Simple geometric interpretation of signal evolution in phase-sensitive fibre optic parametric amplifier

Abstract

Visualisation of complex nonlinear equation solutions is a useful analysis tool for various scientific and engineering applications. We have re-examined the geometrical interpretation of the classical nonlinear four-wave mixing equations for the specific scheme of a phase sensitive one-pump fiber optical parametric amplification, which has recently attracted revived interest in the optical communications due to potential low noise properties of such amplifiers. Analysis of the phase portraits of the corresponding dynamical systems provide valuable additional insight into field dynamics and properties of the amplifiers. Simple geometric approach has been proposed to describe evolution of the waves, involved in phase-sensitive fiber optical parametric amplification (PS-FOPA) process, using a Hamiltonian structure of the governing equations. We have demonstrated how the proposed approach can be applied to the optimization problems arising in the design of the specific PS-FOPA scheme. The method considered here is rather general and can be used in various applications.

Publication DOI: https://doi.org/10.1364/OE.25.000223
Divisions: College of Engineering & Physical Sciences > Systems analytics research institute (SARI)
College of Engineering & Physical Sciences > Aston Institute of Photonics Technology (AIPT)
Uncontrolled Keywords: Atomic and Molecular Physics, and Optics
Publication ISSN: 1094-4087
Last Modified: 11 Mar 2024 08:16
Date Deposited: 30 Jan 2017 12:50
Full Text Link:
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2017-01-09
Published Online Date: 2017-01-04
Accepted Date: 2016-12-18
Submitted Date: 2016-10-18
Authors: Redyuk, A.A.
Bednyakova, A.E.
Medvedev, S.B.
Fedoruk, M.P.
Turitsyn, S.K. (ORCID Profile 0000-0003-0101-3834)

Download

[img]

Version: Accepted Version

| Preview

Export / Share Citation


Statistics

Additional statistics for this record