Sparse image representation with encryption


In this thesis we present an overview of sparse approximations of grey level images. The sparse representations are realized by classic, Matching Pursuit (MP) based, greedy selection strategies. One such technique, termed Orthogonal Matching Pursuit (OMP), is shown to be suitable for producing sparse approximations of images, if they are processed in small blocks. When the blocks are enlarged, the proposed Self Projected Matching Pursuit (SPMP) algorithm, successfully renders equivalent results to OMP. A simple coding algorithm is then proposed to store these sparse approximations. This is shown, under certain conditions, to be competitive with JPEG2000 image compression standard. An application termed image folding, which partially secures the approximated images is then proposed. This is extended to produce a self contained folded image, containing all the information required to perform image recovery. Finally a modified OMP selection technique is applied to produce sparse approximations of Red Green Blue (RGB) images. These RGB approximations are then folded with the self contained approach.

Publication DOI:
Divisions: College of Engineering & Physical Sciences > School of Informatics and Digital Engineering > Mathematics
Additional Information: If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: orthogonal matching pursuit,sparse approximations,image folding,greedy algorithms
Completed Date: 2013-11-29
Authors: Bowley, James


Export / Share Citation


Additional statistics for this record