of h-MPCMs with previously reported shape-stable MPCMs 

(Figure 4b, Table S2). h-MPCMs with the highest encapsulation ratio and moderate size are 

found at the top of the diagram (black, solid star). The MPCMs with hollow structure clearly 

outperform the conventional MPCMs in terms of PCM utilization and applicable diameter in 

energy conversion systems.  

The stable encapsulation after 100 melting/solidifying cycles was confirmed by using DSC, 

with little change in the melting/freezing point and enthalpy observed (Figure 4c). Figure 4d 

further shows negligible leakage of eicosane outside h-MPCMs when the temperature is above 

the PTR, even for broken capsules, implying a close adherence of MPCMs at the inner wall of 

capsules. Previous experiments within our group
16

 and others
28

 have confirmed the role of C-

H···π interaction in increasing the wettability between alkanes and nanocarbons, and thus 

improving the thermal stability of the MPCMs.
33,34

 In contrast, a complete alternation from 

individual capsules to bulk eicosane covered with nanocarbons was seen for s-MPCMs (Figure 

4e). This is because the insufficient C-H···π interaction cannot immobilize the liquid MPCMs, 

and thus induces the instability of s-MPCMs. 

Solar-thermal conversions. To investigate how the geometry of MPCMs influences the 

overall solar-thermal conversion performance, we fabricated 3D graphene-based sponges 

incorporating the h-MPCMs or s-MPCMs microcapsules for solar-thermal conversion 
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experiments, and applied h- and s-MPCMs in solar energy harvesting MPCM slurries. We chose 

a 3D graphene-based photothermal sponge (Figure S6) as model for the following two 

considerations: (1) Its porous network and large surface area enable constantly rapid exchange of 

heat with the environment but meanwhile suffer from severe convective heat dissipation;
29

 (2) 

the graphene-based architecture without any reinforcement
15

 has weak framework stiffness
48

 and 

is vulnerable to even imperceptible structural failures, making itself an ideal platform for 

reliability test. The dopant ratio of h- or s-MPCMs microcapsules in the host structure was 

around 5 wt% and the corresponding sponges (diameter ~1 cm, height 0.8-0.9 cm) were then 

chemically reduced with hydrazine vapor (Materials and Methods). Under irradiation, a sensor 

inserted into the sponges was used to measure the temperature change of the photothermal model 

and a sponge in absence of MPCMs, thus without fusion heat, served as a control (Figure S7). 

Under the light intensity of ~200 W/m
2
, the sponge containing h-MPCMs maintains an 

equilibrium output temperature around the PTR (Figure S8), reflecting the effective role of 

MPCMs in constantly storing and retracting latent heat within PTR.
19

 Increasing the intensity of 

light to ~420 W/m
2 

drives the output temperature above the PTR. The photothermal performance 

endowed by the h-MPCMs microcapsules is even better than the control and the sponge 

containing s-MPCMs, with an equilibrium temperature above 50 °C. Moreover, the h-MPCMs 

samples experience an instant and smooth rise particularly at the PTR, whereas the kinks at the 

PTR are notable for the sponge containing s-MPCMs. In parallel, 25×25 µm
2
 confocal Raman 

mappings of the corresponding sponges indicate that h-MPCMs are well-retained within the 

capsules after irradiation above the PTR; while s-MPCMs almost disappear from the host 

structure (Figure 5b left and middle). Furthermore, the sponge containing the unstable s-MPCMs 

collapse as expected (Figure 5b right), which might be due to the destruction of s-MPCMs 
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microcapsules and leakage of liquid MPCMs into the fragile porous architecture. We speculate 

that the geometry-dependent stability of MPCMs is still valid when the MPCMs are incorporated 

in a more complex system and the detailed mechanisms for such contrasting results in the whole 

photothermal systems at different size regimes warrant further investigation.   

  To examine the role of geometry in a fluid flow, we investigate the photothermal 

performance of h- and s-MPCMs microcapsules in a phase change slurry model. Before the 

solar-energy harvesting evaluations, the capsules could be reduced only in one minute with the 

assistance of zinc powder and ultrasonication (Materials and Methods, Figure S9).
49

 h-MPCMs 

retain most of the PCMs in microcapsules but s-MPCMs do not (Figure S10). Under irradiation 

at ~420 W/m
2
, both the high-concentration (0.5 wt%) h-MPCMs slurry samples before and after 

reduction shows a clearly distinguished PTR (Figure 5c), evidencing the stable encapsulation of 

PCMs. At an analogous concentration (0.2 wt%), h-MPCMs microcapsules exhibit a superior 

output temperature to 62 °C in 30 min (Figure 5d) than those with less PCM but greater 

nanocarbon content (s-MPCMs and reduced GO). We should note that h-MPCMs have a slightly 

slower heating rate ( tT  / ) below and within the PTR due to the highly efficient photothermal 

conversion of nanocarbons
5-7

 and the effect of latent heat;
36

 however, the tT  /  of h-MPCMs 

slurry becomes notably higher after the output temperature increases above the PTR (Figure 5e). 

Since the saturated temperature is always dependent on input power and convective heat 

dissipation,
29

 the superior performance of h-MPCMs might be due to the effective utilization of 

nanocarbons, PCMs or both. In our case the geometry-induced enrichment of nanocarbon and 

pronounced C-H···π interaction of h-MPCMs benefits respectively the photothermal activity and 

the utilization of MPCMs. Finally, the slurries containing 0.2 and 0.5 wt% h-MPCMs performed 

stably without notable degradation after at least 20 heating/cooling cycles (Figure 5f), with the 
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maximum and minimum temperatures changed slightly. There was no obvious aggregation, 

broken capsules or solid wax observed from the slurry (Figure S11).  

CONCLUSIONS 

The role of the geometry of MPCMs has been verified; furthermore, the corresponding 

MPCMs-shell interaction, particularly the C-H···π interaction between eicosane and nanocarbons 

at the inner wall of the microcapsules shell has also been quantified and exploited to enhance 

thermal diffusivity and reliability of MPCMs in solar-thermal conversion applications. Our 

special concentration on the geometry of MPCMs, often hidden beneath the capsule shell, and its 

influence on from molecular level to the whole system sets our work apart from previous studies 

on the microencapsulation of PCMs. We controllably synthesized MPCMs with either a hollow 

or solid structure (h-MPCMs or s-MPCMs) through tailoring the solidification process. h-

MPCMs and s-MPCMs show a clear variation in the capsule shell composition and the MPCMs-

shell interaction, which was examined by XPS and PF-QNM. The pronounced C-H···π 

interaction of h-MPCMs might be responsible for more stable encapsulation and greater heat 

diffusivity of melted MPCMs, as compared to s-MPCMs with only a weak MPCMs-shell 

interaction. Both supported and free photothermal conversion models show that h-MPCMs 

microcapsules exhibit a greater system reliability and output temperature than the s-MPCMs 

samples, due to the pronounced MPCMs-shell interaction. This work suggests that the difference 

in geometry can lead to a considerable variation of MPCMs-shell interaction and consequent 

efficacy of the whole solar-thermal conversion system. The underlying principle of geometry-

dependent MPCMs-shell interaction holds great promise for widespread use of MPCMs in 

energy conversion systems and provides an economical modus operandi to effective and ultra-

stable microencapsulation. 
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MATERIAL AND METHODS 

Preparation of h- and s-MPCMs. Typically, the mixture of 5 mL of GO aqueous solution (2 

mg/mL, pH = 2) and 0.2 mg of MWCNTs was pulse-sonicated (Model Q700, 20 kHz; Qsonica, 

USA) for 15 minutes (amplitude: 30%, 5 s on, 5 s off) with a 1.8 cm diameter titanium probe 

(model BS2d18F) in an ice-water bath and under protective nitrogen atmosphere. Then, 500 mg 

of eicosane was directly added into the as-prepared GO-CNT hybrid dispersion. The mixture was 

continuously sonicated for 3 min under a nitrogen atmosphere (amplitude: 30%, 10 s on, 5 s off) 

at a constant temperature of 40 °C. Upon completion of sonication, the reaction product was 

either cooled using an ice-water mixture or allowed to cool naturally. To record the temperature 

variation during the cooling step, a thermal sensor (VR105864, Vernier) was immersed into the 

freshly made emulsions. Temperature change of the sample was recorded by a data acquisition 

system (LabQuest2) through a connected thermal resistor and transmitted to a personal 

computer. 

Formation of 3D graphene-based sponges. h- and s-MPCMs microcapsules were mixed well 

with GO solutions (4 mg/mL, pH = 2 - 3) before lyophilization. The weight ratio of MPCMs in 

the mixture were around 5 wt%. The mixtures were then cryogenically frozen by submersion in 

liquid N2 before being freeze-dried in a Virtis AdVantage freeze drier (duration: 48 h, shelf 

temperature: −90 °C). The reduction was finished through a hydrazine vapour method which was 

implemented overnight in a desiccator at 30 °C.
50

  

Preparation of phase change slurry. The reduction of h- or s-MPCMs was conducted by 

ultrasonication (1 min, amplitude: 10%, 10 s on, 5 s off) of the fresh cooled microcapsules (pH = 

2) with 100 mg Zn powder.
49

 The excess Zn powder was removed by washing with a large 
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amount of HCl solution (pH = 2). The suspension was directly mixed with an aqueous solution 

of 1 wt.% dodecylbenzenesulfonic acid (SBDS) in a 1:1 volume ratio. The mixtures were stirred 

for 30 min and then centrifuged (SIGMA 2-16 KL tabletop centrifuge) at 5000 rpm for 10 min to 

remove the excess Zn powder and any large aggregates. 

XPS for composition test. The XPS data were recorded on a Kratos Axis Supra instrument 

(Kratos Analytical, Manchester, UK) using monochromatic Al Kα radiation (1486.7 eV, 225 W). 

Survey scan spectra were acquired using a pass energy of 160 eV and a 1 eV step size. Narrow 

region scans were acquired using a pass energy of 20 eV and a 0.1 eV step size. The hybrid lens 

mode was used in both cases.  A charge neutralizer was used throughout as the samples were 

mounted such that they were electrically isolated from the sample bar. Several analysis points 

were analysed per sample. The spectra were calibrated to a binding energy of 285.0 eV for the 

hydrocarbon C 1s peak (sp3 peak) post acquisition. The data were processed and analysed using 

the Kratos ESCApe software. The carbon region was fitted with reference to the Ref 41, 42. 

PF-QNM-AFM for mechanical property measurement. Mechanical property imaging was 

conducted with a Bruker Multimode 8 instrument (Bruker, Santa Barbara, CA, USA) operated 

with Peakforce Quantitative Nanomechanical Mapping (QNM) modality. Three parameters were 

calibrated firstly: deflection sensitivity, spring constant of cantilever and tip radius. We used 

Photostress polymer (Vishay Precision Group, Heilbronn, Germany) with a known elastic 

modulus (2.7 GPa) to calibrate the elastic modulus. Each scan was conducted with a resolution 

of 246 pixels/line and with a scan rate was 0.9 Hz. At least 5 images (size: 1 µm × 1 µm) were 

captured for each sample using the Bruker RTESPA-525 probes. Samples with a high stiffness 

were tested with TAP525 which has a nominal spring constant of 200 N/m and a tip radius of 8 

nm. To prepare the AFM samples, the h- and s-MPCMs suspensions were casted and naturally 
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dried on a silicon slide. The washed h-MPCMs can be got by immersing the h-MPCMs AFM 

sample in hexane and washing it for at least three times, followed by freezing with ~1 mL pure 

hexane, and freeze-drying for 1 day. 

Thermal analysis methods. TG used a Linseis microbalance (model STA PT1000) where the 

samples were heated at 5 °C/min from 25 °C to 600 °C in a stream of nitrogen. DSC was 

conducted using a calorimeter model Q20 from TA Instruments. Typically, samples were heated 

and cooled at 5 °C/min from 0 °C to 80 °C in a sealed nitrogen atmosphere. The samples for TG 

and DSC were obtained by lyophilisation.    

Confocal Raman Microscopy. Raman spectra were acquired with a LabRam Xplora confocal 

Raman microscope (Horiba Jobin Yvon) equipped with a confocal microscope (Olympus MPIan 

N) and a motorized x-y-z stage. Measurements were conducted with 100× objective lens, and a 

linear polarized laser (λ = 532 nm) excitation was focused with a diffraction-limited spot size 

(theoretical 1.22λ/NA). The Raman signal was detected by an air-cooled front-illuminated 

spectroscopic CCD behind a grating spectrometer (1800 grooves mm
–1

), along with 10% filter, 

200 μm slit and 500 μm hole. For mapping, 0.5 μm steps were chosen and every pixel 

corresponds to one scan. The spectrum from each location was obtained by averaging 3 s cycles. 

The Labspect6 software (Horiba Jobin Yvon) was utilized to setup and control the microscope. 

The 3D graphene-based 3D sponges were illuminated directly at the sample platform for the 

investigation  of structural change. 

Photothermal experiments. The illumination source for the photothermal measurements was 

provided by a Xe lamp with an intensity of ~200 and ~420 W/m
2
 at the samples. The 

temperature variations were also recorded with a thermal sensor (VR105864, Vernier) embedded 
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into the 3D sponges or immersed into a solar energy harvesting slurry. The temperature change 

of the sample was recorded by a data acquisition system (LabQuest2) through a connected 

thermal resistor and transmitted to a personal computer. For 3D sponges, we averaged three of 

each samples containing no microcapsules, h-MPCMs or s-MPCMs. 
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Figure 1. The formation process of h- and s-MPCMs. The mixture of melted eicosane 

(yellow) and nanocarbon hybrids (black) aqueous dispersion was ultrosonicated at 40 °C for 

emulsification, which was followed by two different cooling strategies including (a) ice cooling 

and (d) natural cooling. The temperature decreasing vs. time as the sample was ice or naturally 

cooled was also shown. Ice cooling resulted in self-supported hollow microcapsules, shown in 

SEM images (b) top-view and (c) magnified cross-section images of h-MPCMs microcapsules. 

Natural cooling produced microcapsules with a shrivelled-pod-like morphology, shown in SEM 

images (e) top-view and (f) magnified cross-section of s-MPCMs microcapsules. Scale bar for 

(b) and (e): 10 µm; for (c) and (f): 1 µm. XPS C 1s spectrum of (g) nanocarbon shell, (h) h- and 

(i) s-MPCMs reveal a higher sp
2
/sp

3
 molar ratio for h-MPCMs compared with the other samples. 
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Figure 2. Surface variations of microcapsules. Top-view AFM (a) topographic image, (b) 

elastic modulus and (c) deformation of (1) h-MPCMs, (2) h-MPCMs after removal of eicosane 

and (3) s-MPCMs. Scale bar: 200 nm. 
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Figure 3. Quantitative investigation of mechanical properties of h- and s-MPCMs. (a) 

Deformation and (b) elastic modulus of h-MPCMs microcapsules, washed h-MPCMs 

microcapsules, s-MPCMs microcapsules and eicosane microcrystals. (c) Schematic diagram of 

AFM tip probing the h- and s-MPCMs microcapsules.   
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Figure 4. Heating performance of h- and s-MPCMs. (a) DSC curves of the eicosane, h-

MPCMs and s-MPCMs at the second endothermic and exothermic cycle. (b) Plot of 

encapsulation efficiency against capsule shell thickness for the shape-stable MPCMs in (a) and 

from literature results (red and black dots) (Table S2). Red: Eicosane@? means eicosane core is 

stabilized by non-nanocarbon shell materials, and black: ?@nanocarbons is for the nanocarbon-

stabilized PCM other than eicosane. (c) A collection of DSC curves of the h-MPCMs tested at 

5th, 50th and 100th cycles, showing the stable encapsulation during endothermic and exothermic 

processes. (d) and (e) are SEM images of h- and s-MPCMs after the endothermic and exothermic 

cycles. Scale bar: 1 µm. 
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Figure 5. Geometry-dependent overall performance of solar-thermal conversion systems 

incorporating h- and s-MPCMs. (a) Averaged time-course of the output temperature of the 3D 

sponges under the simulated solar light irradiation at ~420 W/m
2
. (b) Left: confocal raman 

images of 3D graphene-based sponges incorporating h-MPCMs or s-MPCMs before 

illumination. Red: nanocarbons; green: eicosane. Scale bar: 10 µm. Middle: the images of the 

same detection positions after 100 min illumination. Right: photographs of the graphene-based 

sponges respectively incorporating h-MPCMs and s-MPCMs after 100 min illumination. (c) 

Time-dependant (30 min on, 30 min off) temperature variations of solar energy collecting 

slurries containing 0.5 wt% h-MPCMs before or after reductions. (d) Comparison in time-

dependant temperature variations of slurries containing chemically reduced 0.2 wt% h-MPCMs, 

s-MPCMs and GO and (e) comparison in corresponding heating rates. (f) Records of maximum 

and minimum temperatures of slurries containing 0.2 and 0.5 wt% reduced h-MPCMs 

microcapsules during 20 irradiation on/off cycles.  
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SUPPORTING INFORMATION CONTENTS 

MATERIALS 

COMPLEMENTARY METHODS  

Figure S1: Cross-section of an h-MPCMs microcapsule is shown. 

Figure S2: Concentrations of eicosane and nanocarbons are determined with TG. 

Figure S3: The thickness of microcapsule shell is obtained based on TEM images. 

Figure S4: Deflated nanocarbon shell wrapping an eicosane microcrystal for s-MPCMs. 

Table S1. Weight ratio, solid density and volumetric ratio of composing elements in h-MPCMs. 

Figure S5. XRD spectra confirm the good crystallinity of h-MPCMs.  

Table S2. Examples of shape-stable MPCMs from the literature, and their fusion heats and 

diameters. 

Figure S6. The incorportation has little influence on the fluffy structures, as confirmed with 

SEM. 

Figure S7. Pure graphene-based sponge has no fusion heat as revealed with DSC. 

Figure S8. The h-MPCMs can maintain the equilibrium output temperature around PCR 

Figure S9. Reduction of h-MPCMs is confirmed by XPS. 

Figure S10. TG curves reveal the retention of PCMs in h-MPCMs and severer loss from s-

MPCMs. 

Figure S11. h-MPCMs microcapsules retain their shape after multiple photothermal cycles. 
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MATERIALS 

GO solution (4 mg/mL, 777676-200ML), multi-walled CNT (698849-1G),  hydrazine hydrate 

(225819-500ML) and dodecylbenzenesulfonic acid (44198-250ML) was obtained from Sigma-

Aldrich, and used as received.  

COMPLEMENTARY METHODS 

Electron microscopy. Scanning electron microscope (SEM) analysis was conducted using a 

JSM-7001F Scanning Electron Microscope from JEOL. To get the cross-sections of 

microcapsules, a film of microcapsules was made by filtrating the cooled emulsions, followed by 

complete drying in vacuum and cutting with a sharp blade. Microcapsules investigated by 

transmission electron microscopy (TEM) was made by removing the MPCMs. A JEOL 2100FCs 

with a Schottky Field Emission Gun was run with 200 kV accelerating voltage.  

Solid content analysis. A Helium Pycnometer (Micromeritics AccuPyc II 1340) was used to 

measure the skeletal volume of film stacked with microcapsules, which can be employed to 

assess the density and in turn the connected porosity of materials. 
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Figure S1. AFM topographic image of a cross-section of h-MPCMs microcapsule.   
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Figure S2. TG curves of nanocarbon capsule materials, eicosane, h-MPCMs and s-MPCMs. On 

the basis of residue nanocarbons (40 wt%), eicosane (~ 0), h-MPCMs (10 wt%) and s-MPCMs 

(5 wt%) samples, the mass content of eicosane in h- and s-MPCMs can be calculated to be 75 

and 87.5 wt%, respectively.  
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Figure S3. (a) TEM and (b) HRTEM image of a h-MPCMs microcapsule after removal of 

eicosane. The thickness of GO sheets is around 4.5 nm and the diameter of a multi-wall CNT is 

around 6-13 nm, thus making the thickness of the h-MPCMs microcapsule 4.5 to 17.5 nm.  

  

 
a b 
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Figure S4. AFM topographic image of s-MPCMs microcapsules, exhibiting a smooth surface and 

deflated capsules.   

 

Table S1. Weight ratio, solid density and volumetric ratio of composing elements in h-MPCMs. 

 eicosane 
GO CNT Nanocarbons  Solid phase 

homogeneous interacted 

wt%
a)

 75 24.5 0.5 25 100 

ρ (g/cm
3
) 0.79 1.9 1.4 ― ― 

vol% 17.29 0.25
b)

 2.4 0.06 2.46 20 
a)

 Determined by TGA. 
b)

 The volume of eicosane interacting with adjacent GO and CNT is 11% 

and 18% of that of these two nanocarbon materials in h-MPCMs. 
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Figure S5. XRD spectra of nanocarbon capsule materials, eicosane, h-MPCMs and s-MPCMs. It 

shows that h-MPCMs and s-MPCMs resemble the bulk C20 in crystallinity (triclinic phase, P-l, 

rhombus). Furthermore, the well-preserved (00l) faces (stars) reveals the retention of free 

rotation along the backbone of the molecules.
1
 Meanwhile, a weak and broad peak of h-MPCMs 

at the lower diffraction degrees reveals the capsule shell is made of few layers of GO-CNT 

hybridized sheets.
2
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Table S2. Information from examples of shape-stable MPCMs in the literatures. 

Mark Shell material Core material Diameter Encapsulation 

ratio 

Ref. 

 Mesoporous and 

Nanoporous silica 

eicosane 15 nm 12.25% 
3
 

 Polymethylmethacrylate 

PMMA 

eicosane 700 nm 35% 
4
 

 

 

Polyurea eicosane  75% 
5
 

 Urea–melamine–

formaldehyde 

eicosane 0.6-1.1 µm 71% 
6
 

 PVDF composite 

nanofibers 

eicosane 35-172 nm 32.49wt% 
7
 

 

 

P(MMA-co-AA) eicosane 22.53 µm 32.9% 
8
 

 

 

Silica nanoparticles eicosane 1.5-2 µm 32.97 
9
 

 silk fibroin (SF) 

and chitosan (CHI) 

eicosane 8-38 µm 45.7 wt %. 
10

 

 

 

Melamine-

formaldehyde 

eicosane 0.5-2.7 µm 76 
11

 

 

 

Urea-formaldehyde eicosane 79 µm 60.2% 
12

 

 GO modified with 

Adipic acid and  

diethanolamine 

n-hexadecane 20-30 µm 78.5% 
13

 

 

 

GO modified with silica paraffin 20 um 49.6% 
14

 

 

 

rGO stearic acid 100 µm 97.9% 
15
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Figure S6. SEM images of 3D graphene-based photothermal sponges containing 5 % of (a) h-, 

(b) s-MPCMs, and (c) pure graphene-based sponges. The incorportation has little influence on 

the fluffy structures. 
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Figure S7. DSC curves of the 3D sponge with h-MPCMs microcapsules and without MPCMs at 

the 2nd endothermic and exothermic cycle. The control sample has no characteristic endothermic 

and exothermic peaks.  
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Figure S8. Time-course of the output temperature of the 3D sponges under the simulated solar 

light irradiation at ~200 W/m
2
. 
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Figure S9. XPS spectrum of h-MPCMs microcapsules after ultrasound-assisted reduction. The 

C/O ratio increased from 3 to ~ 5 after reduction, as compared with Figure 1h. The C 1s spectra 

shown the dominant role of sharp C-C sp
2
 peak, indicating the trend towards a more graphene 

like character in the sample. The π-π* shakeup satellite peak also observed for the reduced 

sample additionally indicates the presence of aromatic carbons.
16
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 Figure S10. TG curves of h- and s-MPCMs microcapsules after sonication-assisted reductions. 

After ultrasound-assisted reduction, the reduced h-MPCMs microcapsules maintain the sharp 

weight loss range from 200 to 260 °C, and increase the calcination residue to ∼23% due to the 

elimination of oxygen from GO sheets (Figure S7). The result reflects that h-MPCMs remain 

stable encapsulation after the ultrasound-assisted reduction; while, the delayed decomposition for 

reduced s-MPCMs microcapsules and the notably increased residue (∼50%) indicate a severe 

loss of eicosane from the sample. 



 15

  

Figure S11. Image of reduced h-MPCMs microcapsules before and after photothermal cycles. 

a b 

10 µm 10 µm 
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