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Thesis Summary

In this thesis we present an overview of sparse approximations of grey level images. The
sparse representations are realized by classic, Matching Pursuit (MP) based, greedy se-
lection strategies. One such technique, termed Orthogonal Matching Pursuit (OMP), is
shown to be suitable for producing sparse approximations of images, if they are processed
in small blocks. When the blocks are enlarged, the proposed Self Projected Matching Pur-
suit (SPMP) algorithm, successfully renders equivalent results to OMP. A simple coding
algorithm is then proposed to store these sparse approximations. This is shown, under
certain conditions, to be competitive with JPEG2000 image compression standard. An
application termed image folding , which partially secures the approximated images is then
proposed. This is extended to produce a self contained folded image, containing all the
information required to perform image recovery. Finally a modified OMP selection tech-
nique is applied to produce sparse approximations of Red Green Blue (RGB) images.
These RGB approximations are then folded with the self contained approach.

Keywords: Orthogonal Matching Pursuit, Sparse Approximations, Image Folding,
Greedy Algorithms
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1 Introduction

1.1 Motivation

In todays digital age, the storage paradigm has shifted. Digital files, are no longer kept

at home or in the office, now everything is virtual, instead being kept on the cloud.

All types of digital media including documents, books, photo’s and videos, must now

be stored online, allowing users access, anywhere, and any time. Consequently, there is

a corresponding need for implementations and technologies, which, utilizing the current

infrastructure, offer solutions satisfying this ever increasing demand.

Almost simultaneously the requirement for higher and higher quality digital media is

everywhere. Ranging from the proliferation of mobile phones, both taking and display-

ing photos, with equivalent resolution to dedicated digital cameras. All the was to the

provision of high definition television services. With users constantly requesting higher

quality, on demand, the need for new approaches to compression, is now more important

than ever.

The shift has been partly fueled by businesses adapting to this digital revolution.

By embarking into additional markets, a fresh demand for digital content which did not
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previously exist, has been created. The provision of online television services is an example

of one such emerging market, bringing with it, its own set of requirements. Services such

as these often operate by offering a lower quality or partially secured version for free,

aiming to entice the user into subscribing to a paid service. Due to the size of digital

media, the priority is satisfying the demand, with security being less important. A direct

result of this business model is more widespread interest into partial or selective security

schemes.

1.1.1 Overview

The focus of this thesis is on grey level digital images, and the application of partial image

security to their sparse representations. An overview of the main content of each Chapter

is given below:

• This Chapter begins with an introduction to digital images which are the focus of the

applications in this thesis. A discussion is then presented regarding sparse represen-

tations and approximations. The emphasis is placed on greedy selection algorithms

which are used throughout this work. The next Section provides a brief overview

of the current situation regarding image security. Finally the main contributions of

this thesis are put forward.

• Chapter 2 explores sparse representations of grey level images produced by greedy

algorithms. The first Section introduces an alternative to the original MP algorithm,

termed SPMP. The following Sections then adapt the SPMP approach to work in 2D,

before evaluating its performance with respect other greedy selection approaches.

The sparsity of image approximations with alternative dictionary constructions is

then examined. Finally a sparse image coding scheme is designed. Its performance

over two sets of images is then compared, with implementations of both the JPEG

and JPEG2000 image compression standards.

• Chapter 3 describes and analyses a method for hiding information in the null space

created from a sparse approximation of an image. Two different approaches for

securing this hidden information are then proposed, termed the SVD and random

methods. The final part of the Chapter is devoted to determining the size of the

keyspace for each method, by running a number of different simulations.

• Chapter 4 expands the image folding procedure described in Chapter 3 to make it

self contained. That is a prescription is given for creating a folded image which
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contains all the information required to recover the original sparse approximation.

The additional information required to make the images self contained is then secured

in two ways, referred to as the “ad hoc” and “pixel” approaches. The suitability of

each of these methods is then assessed with respect to both the SR and CR of their

representations.

The remainder of the Chapter is devoted extending the procedure to RGB colour

images . A single and multi channel approach to finding sparse approximations of

colour images is advanced. Both approaches are then implemented before the folding

stage. The CR produced by these different implementations is then compared, before

finally giving an example of the application of both schemes to a colour image.

• Chapter 5 offers conclusions and avenues of further investigation.

1.2 Contributions

The following work investigates the application of sparse approximations to both, digital

image compression, and security. The author considers the main contributions of this to

be:

• Examination of two theoretically equivalent algorithms (OMP and SPMP), applied

to produce sparse representations of images (Chapter 2).

• Proposal of a strategy for storing the atomic decomposition of images, which, pro-

duces a bit stream of comparable size to that of JPEG2000 (Chapter 2).

• Proposal of a novel scheme for partially securing grey, and RGB colour, digital

images, termed image folding (Chapters 3 and 4) .

Other contributions include:

• Implementation in C++ of all greedy algorithms considered, enabling the execution

of experiments over large sets of test images.

• Evaluation of alternative pursuit strategies, MP, OMP, SPMP and OOMP with

reference to the sparsity of the representations they produce (Chapter 2).

• Investigation into the effect of dictionary choice and block partition size on sparse

representations and its application to image folding (Chapters 2-4) .

Chapters 2, 3 and 4 extend and complete work realized initially in collaboration and

are supported by published papers [2–4].
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1.3 Digital Images

This Section provides a short introduction to digital images and there representations.

This discussion will be useful for understanding the material in remaining Chapters.

1.3.1 Grey Level Intensity Images

A monochrome grey level image can be considered to be a 2D continuous function g(x, y)

where x and y are the spatial coordinates, and the value of the function at any pair of

coordinates (x, y) is the intensity of the image at that point [5]. A digital version of this

image, or a digital image, is produced by restricting both x and y, and g(x, y), to be a

discrete set of values [6]. A convenient way of representing this digital version is as a

raster image array I [7], containing Nr rows and Nc columns, where each picture element

or pixel [8] I(nr, nc), nr = 1, . . . , Nr, nc = 1, . . . , Nc contains the discrete value representing

the intensity of the image at that point.

To convert an image to a digital version the values of Nr, Nc and the number of

intensity levels L have to be chosen. The image can then be sampled at each of the

Nr ×Nc points, with the intensity at each of these points being quantized to one of the L

grey levels. Both Nr and Nc can take on any values as long as they are positive integers.

Because of storage and quantization hardware, the value of L is usually an integer power

or 2 [9], that is

L = 2u,

where u is the bit depth or number of bits required to represent L different levels.

The range of grey levels is usually [0, 1, . . . , L− 1], with 0 represents black and L− 1

representing white. A common choice for is u = 8 bits, resulting in L = 256 grey levels

[0, 1, . . . , 255] [5]. Larger values of u are also commonly used for specific tasks in fields such

as astronomy and medical imaging [7], where u = 8 is not sufficient. An image requiring

u bits to represent each pixel is commonly referred to as a u bit image [9]. Therefore the

image described above, requiring 8 bits per pixel (bpp), can be referred to as an 8 bit grey

level image.

1.3.2 Colour Images

Colour representation is important because whilst we can only distinguish between a few

dozen grey levels [9, 10], we can distinguish between thousands of different colours.

Representation of colour in digital images is performed with a colour model which

defines the colours in a standard way [9]. There are several colour models each designed
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for a specific purpose. Two examples of commonly used colour models are described

below, the first termed the RGB model is an additive model suitable for implementation

in hardware, the second termed the Hue Saturation Intensity (HSI) model, is designed to

correspond to the way humans perceive and interpret colour [11].

• The RGB model represents each colour as the addition of three primary components,

representing the contribution of red green and blue light. This is the most common

model used [11] and is a convenient representation for use with display hardware

where colours are reproduced by emitting different levels of red green and blue light

to generate a single colour [9].

• The RGB colour model is particularly well suited for use in hardware and image

processing however it is not intuitive to humans, that is a person would not describe a

colour as the sum of its red green and blue components. To enable humans to describe

and manipulate colours in a more natural way the HSI colour model was developed.

In this model the hue, saturation and intensity components can be manipulated to

achieve the desired colour, where hue can be thought of as the dominant perceived

colour, saturation is the colourfulness or relative purity of the colour and intensity

is the brightness [9, 12].

Colour images will be considered in Chapter 4 where they will be represented with

the RGB model described above. This is achieved by three image arrays Iz, z = 1, . . . , 3,

which respectively will store a numeric representation of the intensity of the Red Green

and Blue components of each image.

The images considered in Chapter 4 will all use u = 8 bits to represent the intensity of

each colour component. This will results in L = 256 intensity values for each colour and

(28)3 = 16, 777, 216 different colours. This is a typical choice for the number of colours [6]

and referred to as a true colour [9] representation. The bit depth of each pixel is now 24,

hence a true colour image will be referred to as a 24 bit image.

It is sometimes desirable to convert RGB images to grey level intensity images. This

can be achieved in several different ways, the convention adopted here is to use the stan-

dard conversion from RGB to luminance used in the standard television (TV) broadcasting

system, the National Television System Committee (NTSC) standard [11]. This is used in

broadcasting to separate the grey scale information (luminance) from the hue and satura-

tion and is the standard way of converting RGB images to grey level used in MATLAB [13].

The conversion from an RGB image array Iz, z = 1, . . . , 3 to a grey level image array
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I will be performed by applying the weighted sum of the colour components shown below

I = 0.2989I1 + 0.587I2 + 0.114I3. (1.1)

1.4 Digital Image Compression

The digital image arrays mentioned above are generally very large, and redundant con-

taining three main types of redundancy [6, 9]:

1) Coding redundancy, which occurs when the representation used for each pixel is

not the most efficient [6]. The definition of the entropy of an image I [9, 11, 14],

containing L̈ different intensity levels t(l), l = 1, . . . , L̈ is

H = −
L̈∑

l=0

p(t(l)) log2(t(l))), (1.2)

where p(t(l)) is the probability of the occurrence of the symbol t(l) in t.

The logarithm base 2 in equation (1.2) means that H represents the average infor-

mation in bits of the pixels in the image I. This is a lower bound on the average

number of bits which can be used to represent the pixels in the image I [9]. Coding

redundancy is present when the average number of bits used to represent each pixel

in I is greater than H.

2) Spatial redundancy. When neighbouring pixels in an image have the same or similar

values [9].

3) Psycho visual redundancy. Where an image contains information which cannot be

perceived by an observer [6].

There are two approaches to removing this redundancy, which are described in the

next two Sections. Both approaches can be used on their own or in combination with each

other.

Lossless Compression

This type of compression is used when image quality is the main priority and as the name

suggests will result in a compressed version of an image which when decompressed will

be identical to the original [11]. One approach to this is to employ a statistical coding

method, for example the Huffman or arithmetic coding algorithms [14], to reduce the

coding redundancy mentioned above. There are many such algorithms all of which when

applied to the pixels of an image I, aim to produce a representation with an average of

close to H bits per pixel.
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Lossy Compression

This compression methodology produces an image which is an approximation of the orig-

inal [11] and relies on the human visual system being less sensitive to loss of particular

types of information [6]. Quantization, which is a mapping of many input values to a

limited number of output values [9], is one application of this. A simple example of apply-

ing quantization to image compression would be to reduce the number of intensity levels

L in a grey level image. There are many approaches to this from basic scalar to vector

quantization [14]. What all these approaches have in common is that information is lost,

and the process is therefore irreversible or lossy.

The information which is lost by applying a lossy compression method to an image

needs to be measured to indicate the quality of the resulting compressed image. A standard

measure used to indicate this is the PSNR [15], measured in decibels (dB). The calculation

of the PSNR between two images matrices I and IK , each containing Nr rows and Nc

columns is defined as:

Definition 1.

PSNR = 10 log10

(
MAX2

I

MSE

)
, (1.3)

where MAXI is the maximum possible pixel value in the image I and the Mean Squared

Error (MSE) is defined as:

MSE =
1

NrNc

Nr∑

nr=1

Nc∑

nc=1

(I(nr, nc)− IK(nr, nc))
2. (1.4)

1.4.1 Transform Coding

Many image compression approaches including both the JPEG [16] and JPEG2000 [17]

compression standards, use a combination of lossy and lossless compression approaches

in what is known as transform coding [15]. The idea behind this approach is to apply a

transform to the image to produce a representation where most of the image information is

concentrated in only a few coefficients [11]. The lossy stage then quantizes the coefficients,

keeping the ones containing most of the image information. These quantized coefficients

are then stored.

While both JPEG and JPEG2000 have lossless modes [17] the main baseline [9] coding

system utilizes a lossy compression mode. A brief description highlighting the differences

between the JPEG and JPEG2000 standards when applied to a grey level image I is given

below:
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• The JPEG standard processes an image in independent square 8×8 non overlapping

blocks of pixels, therefore before processing the image I is first partitioned into these

blocks. The next step is to apply the orthogonal DCT [18], also known as the DCT-

II [19], in 2D [12] to each image block to calculate an 8×8 block of coefficients. The

coefficients are then quantized according to there location within the block. Huffman

coding is then used to entropy code the blocks of quantized coefficients [16].

• In contrast to JPEG, JPEG2000 processes the whole image I at once. The first stage

is then to decompose I into sub bands, applying the Cohen Daubechies Feauveau

9/7 (CDF9/7) filter pair [20]. Each sub band is then quantized separately with sub

band dependant parameters before being arithmetically coded [17].

1.5 Approximation

1.5.1 Orthogonal Basis

Given a vector f ∈ RN representing a discrete signal, and the set {dn ∈ RN}Nn=1, forming

a basis for the space RN , f can be decomposed as,

f =
N∑

n=1

〈f ,dn〉dn. (1.5)

The following is then an approximation of f with K < N basis vectors,

fK =
∑

n∈L
〈f ,dn〉dn,

where the set L contains the indices of the K basis vectors from {dn}
N
n=1 . The approxi-

mation error is then

‖f − fK‖2 =
∑

n∈G
|〈f ,dn〉|

2, (1.6)

where G = {1, . . . , N}\L, with \, denoting the relative complement of L in {1, . . . , N},

‖ · ‖ denoting the euclidean or l2 norm, defined in Appendix A.3.2, and | · | denoting the

absolute value. The error in equation (1.6) can then be minimized, for any choice of K, by

choosing L to be the indices of the K vectors, having the largest absolute inner product

|〈f ,dn〉|.

This is the traditional approach for approximating a signal, which was adopted by the

JPEG standard, with the Discrete Cosine basis. An alternative, which makes it possible to

improve the approximation error in equation (1.6) [21], is to approximate f in a redundant

set of linearly dependent vectors {dm}
M
m=1, with M > N . The problem of choosing the K

vectors minimizing ‖f − fK‖2, is now a combinatorial one.
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In the redundant case it is convenient to write equation (1.5) as

f = Dc (1.7)

where the columns of D ∈ RN×M are constructed as the vectors {dm ∈ RN}Mm=1, and

c ∈ RM is a vector of coefficients. With M > N , a closed form solution for c can be found

as the linear least squares solution

c = D†f ,

where the superscript † denotes the Moore-Penrose pseudo inverse. This is an application

of the Method Of Frames (MOF) [22] which out of all the solutions to (1.7) chooses the

one where c has the minimum euclidean norm:

min ‖c‖ subject to f = Dc.

This solution where it is possible for c to have M non zero values is not sparsity preserving

[23], therefore other solutions to this problem are currently being pursued as detailed in

the next two Sections.

1.5.2 Sparse Representations

A K sparse representation of f ∈ RN , is c ∈ RM having only K non zero values. If a K

sparse representation exists then as mentioned above finding it is a combinatorial problem

which is the solution to the following minimization problem

min ‖c‖0 subject to f = Dc, (1.8)

where min ‖c‖0 is the l0 norm equal to the count of non zero entries in c.

The MOF above does not look for this solution, and because it is not sparsity preserving

is unlikely to produce it. Therefore other alternative solutions to this problem have been

sought. One approach is to replace the l0 norm in equation (1.8) with l1, where ‖c‖1 =
∑M

m=1 |c(m)|, and (1.8) becomes

min ‖c‖1 subject to f = Dc. (1.9)

In [24] it was show that it is possible to determine from the matrix D, when the solution

to (1.9) is unique, that is when it is the l0 solution. The requirement on D for the solution

to be unique is

‖c‖0 <
Spark(D)

2
, (1.10)

with the definition of the Spark below, taken from [24].
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Definition 2. Given a matrix D we define Spark(D) as the smallest possible number such

that there exists a sub-group of Spark(D) columns from D that are linearly dependent.

From the above, it is clear that there are cases when the solution to (1.9), will find the

K sparse representation of f ∈ RN , however it is not guaranteed to do so. More recently

it has also been demonstrated in [25], their are practical cases in image approximation

when the converse is true, that is where l0 is superior to l1.

Finding a solution to (1.9) is referred to as Basis Pursuit (BP) [23], which can be

reformulated and tackled by classic linear programming techniques [24]. Other ways of

attacking (1.8) to make the problem more tractable is to relax the l0 constraint. The

FOcal Underdetermined System Solver (FOCUSS) algorithm [26] applies this approach

with an lp norm for some p = (0, 1].

All of these approaches above aim to recover theK sparse representation of f if it exists,

but what happens if it does not and we are actually interested in is an approximation of

f . In this case an alternative approach described in the next section is undertaken.

1.5.3 Sparse Approximation

The minimization problem in equation (1.9) is reformulated as

min ‖c‖1 subject to ‖f −Dc‖ ≤ ρ, (1.11)

where an error of ρ can be tolerated. Problem (1.11) is referred to as Basis Pursuit

Denoising (BPDN) [23], which can be re-written as a standard optimization problem.

This problem can then be tackled with algorithms such as Iterative Reweighted Least

Squares (IRLS) [27] or Least Absolute Shrinkage and Selection Operator (LASSO) [28].

Greedy Algorithms

An alternative viewpoint to minimizing (1.8), is that adopted by the greedy algorithm

[29] approach. Instead of searching for the sparse representation c, a greedy algorithm

iteratively searches through the columns of D for those corresponding to non zero entries

in c. In other words at each iteration a greedy algorithm will choose columns from D

satisfying some selection criteria. It will build up a matrix say D̈ containing all the chosen

columns, then the sparse representation c at any iteration can be calculated as the least

squares solution to c = D̈†f .

There are many variations of this, including but not limited to MP [30], OMP [31],

OOMP [32], Backward Optimized Orthogonal Matching Pursuit (BOOMP) [33] and re-
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finements [34], all offering alternatives to the original MP algorithm. Below is an overview

of three of the main algorithms, MP, OMP and OOMP.

Each algorithm begins at iteration 0 by initializing the residual error r0 = f . Then at

iteration k a column ofD(:,m) ∈ RN×M ,m = 1, . . . ,M is chosen with the current residual.

The matrix D̈ is updated to include this column and the residual error is updated ready

for use in the next iteration. Below is an overview of the three algorithms highlighting the

main differences in the selection and updating procedure:

• The first and most straight forward to explain of the three is MP, described in more

detail in Section 2.1. At each iteration a new column of D, D(:, l(k)) is chosen as

one corresponding to the largest inner product 〈rk−1,D(:,m)〉,m = 1, . . . ,M . The

current residue error rk is then updated to become

rk = rk−1 − 〈rk−1,D(:, l(k))〉D(:, l(k)).

By construction at each iteration the updated residue error is orthogonal to the most

recently chosen vector D(:, l(k)), however it is not guaranteed to be orthogonal to all

the previously chosen vectors. An alternative termed OMP which guarantees that

at each iteration the current residual is orthogonal to all previously chosen vectors

in D̈ is described next.

• OMP guarantees that at each iteration k a new vector from D is chosen, ensuring

that the iteration is equal to the number of columns in D̈. This is indicated by the

replacement of k with K in this description.

At each iteration the selection criteria adopted by the OMP algorithm is the same

as for MP above, that is the chosen column D(:, l(K)) is the one resulting in the

largest inner product 〈rK−1,D(:,m)〉,m = 1, . . . ,M . The difference with MP is the

update step

rK = rK−1 − P̂
D̈
rK−1,

where the operator P̂
D̈

is the orthogonal projection onto the span of the columns

of D̈. Thus guaranteeing that the approximation at each iteration, say fK is equal

to the best, least squares approximation with the columns of the matrix D̈, that is

fK = P̂
D̈
f .

• The last variation is referred to here as OOMP although it is also known by other

names including Orthogonal Least Squares (OLS) [35] and Order Recursive Matching

Pursuit (ORMP) [36]. This algorithm first initializes a temporary matrix D(0) = D.
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Then at each iteration the selection and update step is equivalent to MP with the

exception that the chosen vector is D(K−1)(:, l(K)). That is the update step is

rK = rK−1 − 〈rK−1,D(K−1)(:, l(K))〉D(K−1)(:, l(K)),

withD(K−1)(:, l(K)) the column ofD(K−1) with the largest inner product 〈rK−1,D(K−1)(:

,m)〉,m = 1, . . . ,M . What stands OOMP apart from MP is that at iteration K the

unchosen columns in D(K−1) are orthogonalized with respect to the chosen column

D(K−1)(:, l(K)). Denoting the orthogonalized matrix as iteration K by D(K), this

guarantees two things;

1) the unchosen columns in D(K) will span the same space as the residue error.

Therefore the one chosen at the next iteration will minimize the residue error

[32], and

2) the residue error rK will be orthogonal to all previously chosen columns, stored

in D̈. Therefore the approximation fK will be the best least squares approxi-

mation fK = P̂
D̈
f .

If the above algorithms iterate up until the exact solution f = Dc is found then these

selection techniques can be applied to finding a solution to the minimization problem in

(1.8). However they can easily be adapted, and offer an approach to finding a solution to,

min ‖c‖0 subject to ‖f −Dc‖ ≤ ρ, (1.12)

by stopping the algorithm when the condition ‖f −Dc‖ ≤ ρ is satisfied. This makes them

appealing for use in sparse approximation [37], which is investigated in Chapter 2.

1.5.4 Sparse Compression

Sparse approximations, discussed above, have many digital image processing applications,

including, image deblurring [38], image inpainting [39], image denoising [40] and image

compression. The focus of Chapter 2 is on applying sparse approximations of images, to

image compression. To motivate this idea, a short overview of current results in this field,

is detailed below.

Sparse image compression has two main stages, the first described in Section 1.5.3, is

to find a sparse approximation of the original image. The second stage is then, to code

this information so it can be stored in an efficient manner.

Most of the recent work on sparse image approximation for compression has involved,

as its first step, applying greedy algorithms with trained dictionaries. A trained dictionary
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(D in equation (1.11)) is calculated from a set of training images taken from a given image

corpus. The main difference between the currently proposed approaches is the method

of calculating, or training, the dictionary. However the idea behind the approaches is

always the same, to calculate a matrix D (1.11) which is suitable for producing sparse

approximations, of a chosen image corpus.

There has been a lot of alternative approaches to the problem of sparse image com-

pression, such as [41], involving overcomplete curvelets. However in this and other work,

the comparison of compression performance has not been against current image compres-

sion standards. Therefore the overview below only includes reference to methods where a

comparison is made with current image compression standards.

A common approach to facial image compression, has been to first split an image

up into a fixed number of square sections. Each section then represents a specific part

of the face, for example, in every single image, the left eye should appear in the same

square section. The training is then performed separately on each of the image sections,

producing a dictionary suitable for representing each section. This has been successfully

applied in [42] to outperform JPEG2000 at low bit rates. In this method the dictionary

was trained by the K-SVD algorithm [43] and the sparse approximation made by OMP.

The final stage involved applying uniform quantization and Huffman coding, to produce

the compressed image.

The main problem with processing the above facial images in blocks, is that at low

bit rates, blocking artefacts appear at the boundaries between the chosen sections. The

authors of [42] apply a linear deblocking approach in [44], to reduce these artefacts. This

increased the PSNR for a given bit rate and subsequently increased the compression per-

formance in relation to JPEG2000.

In [45] the K-LMS algorithm was proposed for compressing facial images. This is a

variation of the K-SVD algorithm, reducing the time required to train the dictionaries. The

authors again chose to produce the sparse approximation with OMP and the compressed

image with Huffman coding. The compression results at low bit rates were again better

than JPEG2000.

The above results are promising however the approaches are very specific to facial

images, relying on each feature always being in the same section of the image. In [46] this

approach is generalized by classifying regions of images and training dictionaries suitable

for each of these regions. The image is then coded with a Set Partitioning in Hierarchical

Trees (SPIHT) [47] like entropy coder. The performance of this approach is shown to be

comparable to JPEG2000 over a more general set of standard test images, at 0.5bpp.
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More recently in [48] dictionaries trained by the Recursive Least Squares Dictionary

Learning Algorithm (RLS-DLA) were used to compress natural images. The compression

results were just below that of JPEG2000, however the evaluation was performed over

much higher bit rates than in [46]. In this paper sparse approximations were made of

images following a transformation into the CDF9/7 wavelet domain. These were found to

produced smaller compressed images than those performed in the pixel domain. The bit

stream was again produced by Huffman coding the results from the sparse approximation,

however the authors chose to use the more computationally expensive OOMP algorithm

to produce the initial approximation.

From the above it is clear that a lot of the work on sparse image compression has

historically been focussed on compressing facial images. More recently promising results

have been achieved on natural images as well by training dictionaries with the RLS-DLA

algorithm. In Chapter 2 sparse approximations of natural and astronomical image sets is

examined by training dictionaries with a variation of the RLS-DLA algorithm.

1.6 Image Security

The need for digital image security arises from the ease with which digital images can be

both distribute and duplicated [49]. These two concerns are addressed with the following

two techniques:

1) Encryption, providing end to end security for image distribution [50].

2) Watermarking, providing copyright protection through owner identification [51].

Unlike conventional encryption strategies where the objective is to prevent access to

the plaintext to all except those in possession of the correct private key . Image security

can be applied in many different ways depending on the specific requirements which need

to be satisfied.

If the requirement is for full end to end security, then the traditional approach would be

to encrypt the entire image, with a standard algorithm like the Data Encryption Standard

(DES) [52]. As discussed in Section 1.6.2 digital images have unique requirements which

make the direct application of standard encryption algorithms unsuitable for every use

case.

For example, the provider of online television services, clearly only wants to provide

there content to fee paying subscribers. However they may wish to encourage future

subscribers by supplying a low quality version for free. This can be achieved by applying
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a transparent encryption strategy, partially degrading the broadcast video stream. The

decryption process can then be realized by fee paying customers, who would be provided

with the decryption key .

Encryption

Encryption can be described as a scheme which enables two parties to exchange messages

with each other in the presence of an adversary, who can intercept these messages [49].

Broadly speaking encryption is the process of securing these plaintext messages [53]. In this

process the encryption algorithm converts the plaintext to what is known as ciphertext [53].

Decryption is then the process of recovering the message from the ciphertext .

The study of techniques for securing information is called cryptography [54]. In its

modern form there are two main approaches to securing plaintext messages against an

adversary, these are:

1) Private or symmetric key cryptosystems, such as the DES and Advanced Encryption

Standard (AES) [55]. In this paradigm the plaintext is encrypted with a value

referred to as the private key , this can then be decrypted with the same private key

or a key which can be explicitly determined from it [50]. This cryptosystem is termed

symmetric because knowledge of the same private key is enough to successfully

encrypt and decrypt the plaintext .

2) Public or asymmetric key cryptosystems, such as the Ron Rivest, Adi Shamir and

Leonard Adleman (RSA) algorithm [55]. The idea here is that the plaintext can be

encrypted with a public key and then decrypted by a separate private key . This

is clearly asymmetric, with a different key being required at the encryption and

decryption stages [54].

Before discussing applications of encryption to digital images, a brief overview of several

types of attack, which, a digital image encryption scheme should be resistant to, is given

in the next Section.

1.6.1 Cryptanalysis

Cryptanalysis can be described as, the art of deciphering encrypted messages without prior

knowledge of the decryption key [50]. Depending on the amount of available information

an adversary has there are several methods of attack which a cryptanalyst may use:

• Ciphertext only attacks, where an adversary only has access to one or more encrypted
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messages. This level of attack is the minimum that an encryption scheme should be

secure against.

• Brute force attacks. This type of attack involves an exhaustive search through all

possible private keys until one is found which successfully decrypts the ciphertext .

The set of all possible private keys is referred to as the keyspace and a necessary

condition for an encryption scheme is that the keyspace is large enough to prevent

a brute force attack [53,56].

• Known plaintext attack. In this type of attack an adversary in possession of the

ciphertext has some knowledge regarding the plaintext from which it was generated.

This knowledge is used to help determine either part or all of the private key .

• Chosen plaintext attack. In this scenario the attacker can choose the plaintext to

be encrypted. They can then use the knowledge of the plaintext , ciphertext pairs to

obtain either part or all of the private key .

• Chosen ciphertext attack. Contrary to the chosen plaintext attack, here the attacker

can choose the ciphertext to be decrypted which can then be used to help determine

either part or all of the private key .

A secure encryption scheme should be resistant to all of these attacks. The security

is then measured by the amount of computational effort required when the best known

attack on the system is used [53,54]

1.6.2 Image Encryption

From the above the natural question is, why not just apply existing public or private

encryption approaches, to either to the raw or compressed version of a digital image.

Firstly this naive approach poses several problems, one of which, as mentioned above,

is that images require a lot of storage space even when compressed. Therefore applying

classic encryption methods to this type of data would be computationally expensive.

Another problem which arises from the properties of encrypted data [57], is the trade off

between encryption and compression. If encryption is performed first, the compressibility

of the resulting data is significantly reduced. Therefore to reduce the size of encrypted

images, compression always has to be performed first.

A further consideration is the quality of the encrypted data. In [52] it was highlighted

that the redundancy present in images can reduce the effectiveness of encryption when it

is applied to the raw pixel values.
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These concerns have been addressed by two alternative approaches which either par-

tially or fully encrypt the image data. The first termed partial or selective encryption

only encrypts part of the image data, reducing the amount processing involved, but also

reducing the quality of the encryption.

Partial encryption has been proposed to secure JPEG compressed images with various

approaches, including encryption of only selected DCT transform coefficients [58,59], and

encryption of only the sign of each transform coefficient [60, 61]. Alternatively partial

encryption has been applied to both raw image data, encrypting only selected bit planes

[62] and wavelet decompositions of digital images [63].

Many of these selective techniques are susceptible to ciphertext only attack due to

visible information remaining in the encrypted images [57]. Therefore an alternative to is

to use a full encryption method specifically designed for processing digital images, such

as a recently proposed scheme [64] which is applied in the spatial domain applying bit

manipulation to the pixels to fully encrypt the raw image data.

There are many other proposed full image encryption schemes, a large proportion

of which are based on chaotic maps. In these methods chaotic maps are used either

to generate pseudorandom bits [65] for use in a classic encryption approaches [66] or to

perform 2D permutations in the spatial domain [67,68].

Image Degradation

Unlike the partial encryption discussed above where the aim is to reduce the overall pro-

cessing time of the encryption step while maintaining a high level of security. Transparent

encryption can be applied to content distribution systems to degrade or encrypt only a

proportion of the multimedia data [61, 69–71], thus enticing new customers to purchase

the full service.

In [70] the author proposes a scheme which applies a linear transformation to the raw

pixel values before applying the compression stage. The amount of degradation to the

image can then be controlled by the broadcaster depending on the business requirements.

This scheme has a number of drawbacks one being that the costly linear transformation

has to be applied to every single pixel in the original image. To improve on this in

[71] a scrambling operation is applied instead to the coefficients resulting from the DCT

transformation.

In line with the above, Chapters 3-4 propose a novel application of sparse image repre-

sentations to partial image security, termed image folding . The application of the folding

approach results in digital images where only the top section is left unencrypted. However
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the method can easily be applied to only encrypt other sections of the image such as al-

ternate rows or columns, which would be achieved by applying a simple reordering of the

image pixels, before applying the folding procedure.

1.7 Experimental Set up

All of the Experiments in the following Chapters were performed within the MATLAB

[72] R2012a programming environment. Unless otherwise stated, all calculations were

performed by inbuilt functions. Specifically three routines were required to secure the

images in Chapters 3-4 , these are given below with details of there contribution.

• qr() calculates the orthogonal-triangular decomposition of a matrix. Required to

perform the Ôrth(·) operation.

• svd() calculates the singular value decomposition when the SVD security method

is applied, shown in Section 3.3.1.

• rand() generates pseudorandom numbers. These were required by the

– random security scheme, described in Section 3.3.2, to construct the matrices

Z and U, and by the

– “pixel” method, to construct the vectors m, described in Section 4.7.2.

The Pseudorandom Number Generator (PRNG) which produced all the pseudoran-

dom numbers required above was the Mersenne Twister MT19937 [73] algorithm.

Additionally entropy coding and decoding was performed inside MATLAB using a mex

implementation of the C++ adaptive arithmetic coding algorithm provided by Dr. Amir

Said [74], available from [75].

The matrix and vector notation, described in Appendix A, is designed to be equivalent

to that used in MATLAB programming environment, described in Appendix A.
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Sparse Image Representation

with Greedy Algorithms

This Chapter explores sparse representations of grey level images, generated by greedy

algorithms.

The Chapter begins with a description of a modification to the original Matching

Pursuit (MP) algorithm, termed Self Projected Matching Pursuit (SPMP) [2]. The next

Section introduces alternative implementations of some greedy selection approaches to op-

erate in two dimensions (2D). Experiments are performed to evaluate these approaches.

The comparison was based on the sparsity of the representations achieved, and the execu-

tion time when performed on a standard personal computer. The most suitable approach

for the application in hand is then selected.

The next Section introduces several dictionary constructions. A comparison of the

sparsity of approximations, made on grey level images, by the adopted selection technique

with these dictionaries, is then explored. Finally the Chapter introduces and discusses the

implementation of a simple coding scheme to store the sparse image information. This

coding scheme is then evaluated with respect to both the JPEG and JPEG2000 image

compression algorithms.
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2.1 Matching Pursuit

The MP algorithm originally proposed in [30], is an iterative approach to approximating

a signal by choosing elements from a dictionary. At each iteration of the algorithm,

the residual error of the current approximation, is calculated to be orthogonal to the

most recently chosen dictionary element. An overview of the MP approach, applied to

approximate a vector f , by choosing columns from a redundant matrix or dictionary

D ∈ RN×M , with M > N , is given next.

The residual at iteration 0 is initialized to r0 = f . Denoting by l(k) the index of the

column D(:, l(k)) chosen at the k’th iteration, the MP algorithm evolves as follows. At

iteration k the current residual rk−1 is projected onto the vector D(:, l(k)). The resulting

residual rk is then

rk = rk−1 − 〈rk−1,D(:, l(k))〉D(:, l(k)). (2.1)

Since rk in (2.1) is orthogonal to D(:, l(k)),

‖rk‖2 = ‖rk−1‖2 − |〈rk−1,D(:, l(k))〉|2 . (2.2)

Therefore to minimize the current residual ‖rk‖2 the MP approach chooses l(k) such that

|〈rk−1,D(:, l(k))〉| is a maximum.

At iteration k, the residual rk, is calculated to be orthogonal to the most recently

selected column D(:, l(k)), however is is not guaranteed to be orthogonal to all the pre-

viously selected columns. As a result a column D(:, l(i)), i = 1, . . . , k − 1 which has been

chosen at a previous iteration, may be chosen again. An improvement to this mentioned in

the original paper [30], discusses modifying the original MP approach with an orthogonal

projection. This improvement is realized by orthogonally projecting the current approx-

imation onto the set of already selected atoms, at each iteration of the algorithm. The

projection step can be implemented in several ways, the original MP paper [30] suggested

the conjugate gradient method, for calculating this “back-projection” step. One approach

to this is that undertaken by OMP, described in Section 2.3, which explicitly calculates

the orthogonal projection at each iteration. An alternative which is discussed in the next

Section, is to apply the MP approach itself, to calculate the orthogonal projection onto

the set of already selected atoms.

2.2 Self Projected Matching Pursuit

The approach alluded to above is termed SPMP [2]. A description of its application to

render a sparse approximation of a vector f with a dictionary D ∈ RN×M , with M > N ,
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follows.

Begin at iteration 0 choosing a projection step p and an approximation tolerance ρ.

Initialize, the set S = {∅} to store the chosen vectors, and the residual r0 = f . The

algorithm then evolves as follows:

i) Apply a maximum of p iterations of MP to the current residual, selecting columns

{D(:, l(i))}p
k

i=1 with pk ≤ p from D. The chosen vectors are then assigned to S as

S ← S ∪ {D(:, l(i))}p
k

i=1 . With K equal to the cardinality of the updated set S, the

approximation so far is denoted as fK , and the residual of this approximation is

rK = f − fK . The number of chosen vectors pk is determined by the termination of

the MP selection procedure. This is either following p iterations, or when ‖rK‖ < ρ.

ii) Apply the MP approach to approximate rK with only the selected set S as the

dictionary. This guarantees the asymptotic convergence to the approximation P̂Sr
K

of rK , where P̂S is the orthogonal projection onto the space S = span S. The residual

of this MP approximation is r⊥ = rK − P̂Sr
K , having no component in S.

iii) Update the current residual rK ← r⊥, and approximation fK ← fK + P̂Sr
K , and

repeat steps i) and ii), until, for a required ρ, the condition ‖rK‖ < ρ is reached.

For p = 1 the above refinement gives, asymptotically [76], the orthogonal projection

approximation at each iteration, thereby reproducing the results of OMP. As illustrated

by the example below, significant improvement upon the original MP approach may be

achieved for values of p > 1.

Example. This numerical example, similar to the one given in the “Sparse Represen-

tations of Astronomical Images” [2] paper, is a hard test for MP. Consider a matrix Dc
1

representing a Redundant Discrete Cosine (RDC) dictionary given by:

Dc
1(n,m) = w(m) cos(

π(2n − 1)(m− 1)

2M
), n = 1, . . . , N,m = 1, . . . ,M, (2.3)

with w containing the normalization factors. For M = N , this set is a Discrete Cosine

(DC) orthonormal basis for the Euclidean space RN . For M = 2aN , with a ∈ N, the set

is a RDC dictionary with redundancy 2a. The redundancy here is fixed to 2, with a = 1.

To represent the modified chirp signal e−0.1x cos(2πx2) depicted in Fig. 2.1, an equidis-

tant partition of the interval [0, 8] consisting of N = 2000 points is taken, and the chirp

is sampled at those points f(n), n = 1, . . . , N . The aim is to find an approximation of

these points up to precision ρ = 0.001‖f‖. Considering M = N = 2000, the above defi-

nition of Dc
1 provides orthonormal basis, therefore both the MP and OMP methods give

the sparsest decomposition of the signal. For an approximation to the given precision
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Figure 2.1: Chirp signal approximated up to error ρ = 0.001‖f‖ by i) K = 542 orthogonal DC
components taken from (2.3) with N = M = 2000. ii) K = 281 vectors selected by OMP from
(2.3) when M = 2N = 4000, or K = 729 selected with MP. iii) K = 300 vectors selected by SPMP
with p = 10 from (2.3) with M = 2N = 4000, or K = 281 with p = 2.

(coinciding visually with the theoretical chirp in Fig.2.1) it is necessary to use K = 542

orthogonal elements from (2.3). Setting M = 2N = 4000 the dictionary Dc
1 is no longer

an orthogonal basis but a redundant tight frame [77], now the algorithms MP and OMP

produce very different decompositions. While OMP improves the sparsity of the repre-

sentation requiring only K = 281 components, MP needs K = 729 different atoms, i.e.

significantly more than with the orthonormal basis. The reason for the poor performance

of MP is, the redundant dictionary contains highly correlated atoms and MP is picking

linearly dependent ones, something which cannot occur with OMP. However, when apply-

ing the proposed refinement SPMP with projection step p = 10 the number of required

components drops to K = 300. For p = 2 the number of required components falls to

that of OMP, i.e. K = 281. In this example there is no need for the SPMP approach,

because the already established algorithm OMP performs the decomposition faster. The

result serves to illustrate the fact that SPMP can provide an effective alternative to OMP,

when, as is the case with 2D images, OMP becomes slow or its storage demands cannot be

met. Further details for the 2D implementation of SPMP will be discussed in Section. 2.3.

2.3 2D Implementation of the Selection Strategies with Separable

Dictionaries

The set D = {Sm ∈ RNr×Nc}MrMc

m=1 is a dictionary if MrMc > NrNc and it spans the space

RNr×Nc . With ‖Sm‖F = 1,m = 1, . . . ,MrMc, where ‖ · ‖F denotes the Frobenius norm

defined in Appendix A.3.4, a suitable approach to finding a sparse approximation of an
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image I ∈ RNr×Nc in D is to apply OMP.

The OMP selection criteria chooses at iteration K the index l(K) corresponding to

the atom that maximize the absolute value of the inner product given by,

l(K) = argmax
m=1,...,MrMc

|〈Sm,RK−1〉F |

with,

RK−1 = I−
K−1∑

k=1

c(k)Sl(k),

(2.4)

where 〈·〉F denotes the Frobenius inner product defined in Appendix A.3.3,

This is performed in the OMP algorithm with a large matrix F ∈ RNrNc×MrMc who’s

m’th column is the vector V̂ec(Sm) ∈ RNrNc ,m = 1, . . . ,MrMc. The V̂ec(·) operation

relabels the elements of an Nr ×Nc matrix, in row major order, to become the elements

of a NrNc × 1 vector, with the convention described in Appendix A.2.2. The index of the

largest element of the vector

a = |FT (V̂ec(RK−1))|, (2.5)

where the superscript T indicates the transpose operation defined in Appendix A.1, is then

equal to l(K) in equation (2.4). The selection step shown in equation (2.5) has complexity

O(NcNrMcMr), where O(·) denotes the order of the complexity. This complexity can be

reduced if each Sm ∈ RNc×Nr ,m = 1, . . . ,MrMc is a separable matrix constructed from

vectors dr
mr
∈ RNr ,mr = 1, . . . ,Mr and dc

mc
∈ RNc ,mc = 1, . . . ,Mc. Such a matrix is

constructed as,

Sm = dr
mr
⊗ dc

mc
, m = 1, . . . ,MrMc, and mr = 1, . . . ,Mr,mc = 1, . . . ,Mc, (2.6)

with ⊗ indicating the Kronecker product between two vectors, defined in Appendix A.4.

2.3.1 Reducing the Complexity of the Selection Procedure

Instead of the decomposition shown in equation 2.5 involving a single matrix, the problem

is reformulated here with two matrices Dr ∈ RNr×Mr and Dc ∈ RNc×Mc who’s columns

are respectively the vectors dr
mr
∈ RNr ,mr = 1, . . . ,Mr and dc

mc
∈ RNc ,mc = 1, . . . ,Mc

from equation (2.6).

Given the identity [78]

(Dr ⊗Dc)V̂ec(RK−1) = V̂ec((Dc)TRK−1Dr), (2.7)

finding the the maximum element of a in equation (2.5), is equivalent to finding the the

maximum element of,

A = |DcRK−1(Dr)T |. (2.8)

61



Chapter 2 SPARSE IMAGE REPRESENTATION WITH GREEDY ALGORITHMS

That is A(lc(K), lr(K)) = a(l(K)), where lc(K) and lr(K) are the row and column indices

where the maximum element of A in equation (2.8) occurred. Additionally the column

of F, V̂ec(Sl(K)), which produces the largest value in a from equation (2.5), can be

constructed as Dr(:, lr(K))⊗Dc(:, lc(K)) if required.

If Nr, Nc = N and Mr,Mc = M the complexity of (2.8) for redundant dictionaries

with M > N is O(M2N), which is less than O(M2N2), the corresponding complexity of

(2.5).

2.3.2 Separable Orthogonal Matching Pursuit

The separable implementation of OMP will be termed OMP2D. Within the adopted no-

tation the algorithm evolves as follows: On setting R0 = I at iteration K the algorithm

selects the vectors Dc(:, lc(K)) and Dr(:, lr(K)) corresponding to the column and row of

the largest element of the matrix A in equation (2.8), with

RK−1 = I−
K−1∑

k=1

Dc(:, lc(k))c(k)(Dr(:, lr(k)))T . (2.9)

The coefficients c(k), k = 1, . . . ,K− 1 in the above expansion are such that ‖RK−1‖F

is minimum. This is ensured by requesting that RK−1 = I− P̂VK−1
I, where P̂VK−1

is the

orthogonal projection operator onto VK−1 = span{Dr(:, lr(k))⊗Dc(:, lc(k))}K−1
k=1 .

A straightforward generalization of the implementation in one dimension (1D) dis-

cussed in [32, 34] provides us with a suitable representation of P̂VK−1
I. This is given

by

P̂VK−1
I =

K−1∑

k=1

〈B
(K−1)
k , I〉FSk =

K−1∑

k=1

c(k)Sk, (2.10)

where

Sk = Dc(:, lc(k))⊗Dr(:, lr(k)),

andB
(K−1)
k , k = 1, . . . ,K−1 are the concomitant reciprocal matrices, which are the unique

elements of RNr×Nc satisfying the conditions:

i) 〈Sn,B
(K−1)
k 〉F = δn,k =




1 ifn = k

0 ifn 6= k.

ii) VK−1 = span{B
(K−1)
k }K−1

k=1 .
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Such matrices can be adaptively constructed through the recursion formula:

B
(K)
k = B

(K−1)
k −B

(K)
K 〈SK ,B

(K−1)
k 〉F , k = 1, . . . ,K − 1

where

B
(K)
K = CK/‖CK‖

2
F with C1 = S1 and CK = SK −

K−1∑

k=1

Ck

‖Ck‖2F
〈Ck,SK〉F .

(2.11)

For numerical accuracy in the construction of the set Ck, k = 1, . . . ,K at least one

re-orthogonalization step is usually needed. It implies that one needs to recalculate these

matrices as

CK = CK −
K∑

k=1

Ck

‖Ck‖2F
〈Ck,CK〉F .

The algorithm will iterate up to step K for which, for a given ρ, the stopping criteria

‖I − P̂VK
I‖F < ρ (2.12)

is met.

If the coefficients in (2.9) are instead the largest elements of the matrix A in (2.8) then

this reduces to Matching Pursuit in 2D (MP2D), a separable version of MP.

If a separable dictionary is considered, adopting the algorithm OMP2D instead of OMP

can be very effective at reducing the execution time of the approximation. However the

large matrices B
(K)
k , k = 1, . . . ,K required in equation (2.10) still need to be calculated.

In the Experiment in Section 2.5 this is shown to become prohibitive in terms of execution

time, as the size of the blocks Nr ×Nc gets larger than 24× 24.

As demonstrated in Section 2.2, SPMP can reproduce the results of OMP, removing

the need for the calculation of the large matrices B
(K)
k , k = 1, . . . ,K. Therefore applying

SPMP with a separable dictionary, in a procedure called Self Projected Matching Pursuit

in 2D (SPMP2D1), will both reduce the complexity of the selection step and reduce the

storage requirements of the algorithm. This is shown experimentally in Section 2.5.1, to

significantly reduce the processing time over OMP2D when images are processed in blocks

with Nr = Nc = 32.

The pseudo code for the SPMP2D1 algorithm is shown in Appendix D.

2.4 Dictionaries for Sparse Representation of Images

The following discusses the construction of matrices for creating sparse representations of

images I ∈ RNr×Nc .

In this and the remaining Chapters all sparse image approximations are calculated

from separable matrices with unit norm. A separable matrix Sm is constructed from
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vectors dc
mr
∈ RNr ,mr = 1, . . . ,Mr and dr

mc
∈ RNc ,mc = 1, . . . ,Mc, with equation

(2.6). The condition ‖Sm‖F = 1,m = 1, . . . ,MrMc is guaranteed by requiring both

‖dc
mr
‖ = 1,mr = 1, . . . ,Mr and ‖d

r
mc
‖ = 1,mc = 1, . . . ,Mc. The dictionary D is therefore

the set of matrices Sm ∈ RNc×Nr ,m = 1, . . .McMr spanning the space RNc×Nr with

McMr > NcNr.

The vectors dc
mc
∈ RNc and dr

mr
∈ RNr are stored, respectively as columns of two

matrices Dc ∈ RNc×Mc and Dr ∈ RNr×Mr , referred to as the column and row dictionaries.

This representation is convenient because these are the two matrices from equation (2.8),

required to perform the selection procedure in the separable algorithms, MP2D, OMP2D

and SPMP2D1. It is clear that, as the names imply, the vectors dc
mc
∈ RNc and dr

mr
∈ RNr ,

respectively perform inner products with the columns and rows of the residual RK−1 in

equation (2.8).

If the selection procedure cannot employ the separable product, which is the case with

OOMP, the large separable matrices Sm ∈ RNc×Nr ,m = 1, . . .McMr are calculated from

the column and row dictionaries, Dc and Dr before applying the algorithm.

A K-sparse representation of a given image I ∈ RNr×Nc constructed from the column

and row dictionaries Dc and Dr described above is,

IK =

K∑

k=1

Dc(:, lc(k))c(k)(Dr(:, lr(k)))T . (2.13)

For the finite dimension Euclidean spaces RNr and RNc one can respectively construct

dictionaries Dc and Dr with arbitrary vectors dc
mc

and dr
mr

. The sets of vectors de-

scribed in the following Sections were chosen because of the sparsity they produced in

approximations of the form shown in equation (2.13).

The construction described for each of the first 5 dictionaries below is for the column

dictionary Dc, although it can also be applied to produce the row dictionary Dr. On the

other hand the last two, trained dictionaries, come as a pair, therefore the construction

below is for both Dc and Dr.

Redundant Discrete Cosine Dictionary

The matrix of Redundant Discrete Cosine vectors Dc
1 which is referred to as the RDC

dictionary contains all the vectors produced by equation (2.3) for Mc = 2aNc, with a = 1.

These vectors were chosen because of the significant increase in sparsity they produced

over the DC basis demonstrated in the previous Example.
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Figure 2.2: Prototype vectors as defined in (B.5) and (B.6). The columns of the RDBS dictionary
are constructed by translations of these prototypes, applying the cut off approach at the boundaries.

Redundant Discrete B-Spline Dictionary

This matrix Dc
3, referred to as the Redundant Discrete B-Spline (RDBS) dictionary is

inspired by a general result holding for continuous spline spaces. Namely, that spline

spaces on a compact interval can be spanned by dictionaries of B-splines of broader support

than the corresponding B-spline basis functions [79, 80]. The prototype vectors for this

dictionary are shown in Figure 2.2 with their construction discussed in Appendix B.

Redundant Discrete Uniform Dictionary

This simple dictionary is formed by combinations of discrete value functions, fj(n) which

have a constant value on a given interval given by:

fj(n) =





1√
j

0 < n ≤ j

0 otherwise

(2.14)

with n ∈ N.

The 3 sets of discrete uniform atoms of supports j = 2, 4, 6 required in the Experiments

are given by,

{fj(n−m+ 1);n = j, . . . , Nc + j − 1}
Mj

m=1, j = 2, 4, 6.

The dictionary Dc
4 referred to as the Redundant Discrete Uniform (RDU) dictionary is

constructed with these vectors as its columns.

Redundant Discrete Wavelet Dictionary

The vectors for this set are discretized versions of the continuous wavelets given in [1],

the form of which is very similar to the Mexican Hat wavelet. Three fractional scaling

parameters were required to produce discrete wavelets of support 3, 5, and 7, represented
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Figure 2.3: The left hand graph shows discretized versions of the continuous wavelets given in [1]
and the right had graph shows discretized versions of Haar wavelets.
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Figure 2.4: The two bottom graphs show prototype atoms of random shape defining a realization
of the RR dictionary.

in the top left graph of Fig. 2.3. The other prototypes of support 2,4,6, and 8, represented

in the top right graph of Fig. 2.3, are discretized versions of Haar wavelets.

The 7 sets of discrete vectors are formed by translating each of the 7 discrete wavelet

prototypes, shown in Fig. 2.3, one sample point at each translation step. The ’cut off’

approach described in Appendix B, is applied at the boundaries, keeping the elements of

the vectors which have nonzero intersection with the discrete interval Nc being considered.

The dictionary Dc
5 referred to as the Redundant Discrete Wavelet (RDW) dictionary is

constructed with these 7 sets of vectors as its columns.

Redundant Random Dictionary

The 3 dictionaries described above are each formed by translations of prototype supported

vectors. To verify there sparsity 5 additional dictionaries formed by translating normally

distributed pseudorandom supported vectors, were also constructed.

A single realization of the pseudorandom prototype vectors of support j = 1, 2, 3, 4, 5, 7, 7

and 7 is shown at the bottom of Figure 2.4

66



Chapter 2 SPARSE IMAGE REPRESENTATION WITH GREEDY ALGORITHMS

The 7 sets of discrete, atoms of identical support, are formed by translating each

prototype pseudorandom atom one sample point at each translation step with the ’cut

off’ approach being applied at the boundaries. The dictionary Dc
6 referred to as the RR

dictionary is constructed with these 7 sets of vectors as its columns.

Trained Separable Dictionary

This type of dictionary is calculated or trained using test images which are representative

of a given image corpus. Trained dictionaries may not generalize well to producing sparse

representations of all images, however, the idea behind them is that they can produce

sparser representations of there given corpus.

The training was performed with the Iterative Least Squares Dictionary Learning Al-

gorithm (ILS-DLA), for unrestricted block based dictionaries [81]. This was implemented

with a slightly modified version of the software provided by Karl Skretting [82], the im-

plementation details of which are given in his PhD thesis [36]. The modification was to

replace the OOMP algorithm with OMP2D to allow larger separable dictionaries to be

trained. A description of this separable ILS-DLA with OMP2D is given in Appendix C.

Figure 2.5 shows the first 3 vectors from 4 Trained Separable (TS) column dictionaries,

each one trained with a different Nc, with Nc = 8, 16, 24 and 32. The TS dictionaries were

trained with Q, Nc × Nr blocks Xq, randomly sampled from 10 of the top 100 images

captured by the Hubble Telescope [83]. Figure 2.5 shows the first 3 vectors in each of the

TS dictionaries, trained with Nc = 8, 16, 24 and 32. It is clear that for these vectors, the

ones with the same index in each dictionary have similar shapes. This feature is present

for the lower indexed atoms in all dictionaries, however the larger indexed atoms in all the

dictionaries appear to have a random construction. This can be seen in Figure 2.6 which

shows atoms 50, 51 and 52 taken from the same 4 dictionaries with Nc = 8, 16, 24 and 32.

2.5 Sparsity of Greedy Algorithms

In the Experiment of this Section sparse image approximations are calculated by several

greedy algorithms and a fixed separable dictionary. The investigation here is to access the

performance of each algorithm in terms of sparsity and execution time.

Before a large image I ∈ RNr×Nc can be approximated by the greedy algorithms

described in the previous Sections, it is first divided into smaller non overlapping square

images or blocks Iq ∈ RN×N , q = 1, . . . , QN . The approximation of these blocks requires

less memory, resulting in a reduction in the overall processing time for an image. The K
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Figure 2.5: Vectors taken from the TS dictionaries calculated with the procedure described
in Appendix C. Each dictionary was trained on Q blocks Xq, randomly sampled from 10
of the top 100 images captured by the Hubble Telescope. The Figure on the left shows,
from left to right, the first 3 atoms, taken from a dictionary trained with Nc = 8, and a
dictionary trained with Nc = 16. The Figure on the right shows from left to right, the
first 3 atoms, taken from a dictionary trained with Nc = 24, and a dictionary trained with
Nc = 32.
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Figure 2.6: Vectors taken from the TS dictionaries calculated with the procedure described
in Appendix C. Each dictionary was trained on Q blocks Xq, randomly sampled from 10
of the top 100 images captured by the Hubble Telescope.The Figure on the left shows from
left to right, atoms 50, 51 and 52, taken from a dictionary trained with Nc = 8, and a
dictionary trained with Nc = 16. The Figure on the right shows from left to right, atoms
50, 51 and 52, taken from, a dictionary trained with Nc = 24, and a dictionary trained
with Nc = 32.
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sparse approximation IKq of each of these smaller blocks Iq is,

IKq =

Kq∑

k=1

Dc(:, lcq(k)cq(k)(D
r(:, lrq(k)))

T , q = 1, . . . , QN , (2.15)

where the notation QN is to indicate the dependence of the number of blocks on the

variable N . This is the same as equation (2.13) with the addition of the subscript q

indicating the image block Iq being approximated. For simplicity, in this and future

discussions it is assumed the original image can be exactly divided into an integer number

of blocks.

The sparsity of each approximation will be reported by the SR, defined as

SR =
Np

K
, (2.16)

with Np = QNN2, the number of pixels in the original image, and

K =

QN∑

q=1

Kq, (2.17)

the number of coefficients used in the approximation in equation (2.15).

2.5.1 Experiment

The approximations in this Experiment were performed with four separable greedy algo-

rithms resulting in a representation of the form in (2.15), and the non separable greedy

algorithm OOMP described in Section 1.5.3. All the algorithms were implemented in C++

mex files to reduce the execution time in the approximation. The source code is available

from [84].

The four separable greedy algorithms were:

1) Matching Pursuit (MP2D),

2) Self Projected Matching Pursuit with step length p = 1 (SPMP2D1),

3) Self Projected Matching Pursuit with step length p = 10 (SPMP2D10),

4) Orthogonal Matching Pursuit (OMP2D).

Each algorithm above chose atoms from the same column and row dictionaries, denoted

respectively by Dc,1
2 and Dr,1

2 , with Dc,1
2 ≡ Dr,1

2 . The column dictionary was constructed

from the concatenation of the RDC and RDBS dictionaries described in Section 2.4, as

Dc,1
2 = [Dc

1,D
c
3].
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The approximation was also performed by the non separable greedy algorithm OOMP.

This algorithm required a large separable dictionary F, which was explicitly calculated as

the Kronecker product (defined in Appendix A.4) between the column and row dictionaries,

shown below

F = Dr,1
2 ⊗Dc,1

2 . (2.18)

Each column of F is a separable atom and the equivalent approximation to equation (2.15)

is

IKq =
K∑

k=1

cq(k)M̂at(F(:, lq(k)), N,N), q = 1, . . . , QN . (2.19)

The vectors lq contain the indices of the column within F chosen at each iteration of the

OOMP algorithm. The M̂at(·) operation above relabels the elements of an NN×1 vector

to become elements of an N ×N matrix, applying the convention described in Appendix

A.2.1.

This Experiment was performed with a test set of 45, 8 bit grey level versions of

astronomical images, taken from the top 100 images captured by the Hubble telescope.

The images which had an average resolution of 1168 × 1280 were approximated with

four block sizes N = 8, 16, 24 and 32. Each image was originally 24 bit true colour,

and was converted to 8 bit grey level by applying the weighted sum described in Section

1.3.2. The approximation was to a global PSNRa, between the original image I and the

approximated image IK , with the superscript a indicating that the PSNR is the result of

an approximation. The calculation of the PSNR is given in equation (1.3).

Converging to a Global PSNRa

Approximating an image I to a global PSNRa, when the processing is performed in blocks

and each block is approximated independently, can be achieved in several ways. In this and

future Experiments, unless stated otherwise, the following global convergence approach

will be applied.

If the error in the approximation of each block is exactly equal to ρ, that is if

‖Iq − IKq ‖
2
F = ρ, q = 1, . . . , QN (2.20)

then ρ can be explicitly calculated from the desired PSNR, xdB as

ρ =
N2MAX2

I

10
−x
10

. (2.21)

In practice it is not possible for all blocks in equation (2.20) to be approximated to

the same error ρ. Therefore the equality in equation (2.20) is replaced with an inequality,

shown in equation (2.12). This guarantees that the PSNRa ≥ xdB.
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OMP2D SPMP2D1 SPMP2D10 MP2D OOMP

N x̄SR t̄ x̄SR t̄ x̄SR t̄ x̄SR t̄ x̄SR t̄

8 12.36 11.26 12.46 13.70 12.18 12.20 11.72 12.37 12.77 235.97

16 14.35 38.11 14.42 45.23 14.13 34.22 13.21 28.52 14.47 6073.05

24 14.94 113.27 14.96 111.44 14.74 91.11 13.59 70.66 NA NA

32 15.23 326.09 15.22 237.79 15.05 207.47 13.78 134.73 NA NA

Table 2.1: Average SR (x̄SR) and average processing time (t̄) in seconds over the set
of 45 grey level astronomical images. The approximation of each one was to a PSNRa

of 45dB ± 4.5 × 10−3dB, by applying the algorithms shown, with the combined RDC
and RDBS dictionary. The average size of the images in the set was 1264 × 1194. The
processing time for each image is the average of 5 independent runs, therefore the average
processing time is the average of this over the image set. The x̄SR and t̄ are not shown
for OOMP with N greater than 16 because the problem size was too large to calculate.

An approximation to a desired PSNR of say, x = 45dB is then carried out by first

approximating all image blocks Iq, q = 1, . . . Q to an error less than or equal to ρ, calculated

with x = 45dB in equation (2.21). Then if necessary the value of x in (2.21) is iteratively

reduced until |45 − PSNRa| < 45× 10−2%.

Each image in the test set was approximated independently 5 times to 45dB±4.5×10−3

for block sizes N = 8, 16, 24 and 32, by applying MP2D, SPMP2D1, SPMP2D10, OMP2D

and OOMP. The average SR, x̄SR and execution time, t̄ in seconds are shown in Table

2.1. The x̄SR is the mean taken over the image test set. The recorded processing time for

each image is the mean of the 5 independent approximations, therefore t̄ is the mean of

this value taken over the image test set.

2.5.2 Results

SR Increases with N

The results in Table 2.1 show that for all the greedy algorithms tested the x̄SR of the

approximations increased with N (the size of the blocks) partitioning the image. As shown

in Table 2.1 this increase comes at a price because again for all the greedy algorithms tested

the t̄ also increased with the block size.

OOMP, Sparser but Slower

Table 2.1 shows that for N = 8 and 16, the x̄SR over the 45 astronomical images is highest

when atoms are picked with the OOMP algorithm. What is not shown is that for N = 8
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and 16 the SR for every image when approximated with OOMP was always higher than

the SR for the other algorithms in the Table.

For N = 8 and N = 16 the percentage increase in x̄SR resulting from the application

of OMP2D instead of MP2D is greater than the percentage increase in x̄SR resulting from

applying OOMP instead of OMP2D. At the same time the increase in execution time from

OMP2D to OOMP is 2.00 × 103% and 1.59 × 104% for respectively N = 8 and N = 16.

This is a far greater increase in processing time than going from MP2D to OMP2D, which,

for N = 8 falls by 9.01% and only increases by 33.65% for N = 16.

OMP2D Sparser than MP2D and SPMP2D10

For all N the SR for every astronomical images is greater for OMP2D than for MP2D.

The x̄SR for OMP2D, shown in Table 2.1, for each N is larger than for SPMP2D10.

However OMP2D did not produce a sparser approximation of every image in the test set.

Therefore a one tailed paired sample t-test was performed to determine if OMP2D produces

significantly sparser approximations than SPMP2D10. The results given in Appendix

E.1.1, show that for all values of N the average SR made with OMP2D is significantly

higher than the average SR of approximating the same images with SPMP2D10. This is

at the 95% confidence level, and applies to approximations of astronomical images made

with the combination of the RDC and RDBS dictionary.

SPMP2D1 Faster for Larger Blocks with N = 32

Table 2.1 shows that the t̄ for OMP2D is greater than SPMP2D1 for N ≥ 24. To deter-

mine if SPMP2D1 should be used instead of OMP2D to reduce the processing time for

N ≥ 24, two, one tailed paired sample t-tests were performed. The first to determine if

the average SR produced by approximations of astronomical images with OMP2D is sig-

nificantly higher than SPMP2D1. The second to determine if the average execution time

of approximations made with SPMP2D1 is significantly smaller than OMP2D for N ≥ 24.

The result of these two significance tests shown in Appendix E.1.1, indicate that with

large N = 32, the SPMP2D1 algorithm should be used in place of OMP2D, to reduce the

execution time in the approximation. This is for astronomical images and the combination

of the RDC and RDBS dictionary.

Discussion

For the astronomical image corpus approximated by choosing atoms from the combined

RDC and RDBS dictionary for all algorithms tested the x̄SR increased with the block size
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N . This is an important result and needs to be investigated further to determine if it is a

general feature, or a result of the specific images or dictionary tested.

When performing sparse approximations of images with greedy algorithms, the choice

of algorithm will depend on the importance or trade off between, sparsity and/or pro-

cessing time. The results of this experiment indicate that OMP2D fulfils both criteria for

approximations of astronomical images. This is compared to the other algorithms tested,

when the approximation is made to a PSNRa = 45dB ± 4.5 × 10−3 and the combination

of the RDC and RDBS dictionary is applied.

If processing time is the main priority when approximating images, the results indicate

OMP2D is the algorithm to choose. This is because OMP2D had the smallest processing

time on average of the five algorithms tested, for all block sizes under the above test

conditions.

If the sparsity of the approximation is more important, the results indicate that either

OMP2D or SPMP2D1 are suitable, because they produce the sparsest approximations.

However OMP2D takes significantly longer than SPMP2D1 for N = 32, and in this ex-

periment took on average 37.13% times longer to process each image with this block size.

The above result for SPMP2D1 was not unexpected. As mentioned earlier both

OMP2D and SPMP2D1 have complexity of the same order, however SPMP2D1 has a much

smaller memory footprint. This is because the large matrices B
(K)
k ∈ RN×N , k = 1, . . . ,K

required by OMP2D in equation (2.10) do not need to be calculated and stored by the

SPMP2D1 algorithm.

If OOMP could be applied to larger image blocks than N = 16 the results of this Ex-

periment indicate it would produce the sparsest approximations of the algorithms tested.

This increase in sparsity comes at a price because of the massive increase in processing

time that the algorithm requires. Therefore OOMP is not considered suitable for approx-

imating astronomical images, both because it cannot be applied to large enough blocks,

and because the processing time is much higher than the other algorithms, for the same

average SR.

Finally OMP2D produces significantly sparser approximations than both MP2D and

SPMP2D10 for all N , these algorithms are therefore also not suitable for approximating

astronomical images with the combined RDC and RDBS dictionary.

For the above reasons the OMP2D algorithm was chosen to produce the sparse ap-

proximations, required by the remaining Experiments of this Chapter.

73



Chapter 2 SPARSE IMAGE REPRESENTATION WITH GREEDY ALGORITHMS

2.6 Dictionary Selection

The results of the previous Section indicate that the OMP2D algorithm produces sparser

representations of blocked astronomical images, with the combined RDC and RDBS dic-

tionary, than the other algorithms tested. In this Section the SR resulting from choosing

atoms with OMP2D with 4 more dictionaries of the same redundancy, and 2 smaller dic-

tionaries is examined. This is compared with the SR resulting from the DCT and CDF9/7

Wavelet Transform which are respectively part of the lossy JPEG and JPEG2000 com-

pression algorithms [17].

2.6.1 Experiment

The approximation procedure is the same as the previous Experiment in Section 2.5, with

the addition or 6 extra dictionaries.

This Experiment was performed with the 45, 8 bit astronomical images and an addi-

tional set of 45, 8 bit grey level images natural images. The additional images were chosen

randomly from the Berkeley Segmentation Dataset [85] containing 300 different true colour

images. Each image was converted from 24 bit RGB to 8 bit grey level as prescribed by

equation (1.1). The additional test set had an average resolution of 360 × 442, which is

smaller average resolution than the astronomical (1168 × 1280) set.

Each image was first partitioned into blocks, with N = 8, 16, 24 and 32, before being

approximated with OMP2D to a fixed PSNRa = 45dB± 4.5× 10−3.

Because OMP2D is separable, column and row dictionaries described in Section 2.3

were constructed for this Experiment. The first 5 dictionaries, who’s components are

described below, are symmetric with Dc,1
i = Dr,1

i , i = 1, . . . , 5, therefore the construction

mentioned is for either Dc,1
i or Dr,1

i . The remaining two dictionaries are non symmetric

with Dc,1
i 6= Dr,1

i , i = 6, 7, both containing the same number of vectors Mc = Mr, hence

the construction below is for both.

2.6.2 Dictionaries

The following is a list of the 7 dictionaries which were used in this Experiment:

Dc,1
1 - RDC column dictionary, Dc,1

1 = Dc
1 (RDC).

Dc,1
2 - combined RDC and RDBS column dictionary, Dc,1

2 = [Dc
1,D

c
3] (RDC-RDBS1).

Dc,1
3 - combined RDC, Euclidean Basis and RDW, column dictionary, Dc,1

3 = [Dc
1,D

c
2,D

c
4]

(RDC-RDW).
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N Mi, i = 2,3,4,6,7 M5 M1

8 90 67 16

16 170 139 32

24 250 211 48

32 320 283 64

Table 2.2: The number of vectors Mi in each of the dictionaries Dc,1
i ,Dr,1

i , i = 1, . . . , 7
against the size of the block N.

Dc,1
4 - combined RDC, Euclidean Basis and RR, column dictionary, Dc,1

4 = [Dc
1,D

c
2,D

c
5]

(RDC-RR). Five different realizations of the prototype pseudorandom prototype

were tested in this Experiment, for each support length.

Dc,1
5 - combined RDC, Euclidean Basis, RDU and a smaller B-spline Dc

9, column dictio-

nary, Dc,1
5 = [Dc

1,D
c
2,D

c
3,D

c
9] (RDC-RDBS2). The smaller B-spline dictionary Dc

9

is constructed with the set of vectors below as its columns,

{biY
s
2 (n− i+ 1); i = n, . . . ,N + j − 1}Ms

i=1, s = 2, 3, 4. (2.22)

The support lengths for each prototype atom are j = 3, 5 and 7 for respectively

s = 2, 3, and 4.

Dc,1
6 , Dr,1

6 - TS dictionary, trained with an additional 10 astronomical images taken from the

top 100 images captured by the Hubble telescope. Five realizations of this, TS1

dictionary were trained. The ILS-DLA algorithm in Appendix C was applied, each

realization was calculated by choosing a different set of Q = 10, 000 image blocks

from the training images. This dictionary was constructed to have the same number

of atoms as dictionaries Dc,1
i , i = 2, 3, 4.

Dc,1
7 , Dr,1

7 - TS dictionary, trained with an additional 10 natural images chosen from the Berkeley

Segmentation Dataset. The same procedure described above for the TS1 dictionary

was applied to create the five realizations of this TS2 dictionary.

Table 2.2 shows that dictionary pairs Dc,1
i ,Dr,1

i , i = 2, 3, 4, 6, 7 all contain the same

number of vectors for a given N . Dictionary pairs Dc,1
1 ,Dr,1

1 and Dc,1
5 ,Dr,1

5 contain less

vectors for each N .

The results for this Experiment are given in the next Section.
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N = 8 N = 16 N = 24 N = 32

x̄SR sSR x̄SR sSR x̄SR sSR x̄SR sSR

CDF9/7 5.12 2.90 5.12 2.90 5.12 2.90 5.12 2.90

DCT 7.58 4.07 5.94 4.08 5.57 4.12 5.35 4.09

Dc,1
1 ,Dc,1

1 (RDC) 9.04 4.87 8.09 5.59 7.78 5.77 7.59 5.82

Dc,1
2 ,Dc,1

2 (RDC-RDBS1) 12.06 5.77 13.93 8.05 14.51 8.80 14.81 9.21

Dc,1
3 ,Dc,1

3 (RDC-RDW) 10.99 5.33 12.00 6.80 12.17 7.17 12.23 7.35

Dc,1
4 ,Dc,1

4 (RDC-RR) 10.71 5.08 11.69 6.39 11.92 6.73 12.03 6.91

Dc,1
5 ,Dc,1

5 (RDC-RDBS2) 11.58 5.82 13.10 7.93 13.58 8.59 13.83 8.94

Dc,1
6 ,Dc,1

6 (TS1) 12.95 6.29 14.94 9.01 14.90 9.44 14.54 9.48

Dc,1
7 ,Dc,1

7 (TS2) 13.15 6.48 15.48 9.67 15.98 10.70 15.94 11.13

Table 2.3: Average SR (x̄SR) and standard deviation of the SR (sSR) over the set
of 45 grey level astronomical images, when approximated with OMP2D. Each image
was approximated with the blocks sizes N shown and the column and row dictionar-
ies Dc,1

i ,Dr,1
i , i = 1, . . . , 7, to a PSNRa of 45± 4.5× 10−3dB. The CDF9/7 and DCT were

performed by thresholding the smallest coefficients.

2.6.3 Results

The average SR (x̄SR) and standard deviation of the SR (sSR) over the 45 grey level

astronomical and natural images, are shown respectively, in Tables 2.3 and 2.4. The

results are shown against the dictionaries and the block sizes N = 8, 16, 24, 32 tested.

The x̄SR and sSR, are calculated over all the images in the respective image sets for all

dictionary pairs, except Dc,1
i ,Dr,1

i , i = 4, 6, 7 because they each have 5 realizations. For

these dictionaries, the recorded SR for each image is an average over the 5 realizations,

therefore for these dictionaries the x̄SR and sSR are calculated from this value over all

images in the respective test sets.

The results of approximating both image sets with the DCT and CDF9/7 are also

shown in Tables 2.3 and 2.4. The DCT is applied to images partitioned into square blocks

of size N and the CDF9/7 is applied to whole images at once. The approximation is

then performed by thresholding the smallest transform coefficients to get a non linear

approximation.

Dictionaries, or the DCT and CDF9/7

Both Tables 2.3 and 2.4 show that there is a dramatic increase in sparsity when choosing

vectors from the redundant dictionaries with OMP2D, a highly nonlinear approximation,
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N = 8 N = 16 N = 24 N = 32

x̄SR sSR x̄SR sSR x̄SR sSR x̄SR sSR

CDF9/7 2.79 2.55 2.79 2.55 2.79 2.55 2.79 2.55

DCT 3.10 2.49 2.79 2.24 2.67 2.03 2.56 1.79

Dc,1
1 ,Dc,1

1 (RDC) 3.91 2.91 3.80 2.94 3.69 2.75 3.57 2.45

Dc,1
2 ,Dc,1

2 (RDC-RDBS1) 5.86 3.92 6.58 5.51 6.73 5.74 6.76 5.82

Dc,1
3 ,Dc,1

3 (RDC-RDW) 5.70 3.81 6.20 5.09 6.25 5.08 6.24 5.09

Dc,1
4 ,Dc,1

4 (RDC-RR) 5.63 3.73 6.15 4.84 6.23 4.95 6.21 4.88

Dc,1
5 ,Dc,1

5 (RDC-RDBS2) 5.44 3.80 6.01 5.11 6.10 5.16 6.09 5.17

Dc,1
6 ,Dc,1

6 (TS1) 6.03 3.93 6.49 5.07 6.34 4.77 6.09 4.42

Dc,1
7 ,Dc,1

7 (TS2) 6.17 4.03 6.82 5.53 6.85 5.62 6.66 5.35

Table 2.4: Average SR (x̄SR) and standard deviation of the SR (sSR) over the set of 45 grey
level natural images, when approximated with OMP2D. Each image was approximated
with the blocks sizes N shown and the column and row dictionaries Dc,1

i ,Dr,1
i , i = 1, . . . , 7,

to a PSNRa of 45±4.5×10−3dB. The CDF9/7 and DCT were performed by thresholding
the smallest coefficients.

instead of applying a nonlinear approximation with the orthogonal (DCT) and biorthog-

onal (CDF9/7) transforms. More specifically when the RDC dictionary, only containing

twice as many discrete cosines as the DC basis, is applied to all the astronomical and

natural images, the increase in sparsity is at least 12.53%. Simply enriching this dictio-

nary with supported pseudorandom atoms increases the sparsity again by at least another

8.27%, however this comes at the cost of increasing the size of the dictionary more than 5

times.

Effect of Block Size N

Interestingly for both image sets, the x̄SR falls when the block size N is increased if approx-

imations are made with the DCT transform and the RDC dictionary. The approximation

of the astronomical images with all other dictionaries excluding the TS ones, resulted in

an increase in the x̄SR with the block size N , agreeing with the results from Experiment

2.5.1. This result also held for approximations of natural images, but only up to N = 24.

RDC-RDW and RDC-RR

Tables 2.3 and 2.4 show that for the block sizes tested, the x̄SR for the RDC-RDW

dictionary is higher than for the RDC-RR dictionary, however this was not true for all

77



Chapter 2 SPARSE IMAGE REPRESENTATION WITH GREEDY ALGORITHMS

images in the test sets. To determine if this was significant a one tailed paired sample t-test

was performed, described in Appendix E.1.2. The results show that approximations with

the RDC-RDW dictionary are significantly sparser than those made with the RDC-RR

dictionary, for both astronomical and natural image corpus, at a 95% confidence level.

B-Spline Based Dictionaries, RDC-RDBS1 and RDC-RDBS2

The introduction of the discrete B-splines instead of the discrete wavelets in the RDC-

RDBS1 dictionary maintained the redundancy of the dictionary and also increased x̄SR

for both image sets, shown in Tables 2.3 and 2.4. For all values of N the SR increased

by at least 4.05% for every astronomical image tested. The SR did not increase for every

natural images tested. Therefore a one tailed paired sample t-test was performed, at the

95% confidence level, on the results from approximating the natural images with OMP2D.

The result of this test, discussed in Appendix E.1.2, were, for all N there was a significant

increase in the average SR produced by the RDC-RDBS1 dictionary over the average SR

produced by the RDC-RDW dictionary.

To further analyse the SR produced by B-spline based dictionaries, an additional one

tailed paired sample t-test was performed. The test was to establish if the average SR

produced by approximations made with the smaller RDC-RDBS2 dictionary, were also

sparser than the larger RDC-RDW dictionary. The results for this test performed at a

95% confidence level are discussed in Appendix E.1.2. They show that, on average the

smaller RDC-RDBS2 dictionary, produced significantly sparser approximations than the

RDC-RDW dictionary, for astronomical but not for natural images.

TS Dictionaries, the Largest x̄SR

The dictionary which had the highest x̄SR over both grey level image sets was TS2, the

dictionary trained on the 10 grey level natural images. To determine if this increase was

significant a one tailed paired sample t-test, discussed in Appendix E.1.2, was performed

at a 95% confidence level. The results of the test were, approximations made by the

TS2 dictionary had significantly higher average SR than those made by the RDC-RDBS1

dictionary, for both image sets and all values of N . Interestingly this dictionary also

produced higher x̄SR over the astronomical images than the dictionary trained on this

corpus.
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Discussion

The results above show that for both grey level astronomical and natural images, choosing

atoms from redundant dictionaries with OMP2D produces significantly sparser represen-

tations than the DCT or CDF9/7 currently used as part of the JPEG and JPEG2000 com-

pression algorithms. This is when the approximations are to a PSNRa = 45dB±4.5×10−3.

The results suggest the possibility of including the greedy approximation approach as part

of an alternative image compression scheme. An idea which is investigated further in the

next Section.

For most of the dictionaries tested, the x̄SR over the astronomical and natural images

was highest for respectively N = 32 and N = 24. The smaller average resolution of the

natural images is one possible reason for this reduction in x̄SR over the natural images,

for the largest block size. This suggests that higher resolution images may benefit to a

higher degree from being processed with larger blocks.

The increase in the SR of all images tested from simply approximating with the RDC

dictionary instead of the DCT is significant. As a result, with the exception of the TS

dictionaries, the RDC vectors were included in the construction of all other dictionaries.

The sparsest approximations of both sets of images were produced by TS dictionaries

trained on natural images. Interestingly this dictionary produced a larger x̄SR over the

astronomical images than the dictionary trained on this corpus, a result which requires

further investigation.

Even though the sparsest results were produced by the TS dictionaries, the results for

the B-spline enriched dictionaries were promising, especially on astronomical images.

2.7 Image Coding

From equation (2.19) it is clear that to reproduce the sparse approximation of an image,

both the coefficients cq and the corresponding atom indices lq, are required for each of the

q = 1, . . . , QN blocks.

The following describes a straight forward method to create a vector of bits (0’s and

1’s), or bit stream, b containing all this information. The simulations in Section 2.8 then

demonstrate that the length of b can be smaller than that produced by the JPEG2000

algorithm when the same approximation quality is used.

The procedure for creating this bit stream b involves:

1) Quantization of the coefficients cq, q = 1, . . . , QN .
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2) Preprocessing of the quantized coefficients and atom indices lq, q = 1, . . . , QN to

generate symbols suitable for entropy coding.

3) Entropy coding the symbols from step 2).

To motivate the need for quantization, first consider the definition of the CR, which is

closely linked to the SR defined in equation (2.16),

CR =
uNp

Nb

. (2.23)

The variable u is the number of bits used to represent each pixel in the original image, and

Nb is the number of bits required in the compressed representation. Instead of considering

Nb to be the number of bits required in the approximation, consider it to be just the

number of bits required to store the coefficients from equation (2.15).

During the approximation process, all of the calculations and the resulting coefficients

in equation (2.15), are carried out in double 64 bit precision. The value of Nb if the

coefficients are stored to this precision is 64K, the resulting CR being

CR =
8Np

64K
=

1

8
SR.

Given that the SR for some of the images in the Experiment in Section 2.6 was as low

as 2.86, the CR for storing just the coefficients would be less than 1, that is instead of

compressing the image the required storage for just the coefficients is larger than that of

the original image. As a result, the first step in this image coding scheme is to quantize the

coefficients, the approach adopted here is to apply a simple mid-tread uniform quantizer,

described in the next Section.

2.7.1 Mid-tread Uniform Quantization

Given an input vector v(n), n = 1, . . . , N , the quantization indices v△ are calculated by

the forward quantization stage below:

v△(n) = sign(v(n))

⌊
|(v(n)|

△
+

1

2

⌋
, n = 1, . . . , N, (2.24)

where △ is the quantization step size and ⌊x⌋ indicates the largest integer not greater than

x. The sign function in equation (2.24) is defined as

sign(x) =




−1 if x < 0,

1 if x ≥ 0.

(2.25)
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The forward quantization operation will be denoted as ̂FQuant(·,△), and is applied

to a vector v with the following syntax

v△ = ̂FQuant(v,△). (2.26)

All that is then required to recover a quantized version ṽ of v, and therefore all that

needs to be stored, is the quantization indices v△ and the quantization step size △. The

construction of the quantized vector can then be performed as

ṽ(n) = v△(n) △ n = 1, . . . , N, (2.27)

which is indicated by the following operation

ṽ = ̂RQuant(v△,△). (2.28)

2.7.2 Convergence through Quantization

The vector of coefficients cq, q = 1, . . . , Q for each block can be quantized by applying the

above two steps, first to calculate the quantization indices for each coefficient,

c△q = ̂FQuant(cq,△)

and then calculate the quantized coefficient values

c̃q = ̂RQuant(c△q ,△). (2.29)

A quantized version of the approximated image can then be written as,

Ĩ
Kq
q =

Kq∑

k=1

c̃q(k)M̂at(F(:, lq(k))), q = 1, . . . , QN . (2.30)

The coding scheme proposed here applies this quantization procedure, as an alternative

to the iterative method from Section 2.5, to converge to a global PSNRa. This operates

by first calculating the approximation with the error ρ calculated in equation (2.12),

guaranteeing a global PSNRa greater than or equal to the requested one. The coefficients

in this higher quality approximation are then quantized with a △, resulting in the desired

PSNRa.

Remark 1. In the Experiment in Section 2.5, when the approximation error ρ was calcu-

lated with equation (2.21), the global PSNRa of the approximations were always far higher

than the desired PSNRa. Therefore the quantization of the coefficients in the Experiment

of the next Section always resulted an adequate reduction in the number of bits required

to store them. If this were not true then all that would be required is an increase in the

value of ρ.

81



Chapter 2 SPARSE IMAGE REPRESENTATION WITH GREEDY ALGORITHMS

2.7.3 Storage

It is clear from equation (2.30) and (2.29) that the q’th approximated block Ĩ
Kq
q , can

be recovered if the vector c△q of quantization indices, △ and the corresponding vector lq

are known. If these values are stored in combination with the index of the block they

correspond to, the entire approximated image can be recovered.

The procedure for storing the information above starts with the creation of 4 larger

vectors, c△f1 , c△f1 , q and lf each containing K elements with K calculated in (2.17),

The contents of each of these four vectors is described below:

1) The vectors c△q for each block are first placed into a larger vector c△f by applying

F̂lat(·) operation, defined in Appendix A.2.3,

c△f = F̂lat(cq, q = 1, . . . , QN ).

This vector is then decomposed into a two more vectors, c△f1 containing the absolute

value of each element in c△f , and c△f2 containing the result of applying the sign()

function (2.25) to each element in c△f .

2) The vector q contains the block index information for each element in c△f . That is

for each element in c△f , q contains the block index q which is required in equation

(2.30).

3) The vector lf contains the atom indices and is created as,

lf = F̂lat(lq, q = 1, . . . , QN ).

The vectors c△f2 , q, lf and c△f1 are stored respectively as the first four columns of a

matrix T.

The final bit stream b is now created by a similar procedure to that presented in [86].

The first step is to sort the rows of T in lexicographic order. Columns 1 and 2 are then

preprocessed. Then columns 2−4 are separately entropy coded by the algorithm described

in Section 1.7.

Before the entropy coding stage the first two columns are preprocessed to reduce the

number of symbols contained in them. Column 1 contains K elements and a maximum

of two different values, {−1, 1} representing the sign of the coefficients, each sorted in

ascending numerical order. Therefore the numberN−1 of −1 symbols and the total number

of symbols K can be stored instead of storing the column itself.

Because the table has been sorted in lexicographical order the second column now

contains a maximum of two runs of ascending values. The first, T(1 : N−1, 2) are the
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block indices corresponding to negative coefficients, and the second T(N−1 + 1 : K, 2)

are the block indices corresponding to the positive coefficients. To reduce the number of

different values, the difference between each pair of ascending elements in each of these

two runs is calculated. The result is then stored together with the first symbol of each

run, in a new vector t as shown below

t(1) = T(1, 2),

t(N−1 + 1) = T(N−1 + 1, 2),

t(k) = T(k, 2) −T(k − 1, 2), k = 2, . . . , N−1, N−1 + 2, . . . ,K.

(2.31)

The original elements of the second column of T, can then be recovered by separately

cumulatively summing the 2 runs of symbols stored in t, as

T(k, 2) =
k∑

i=1

t(i), k = 1, . . . , N−1,

T(k, 2) =
k∑

i=N
−1+1

t(i), k = N−1 + 1, . . . ,K,

(2.32)

The elements contained in t, and columns 3 and 4 of T are entropy coded to produce

a vector of bits b. The values of N−1 and K are represented by fixed length binary code

words, and appended to the end of b. The vector b now contains all the information

required to recover the matrix T and therefore the quantized image approximation in

equation (2.30).

The recovery of T from this can be performed in a straightforward manner. The first

step is to read the values of N−1 and K and decode the vector b, recovering t and columns

3 and 4 of T. Next column 1 is populated using N−1 and K as

T(1 : N−1, 1) = −1, T(N−1 + 1 : K, 1) = 1.

Finally column 2 of T is recovered from t by applying the procedure shown in equation

(2.32).

2.8 Image Compression

In this Section the sparse approximation of a blocked image produced by OMP2D is stored

by the proposed image coding method described in Section 2.7. The resulting size of the

bit stream b produced by this is then compared with the size of the files produced by the

JPEG and JPEG2000 image compression algorithms.

In the Experiment in Section 2.6 the the largest x̄SR over both image sets was produced

by the dictionary trained on the natural image set. In that Experiment, for each N their
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were 5 realizations of this dictionary and the SR presented was an average of these 5. In

this Experiment approximations will again be performed with a TS dictionary for each N ,

with N = 8, 16, 24 and 32. This will be for each N the realization from Section 2.6 which

resulted in the highest x̄SR over the natural images. This collection of 4 TS dictionaries

one for each N = 8, 16, 24 and 32 will be referred to as the TS3 dictionary.

The reduction of a sparse approximation, made with OMP2D and the TS3 dictionary,

to a vector of bits b, applying the coding method in Section 2.7, will be referred to as the

dictionary coding algorithm.

Experiment

In this Experiment the images from both the astronomical and natural image sets were

first partitioned into blocks of N = 8, 16, 24 and 32. Then they were approximated with

OMP2D and dictionary TS3 to 4 approximation quality levels. The number of bpp was

then calculated from the bit stream b, produced by storing the approximation information

with the proposed coding scheme.

The implementation of both the JPEG and JPEG2000 algorithms applied in this Ex-

periment was that provided by MATLAB’s imwrite() function. The number of bpp re-

quired by both the JPEG and JPEG2000, was calculated from the size of their respective

files generated by imwrite().

Both JPEG2000 and the dictionary coding algorithm can converge to within 1×10−2%

of a desired PSNRa. The JPEG algorithm’s approximation quality is determined by an

integer the range 1, . . . , 100, with 1 being the lowest and 100 being the highest quality of

the approximation. Because of this JPEG is not guaranteed to approximate all images to

within 1× 10−2% of the desired PSNRa.

In this Experiment the comparison was performed for 4 approximation quality levels

which would ideally have been a PSNRa within 1 × 10−2% of 30dB, 35dB, 40dB and

45dB. However as mentioned above, this is not possible with the JPEG algorithm, and,

as a result, the JPEG approximation was performed first on all the images, to converge to

the desired 4 levels of PSNRa. The resulting PSNRa produced by JPEG which was closest

in absolute value to 30dB, 35dB, 40dB and 45dB, became the quality level for the other

two methods to converge to. The PSNRa shown in Figures 2.7 and 2.8 for each image set

is therefore the average value which JPEG produced over all the images in the respective

sets.
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Figure 2.7: The average number of bpp required to store approximations of the astronom-
ical images, made by choosing atoms from the TS3 dictionary with OMP2D. The average
number of bpp is shown for each block size N = 8, 16, 24 and 32, and for the JPEG
and JPEG2000 compression algorithms. The average number of bpp is shown against
the PSNRa of the approximation for 4 levels of PSNRa, 30.44dB, 35.17dB, 40.25dB and
45.43dB.
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Figure 2.8: The average number of bpp required to store approximations of the natural
images, made by choosing atoms from the TS3 dictionary with OMP2D. The average
number of bpp is shown for each block size N = 8, 16, 24 and 32, and for the JPEG
and JPEG2000 compression algorithms. The average number of bpp is shown against
the PSNRa of the approximation for 4 levels of PSNRa, 30.08dB, 35.12dB, 40.50dB and
46.45dB.
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2.8.1 Results

The results for the 45 astronomical and natural grey level images are shown respectively

in Figures 2.7 and 2.8. Both Figures show the average number of bpp produced by JPEG,

JPEG2000 and the dictionary coding method with N = 8, 16, 24 and 32, against the

PSNRa.

Both Figures show the average number of bpp produced by the dictionary coding

method is nearly always lowest for the largest block size N = 32. Therefore a one tailed

paired sample t-test, described in Appendix E.1.3, was performed to see if this difference

was significant. The t-test was performed on the results for both astronomical and natural

images to a 95% confidence level. The result of the test for all quality levels is, the average

number of bpp produced by the dictionary coding method, with N = 32 is significantly

smaller than with N = 8 or N = 16. The result for the highest quality approximations

tested is, the average bpp produced by the dictionary coding method, with N = 32, is

significantly smaller than all other block sizes. Therefore the value of the bpp produced by

the dictionary coding method for N = 32 was compared with both JPEG and JPEG2000

below.

Comparison with JPEG

The PSNRa shown on the x axis of Figure 2.7 for the astronomical image set was 30.44dB,

35.17dB, 40.25dB and 45.43dB. For the first three quality levels, the dictionary coding

method required less bpp than JPEG for every image, with the JPEG always requiring at

least 4.24% bpp more when compressing a single image.

For the highest quality level a one tailed paired sample t-test described in Appendix

E.1.3 was performed on the results for the astronomical images. The results of this t-test

at a 95% confidence level are shown in the bottom row, of the top of Table E.6. The

result is, approximations made to an average PSNRa of 45.43dB with N = 32, require

significantly less bpp on average, when coded with the dictionary method, than those

compressed by the JPEG algorithm.

The PSNRa shown on the x axis of Figure 2.8 for the natural image set was 30.08dB,

35.12dB, 40.50dB and 46.45dB. For all quality levels tested the dictionary coding method

always required less bpp than JPEG, with the JPEG always requiring at least 5.25% bpp

more when compressing a single image.
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Figure 2.9: Astronomical test image approximated to PSNRa = 40.19dB, compressed
with both JPEG2000 and the dictionary coding method, required respectively 0.58 and
0.44bpp. The image contains 1280 × 1731 pixels.

Comparison with JPEG2000

The average number of bpp required by the dictionary coding method and the JPEG2000

compression algorithm were much closer for the quality levels tested. Therefore a one tailed

paired sample t-test was performed on both grey level image sets to determine if they were

significantly different. The t-test is described in Appendix E.1.3, and the results shown

to a 95% confidence level in Table E.6. The main result is that for the PSNRa > 45dB

tested, JPEG2000 requires on average significantly more bpp than the dictionary coding

method.

On average, for the lower 3 quality levels, JPEG2000 did not require significantly

more bpp than the dictionary coding method. However there were several images where

it did, two examples where this occurred are now given. The astronomical image shown

in Figure 2.9, approximated to PSNRa = 40.19dB, compressed with both JPEG2000

and the dictionary coding method, required respectively 0.58 and 0.44bpp. The natural

image shown in Figure 2.10, approximated to PSNRa = 40.00dB, compressed with both

JPEG2000 and the dictionary coding method, required respectively 1.16 and 1.06bpp.
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Figure 2.10: Natural test image approximated to PSNRa = 40.00dB, compressed with both
JPEG2000 and the dictionary coding method, required respectively 1.16 and 1.06bpp. The
image contains 321 × 481 pixels and is displayed at twice the resolution of Figure 2.9.

Discussion

The conclusions of the Experiments in Sections 2.5.1 and 2.6.1 were that there is an increase

in sparsity from processing images in larger blocks. The results of this Experiment show

that this translates into a reduction in the number of bpp required when the image is

compressed. Specifically, the average number of bpp produced by the proposed dictionary

coding algorithm, when the approximation is of high quality, is significantly lower for the

largest block size (N = 32). This is encouraging and supports the use of the proposed

SPMP2D1 algorithm, which was shown to produce equivalent results to OMP2D in less

time, as a first step in a dictionary coding algorithm.

The x̄SR over the natural images, approximated with the TS2 dictionary shown in Table

2.4, was lower for the largest block size N = 32, than for N = 24. However applying the

dictionary coding method with the TS3 dictionary resulted in the lowest average number

of bpp for the largest block size of N = 32. The obvious question is now, how can an

image with lower SR (when N = 32) produce a smaller compressed version than, an image

with higher SR (when N = 24). The cause of this is now explained below.

When an approximation is performed with a larger block size N , it is possible for the

number of different atom indices in the vector lf to increase. On its own this can increase

the storage requirements for the vector T(:, 3), because a larger range of integer values

need to be entropy coded. However increasing the block size is guaranteed to reduce the

number of blocks, and therefore block indices in q. This reduces the number of different

values in the vector t calculated with equation (2.31). Therefore the increase in block size

resulted experimentally, in the average number of bpp for N = 32 falling below that of

N = 24, shown in Figure 2.10. The fact that a reduction in the number of bpp can be a

result of processing with larger N , and not a larger x̄SR, is interesting and demonstrates
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another possible advantage to processing the images in larger blocks.

It is encouraging that for the PSNRa tested, the simple dictionary coding method

outperforms the older JPEG algorithm, in terms of CR. It is even more encouraging that

for the highest quality approximations, the dictionary coding method also outperforms

the newer JPEG2000 algorithm.

The proposed approximation and coding scheme is at an early stage, however it is

still competitive with current image compression formats. This is an important result,

implying that sparse image approximations produced by OMP2D, could be an important

first step in a new image compression scheme.

2.9 Conclusions

Sparse representations of astronomical of images, produced by standard greedy selection

algorithms were investigated. The OMP2D was algorithm applied to approximate this

image corpus, by selecting atoms from the combined RDC and RDBS dictionary. This

resulted in hight quality sparse approximations. The suitability of this algorithm for

quickly processing small blocks, was demonstrated by the low average processing time

over this class of images. As the block size N was increased, so were both the average

SR, and processing time. To reduce the approximation processing time for large N , the

SPMP2D1 algorithm was proposed. SPMP2D1 was then shown experimentally to produce

equivalent approximations to OMP2D, in a shorter period of time.

It has been shown that for a variety of dictionaries OMP2D results in significantly

sparser approximations, of both astronomical and natural images. This is when it is

compared to the DCT and CDF9/7 transforms, currently employed as part of the JPEG

and JPEG2000 image compression standards.

The SR results produced by OMP2D with the RDC dictionary are encouraging. Fur-

thermore its combination with supported B-splines significantly increase the resulting SR

of astronomical image data.

The increase in the SR resulting from approximations made with OMP2D inspired the

dictionary coding scheme. This was shown experimentally, in Section 2.8, to compress

astronomical and natural images, significantly better than JPEG, for a variety approxi-

mation qualities. More importantly, the proposed image coding scheme compressed higher

quality approximations, of both astronomical and natural images, requiring significantly

less bpp than JPEG2000.

The highest level of compression, for the proposed image coding scheme, resulted from
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processing images with the largest block size, N = 32. Unfortunately processing im-

ages with OMP2D in larger blocks, increases the processing time. An algorithm termed

SPMP2D1 which produced equivalent results to OMP2D was then proposed. In the Ex-

periment in Section 2.5, the SPMP2D1 algorithm required significantly less time than

OMP2D, to approximate images partitioned into blocks with N = 32. The result in-

dicates that SPMP2D1 is a valid alternative to OMP2D, for processing larger blocks to

further increase the approximation sparsity.

The proposed approximation and coding scheme is competitive when compared to cur-

rent image compression formats. This implies that sparse image approximations produced

by greedy algorithms, could be an important first step in a new image compression scheme.

This result is important, and encouraging, because the proposed coding scheme is not yet

at an advanced stage.
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3 Encrypted Image Folding

This Chapter describes and analyses a method for hiding information in the null space

created by a sparse approximation of an image. The main idea stems from the fact that

sparsity entails a projection onto a lower dimensional subspace, therefore creating a null

space. Extra information can then be embedded and stably extracted from such a space.

The proposed idea can be applied to images as part of a partial encryption model

taking advantage of image sparsity. The method termed image folding , takes a sparse

approximation of an image and splits it into two sections, a host and embedded section.

The embedded section is added to the host section to produce a folded image, this can

then be stored in any conventional lossless image format. Both sections can then be fully

recovered from the folding process, by applying an orthogonal projection. The security

comes from securing the embedded section before it is folded , thus partially encrypting

the image.

Two methods are discussed for protecting the embedded image. The first approach,

based on a previously outlined method, is successfully applied to this particular image

processing application. The second, is the security scheme described in the paper Sparsity

and “Something Else”: An Approach to Encrypted Image Folding [3].
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The procedure can be applied to any sparse image representations including those

realized by OMP2D in Chapter 2.

The contents of the Chapter are as follows: the first Section contains a general overview

of the information embedding and recovery scheme. The next Section describes a specific

application of this known as image folding . The following Section describes two methods

for securing the folded information, including a number of simulations to determine the

size of the keyspace for each method.

3.1 Information Embedding

Given an approximation IK ∈ VK of an image array I ∈ RNr×Nc and denoting V⊥ to be

the orthogonal complement of VK in RNr×Nc , the embedding and retrieving principle is

simple to describe: Any matrix E ∈ V⊥ can be added and stably extracted from IK ∈ VK

with an orthogonal projector P̂VK
which acts by projecting onto VK and along V⊥ in the

way that is shown below,

If1 = IK +E,

P̂VK
If1 = P̂VK

(IK +E) = IK ,

E = If1 − IK .

This suggests the possibility of using the sparse representation of an image IK ∈ VK ⊂

RNr×Nc as a host for embedding extra information. To achieve this a previously proposed

scheme for embedding redundant representations [87], is applied to images as described

below:

Embedding Scheme: Consider

IK =

K∑

k=1

c(k)Sk, (3.1)

as the reconstruction of a sparse approximation of an image I ∈ RNr×Nc in the proper

subspace VK = span{Sk}
K
k=1. If the set of matrices {Sk}

K
k=1 are linearly independent

the dimension of V⊥, the orthogonal complement of VK in RNr×Nc , is Ne = N2 − K.

Therefore a vector of Ne numbers denoted as e(n), n = 1, . . . , Ne can be constructed to

store coefficients for constructing a matrix E ∈ V⊥. The numbers e(n) can be hidden and

extracted from this embedded vector as prescribed below:

• Take an orthonormal basis S⊥
n , n = 1, . . . , Ne for V⊥ and form E as the linear

combination

E =
Ne∑

n=1

e(n)S⊥
n . (3.2)
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• Add E to IK to obtain If1 = IK +E.

Information Retrieval: Given If1 retrieve the vector of numbers e(n), n = 1, . . . , Ne

as follows.

• Construct an orthogonal projection operator P̂VK
onto the subspaceVK = span{Sk}

K
k=1,

and remove the components in V⊥ from If1 as IK = P̂VK
If1 .

• From If1 and the recovered image IK obtain E as E = If1 − IK .

• Retrieve the vector of numbers e(n), n = 1, . . . , Ne from the recovered E with the

orthonormal basis S⊥
n , n = 1, . . . , Ne, with the Frobenius inner product

e(n) = 〈S⊥
n ,E〉F , n = 1, . . . , Ne. (3.3)

The procedure above can be applied to any sparse approximation in a known subspace

VK . Next is an overview of its application to the blocked image approximation produced

in Chapter 2, in a procedure called image folding . The term folding describes the way a

sparse representation of some image blocks, provides space for the coefficients from other

blocks, to be embedded or folded .

3.2 Image Folding

The embedding procedure outlined above can be applied to sparse representations of

images in a procedure known as image folding . A high level overview of this procedure is

given in the next Section.

3.2.1 Overview

Image folding can be described as the process of taking a section of a sparse representation

of an image and then folding it into the remaining section of the same image. Figure 3.1

shows a high level overview of the procedure when applied to the image of Bertrand

Russell.

The procedure starts by taking the original image, shown at the top of Figure 3.1, and

splitting it into into two sections. In this example, it is the top and bottom section of the

original image, shown respectively to the left and right of the second row of Figure 3.1.

It should be noted that this choice is arbitrary, and two other groups of pixels could have

been chosen.

The next step is to generate a sparse approximation of the two sections. The sparse

approximation in Figure 3.1 was realized by applying the DCT transform to 8× 8 blocks
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of pixels in each of the two sections. The coefficients were then quantized until the PSNR

between the original image and the approximation was 45dB. Row three of Figure 3.1

shows the DCT coefficients remaining for each section following the quantization stage.

For demonstration purposes the coefficients have been reshaped into rectangular blocks

the same width as the original image, and rescaled to 8 bit grey intensity levels.

An approximation of the top half of the original image is constructed from its DCT

coefficients. This is referred to as the host image and is shown on the left of the fourth

row of Figure 3.1. The embedded image is shown on the right of the same row. This is

constructed by applying equation (3.2) with the DCT coefficients from the sparse approx-

imation of the bottom section of the original image.

The final procedure is to add, or fold , the embedded image into the host image. The

resulting folded image is shown in the fifth row of Figure 3.1.

Clearly from equation (3.2) the folded image can be split back into the host and em-

bedded images by, applying an orthogonal projection onto the space VK = span{Sk}
K
k=1.

It is also possible to recover the DCT coefficients from the embedded image by applying

equation (3.3). The result of these two operations is shown on the left of the bottom row

of Figure 3.1.

If the orthonormal basis S⊥
n , n = 1, . . . , Ne required in equation (3.3) is not know

then it is not possible to recover the DCT coefficients from the embedded image. This

prevents recovery of the bottom section of the image, shown on the right of the bottom

row of Figure 3.1. In this situation bottom section is secured and the image is said to be

partially encrypted.

The focus of this Chapter is therefore, on preventing the recovery of coefficients from

the embedded section of an image, unless the correct private key is applied. To this

end two security schemes are implemented which restrict access to the orthonormal basis

S⊥
n , n = 1, . . . , Ne.

In a similar way to the approaches described in Section 1.6.2, this folding procedure

can be used to provide partial encryption of digital images. A suitable application of

which would be to provide additional security in an online image distribution service. For

example the procedure could be applied to all digital images available for sale on a public

web site. This would allow customers to get an indication of the images before purchasing,

with the full image only available to those in possession of the private key .

The next Section contains a more detailed description of the above procedure, with

specific application to the blocked image approximations, produced in the last Chapter.

The folding procedure will be applied to an approximation made by choosing matrices
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Figure 3.1: The Figure shows the steps involved in applying the folding procedure to the
image of Bertrand Russell shown at the top. The image is first split into two section
shown on the left and right of the second row. The third row shows the DCT coefficients
required, to produce a sparse approximation of the images on the second row, to a PSNR
of 45dB. The fourth row shows the host and embedded images respectively on the left and
right. The fifth row shows the folded image. The sixth row contains the recovered images
when the correct and incorrect private key is applied, displayed respectively on the left
and the right of that row.
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from the dictionary D = {Sm}
MrMc

m=1 . This is equivalent the approximation shown equation

(2.19), repeated below for the set D,

IKq =

Kq∑

k=1

cq(k)Slq(k), q = 1, . . . , QN . (3.4)

3.2.2 Folding Procedure

The folding procedure begins as follows, H1 = ⌈ K
N2 ⌉ blocks are kept as hosts, where K

is calculated with equation (2.17), and ⌈x⌉ indicates the smallest integer not less than

x. These H1 blocks are now hosts, for embedding the (QN − H1) vectors of coefficients

cq, q = H1 + 1 . . . , QN , of the remaining (QN −H1) equations in (3.4).

The vectors of coefficients cq(k), k = 1, . . . ,Kq, q = H1 + 1 . . . , QN are relabelled

to become eq(n), n = 1, . . . , Ne,q, q = 1 . . . ,H, where each Ne,q = N2 − Kq. If N1 =

(H1N
2−K) is greater than zero, a vector of padding p1 ∈ RN1 will also be included with

the coefficients. The relabelling procedure is performed with the Ŝet(·) operation, defined

in Appendix A.2.4, as shown below

{eq}
H
q=1 = Ŝet([F̂lat({cq}

QN

q=H1+1);p1],ne), (3.5)

where ne(q) = Ne,q, q = 1, . . . ,H1, and the elements of the vector p1 can take on any

value.

These coefficients are embedded in the H1 host blocks, according to the following

procedure:

• Build the embedded matrix Eq ∈ RN×N as

Eq =

Ne∑

n=1

eq(n)S
⊥
n,q, q = 1, . . . ,H1, (3.6)

where S⊥
n,q ∈ RN×N , n = 1, . . . , Ne, is an orthonormal basis for V⊥

q , the orthogonal

complement of VKq = span{Sl(k)}
Kq

k=1 in RN×N . The construction of such a basis is

discussed in Section 3.3.

• For q = 1, . . . ,H1 fold the image by the superposition If1q = IKq +Eq and subsequent

composition If1 = ∪H1

q=1I
f1
q .

The folded image (Figure 3.1 row five) is now ready to be stored and/or transmitted

to a third party for recovery.
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3.2.3 Recovery Procedure

The following discussion requires a procedure for orthonormalizing a set of vectors. This

will be denoted by the operation Ôrth(·), which can be applied to any set of vectors to

construct an orthonormal basis for the space spanned by those vectors.

The procedure for the recovery of the approximation IK = ∪Q
N

q=1I
K
q of the image I from

the folded image If1 is as follows:

• Calculate an orthonormal basis for the space VKq as

{Vk,q}
Kq

k=1 = Ôrth(Slq(k), k = 1, . . . ,Kq), q = 1, . . . ,H1. (3.7)

• Remove the components in V⊥
q from If1q as

ĨKq = P̂VKq
If1q , q = 1, . . . ,H,

where P̂VKq
If1q is the orthogonal projection

P̂VKq
If1q =

Kq∑

k=1

Vk,q〈I
f1
q ,Vk,q〉F , q = 1, . . . ,H1, (3.8)

onto VKq along V⊥
q .

• Recover Ẽq from ĨKq ,

Ẽq = If1q − ĨKq , q = 1, . . . ,H1.

• Recover the coefficients

ẽq(n) = 〈S
⊥
k,q, Ẽq〉F , n = 1, . . . , Ne, q = 1, . . . ,H1. (3.9)

• Flatten the coefficients to get a temporary vector t

t = F̂lat({ẽq}
H1

q=1).

Remove any padding p1 and relabel the recovered coefficients

{c̃q}
QN

q=H1+1 = Ŝet(t(1 : NK),nK)

The vector nK(q−H1) = Kq, q = H1+1, . . . , QN contains the number of coefficients

in the remaining blocks, and NK is the number of hidden coefficients which is equal

to

NK =

QN−(H1+1)∑

q=1

nK(q).
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• The remaining ĨKq , q = (H1 + 1), . . . , QN blocks of the approximated image, are

calculated from the recovered coefficients with equation (3.4). The recovered image

ĨK is constructed as,

ĨK = ∪Q
N

q=1Ĩ
K
q . (3.10)

From the above implementation it is clear that anyone in possession of the method

which generates the matrices S⊥
n,q ∈ RN×N , n = 1, . . . , Ne,q, q = 1, . . . ,H1, spanning the

space V⊥
q , can recover the hidden numbers. To prevent recovery of the image ĨK from

these hidden numbers, the construction of the matrices S⊥
n,q needs to be hidden, except to

those authorized to view the image. Two procedures for achieving this goal are discussed

in the next Section.

3.3 Calculating the vectors spanning the space V
⊥

Two methods for constructing the matrices Sn,q ∈ RN×N , n = 1, . . . , Ne,q spanning the

space V⊥
q , q = 1, . . . ,H1 are described below. Both methods address the security of the

hidden numbers eq by employing secret initialization variables, referred to as a private key ,

to change the vectors spanning the space V⊥
q , q = 1, . . . ,H1. The idea is that each unique

secret key , will generate a unique set of basis vectors for the spaces V⊥
q , q = 1, . . . ,H1.

The security of the system relies on the keyspace being large enough to prevent brute

force attacks on the system, as described in Section 1.6.1.

For simplicity the subscript q is removed from notation in this Section.

3.3.1 The SVD Method

The following describes the procedure for constructing a large matrix F ∈ RN2×K . The

vectors spanning the null space of F will then form the basis for the required space V⊥.

First the N2 elements of each Sl(k) ∈ VK ⊂ RN×N , k = 1, . . . ,K from equation (3.4)

are relabelled to become the columns of a larger matrix F ∈ RN2×K as

F(:, k) = V̂ec(Sk), k = 1, . . . ,K.

A basis s⊥n ∈ RN2

, n = 1, . . . , Ne for the null space of FT ∈ RK×N2

, will by definition

satisfy the relationship

〈F(:, k), s⊥n 〉 = 0, k = 1, . . . ,K, n = 1, . . . , Ne.

This is equivalent to the relation required in equation (3.6), between the matrices Sk and

the matrices S⊥
n , shown below,

〈Sk,S
⊥
n 〉F = 0, k = 1, . . . ,K, n = 1, . . . , Ne.
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Therefore the matrices S⊥
n can be generated by relabelling the vectors s⊥n as shown

below

S⊥
n = M̂at(s⊥n , N,N), n = 1, . . . , Ne.

By calculating the basis for the space V⊥ in this way, a previously proposed method

for securing information in the null space of a transformation, first outlined in [87] and

further discussed in [88], can be applied in a straight forward manner. The method relies

on the instability in the calculation of singular vectors corresponding to multiple singular

values. This instability results in the calculated vectors spanning the null space of a rank

deficient matrix, changing dramatically, if the matrix is initially perturbed by a small

amount.

To illustrate this consider a rank deficient matrix G, whose null space is V⊥. The idea

is to apply a perturbation ǫ to a single element of G, to get a perturbed matrix G̃. The

first step is to assign G̃ = G, and then perturb the matrix as

G̃(nr, nc) = G̃(nr, nc) + ǫ. (3.11)

The orthonormal basis for V⊥ can then be calculated as the singular vectors corresponding

to zero singular values, of the perturbed matrix G̃.

Providing that a suitably sized perturbation has been applied, the vectors calculated

from G̃ will be completely different to the vectors calculated with G, whilst still spanning

the space V⊥.

As a result of the instability in the calculation of the singular vectors, a second per-

turbation added to the matrix G̃ will result in a different set of singular vectors, to those

calculated from G̃. This second perturbation could be applied to further increase the

security of this scheme.

Given that the basis for the null space of the matrix FT will generate a basis for V⊥,

F could be the rank deficient matrix G in the above discussion. Alternatively the matrix

G = FFT , (3.12)

which by definition has the same null space as FT , could be used instead. This matrix has

two advantages over F,

1) The number of positions which the perturbation can be applied to, increases to N4.

2) A square matrix increases the instability in the calculation of the singular vectors,

corresponding to zero singular values.
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The matrices S⊥
n , n = 1, . . . , Ne required in equation (3.6) will therefore be the relabelled

singular vectors corresponding to zero singular values of FFT .

Remark 2. The above discussion can easily be extended to include more than just a single

private perturbation. The secret key would then become a combination of, the number of

perturbations, the location (nr, nc) of each perturbation and the perturbation size ǫ.

Calculation of the Singular Vectors

Experimentally, the calculation of the singular vectors corresponding to the zero singular

values of the matrix G̃, from (3.12), will be performed by the MATLAB, svd() function.

As a result of the singular vectors sensitivity to the algorithm used in their calculation [89],

the results found in Section 3.4 below, are only repeatable on the experimental set up

described in Section 1.7. This is because the source code for MATLAB’s inbuilt routines,

depends on both the computer architecture and the MATLAB version installed.

The following Experiment was designed to check that an image folded on one computer,

can be recovered successfully on other computers, if the same algorithm for calculating

the singular vectors is applied.

The quality of recovery of a folded image will be assessed by the PSNRf . In a similar

way to the PSNRa, introduced in Section 2.5.1, which measures the error introduced by

the approximation, the PSNRf is the global PSNR which measures the error introduced

by the folding procedure. This is calculated between the original image I and the recovered

image ĨK , with ĨK used instead of IK in equation (1.4).

For this Experiment, 3 computers were chosen shown below, which differed in CPU,

operating system, MATLAB version and compiler.

(1) CPU: Intel Core 2 Duo P8600, Operating System: Linux (64-bit) Kernel 3.5.0,

MATLAB version: R2012a, Compiler: gcc 4.7.2.

(2) CPU: AMD Quad-Core Opteron 8380, Operating System: Linux (64-bit) Kernel

2.6.18, MATLAB version: R2012a, Compiler: gcc 4.1.2.

(3) CPU: AMD Dual-Core Athlon 7850, Operating System: Windows 7 Professional,

MATLAB version: R2011b, Compiler: Visual Studio 2010 C++ compiler.

The C++ Singular Value Decomposition (SVD) algorithm from Numerical Recipes

[90], was implemented in a mex file to allow its integration into the MATLAB programming

environment. The routine was compiled on the three separate computers with the different

compilers listed above. Any small difference ǫ to the matrix G, calculated in equation
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Figure 3.2: From top left to the bottom the recovered images of Lena Söderberg, the “rose
made of galaxies” and a plane, all, initially approximated to 45.00dB, folded on computer
(1) and then recovered on computers (2) and (3)

(3.12), will alter the singular vectors corresponding to zero singular values. Therefore this

matrix needs to be identical all machines. To guarantee this, the matrix multiplication

in (3.12), was performed on all computers by a simple loop, in a second C++ mex file.

The rest of the calculations were performed on all computers with standard MATLAB

functions.

This folding and recovery procedure was tested on 3, 8 bit grey scale images. The

first is the classic image of Lena Söderberg shown in the top left image of Figure 3.2. The

second is the “rose made of galaxies” image taken from the astronomical test set, shown

in the top right of Figure 3.2. The final image is of a plane, taken from the natural test,

set shown at the bottom of Figure 3.2.

The column and row matrices Dc,1
8 ∈ RN×Mc and Dr,1

8 ∈ RN×Mr , are both constructed

from the union the RDC dictionary and the Euclidean basis (Dc,1
8 = [Dc,1

1 ,Dc,1
2 ]), described

in Section 2.4. These construct the separable matrices Sm,m = 1, . . . ,McMr, required in

equation (3.4).
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The 3 images were first split into blocks with N = 8, and then by applying OMP2D

to choose atoms from the combined dictionary, approximated to a PSNRa = 45.00dB.

Each image approximation was then folded on computer (1), applying the security

scheme describe above with a perturbation of ǫ = 1× 10−12, added to the matrix G̃. The

folded images were then recovered with the same ǫ, on computers (2) and (3), and the

difference between the PSNRa and the PSNRf calculated for each image.

The results of this Experiment were assessed by examining the additional loss intro-

duced by the folding process. The loss was measured by the percentage difference between

the PSNRa and PSNRf . This value was zero for every image except that of the plane,

where a loss of only 1.57 × 10−14% was introduced into the recovery, made on both com-

puters (2) and (3).

The results of this Experiment show that is is possible to recover an image, folded with

the SVD method on one computer, on different computers if the routine for calculating

the singular vectors, is the same on both machines.

3.3.2 The Random Method

Here the basis for V⊥ is created by projecting a set of Ne pseudorandomly generated

matrices in RN×N onto the space V⊥. The system is secured by creating a new set of Ne

vectors as linear combinations of these random vectors.

The procedure for calculating the basis for V⊥ is as follows [3]:

• Initialize a PRNG with a seed s1, and generate the pseudorandom matrices Zn ∈

RN×N , n = 1, . . . , Ne. With the orthogonal projection P̂VK
operator from (3.8)

compute the matrices, Z⊥
n as

Z⊥
n = Zn − P̂VK

Zn ∈ V
⊥, n = 1, . . . , Ne. (3.13)

• Initialize a second PRNG with a seed s2 and generate a matrix U ∈ RNe×Ne , con-

taining (Ne)
2 pseudorandom numbers. These number act as coefficients for creating

new matrices Y⊥
n ∈ RN×N , n = 1, . . . , Ne, shown below

Y⊥
n =

Ne∑

nr=1

U(nr, n)Z
⊥
nr
, n = 1, . . . , Ne. (3.14)

• Orthonormalize the matrices Y⊥
n to have the orthonormal basis for V⊥

{S⊥
n }

Ne

n=1 = Ôrth(Y⊥
n , n = 1, . . . , Ne) (3.15)

required in equation (3.6).
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If the pseudorandom matrices Zn ∈ RN×N , n = 1, . . . , Ne or U in the above prescrip-

tion, are not known, it will be impossible to construct the vectors S⊥
n . Therefore the vector

of hidden coefficients ẽ cannot be recovered with equation (3.9), thus securing the folding

procedure.

Pseudorandom Number Generation

The pseudorandom matrices above, securing each block of the folded image can be gener-

ated with a Cryptographically Secure Pseudorandom Number Generator (CSPRNG) [53].

A CSPRNG generates a stream of cryptographically secure pseudorandom numbers,

once it has been initialized with a seed, or key . The seed will exactly determine the content

of the stream, therefore anyone in possession of it will be able to generate the exact same

stream of numbers. Each seed should generate a different set of cryptographically secure

pseudorandom numbers, with the total number of seeds denoted by smax.

If smax is small then this security scheme will be susceptible to brute force attacks

(Section 1.6.1), where an attacker simply has to try all smax possible seeds to recover the

folded image. Therefore a suitable CSPRNG for this security scheme is one which has a

large number of initialization seeds smax. An example of this would be the RC4 stream

cipher which has an smax = 2256 [91].

Experimentally this was realized without a CSPRNG, by MATLAB’s default PRNG.

3.4 Finding the Keyspace for the SVD Method

There are 3 parameters to consider when applying perturbations ǫ to the matrix G̃ ∈

RN2×N2

, from equation (3.11):

1) The magnitude ǫ ∈ R of each perturbation.

2) The location within G̃(nr, nc), nr, nc ∈ {1 . . . N
2} of each perturbation.

3) The number of perturbations Nǫ. To make the key unique each of the N4 positions

in G̃ can contain at most 1 perturbation, therefore Nǫ ∈ {1 . . . N
4}.

The combination of all these parameters form the private key which is required to correctly

unfold an image If1 .

The focus of this Section is to find keyspace described in Section 1.6 which will fulfil

the following two requirements:

a) Without the correct key it should not be possible to recover the vectors of hidden

numbers ẽq, q = 1, . . . ,H1 with equation (3.9).

103



Chapter 3 ENCRYPTED IMAGE FOLDING

This will be assessed by examining the error between the hidden and recovered

coefficients over a given image set, applying the following measure

Err =
100

NI

NI∑

n=1

Errn, (3.16)

where NI is the number of images in the set being tested, and

Errn =

H1∑

q=1

(
‖eq − ẽq‖

‖eq‖

)2

(3.17)

measures the error in the coefficients hidden in image n.

b) With the correct key the recovered image ĨK , should not be significantly different

to the approximated image IK . The will be assessed by the δPSNR between the the

original I, and the recovered image ĨK . Given that there is a percentage difference x%

tolerated between the desired PSNR ydB and the actual PSNRa in the approximation

of an image. The convention which will be adopted, is that the δPSNR, defined next,

should also be less than x%. That is for test image n,

δPSNRn = 100
|PSNRa

n − PSNRf
n|

PSNRa
n

< x%, (3.18)

For the Experiments involving more than one image this will be taken in mean value,

δPSNR =
1

NI

NI∑

n=1

δPSNRn < x%, (3.19)

where NI is again the number of images in the set.

3.4.1 Minimum Perturbation ǫmin

The minimum perturbation ǫmin is the minimum value which, when added to any element

of the matrix G̃, in equation (3.11), is guaranteed to change its value. This value will

depend on the largest element in absolute value of G̃, calculated from F in (3.12).

Whilst examining the sparsity produced by OMP2D in the Experiments of Section 2.6,

the largest absolute value of the matrix G was calculated. The result for all Experiments

was, the largest absolute value of G did not exceed 3. The Experiments in this Section

are all calculated in double precision, as defined by the IEEE 754 standard [92]. Therefore

ǫmin is the minimum value which when added to 3 is guaranteed to increase its value,

when the calculations are performed in double precision. This is ǫmin ≈ 4.44 × 10−16.

Remark 3. ǫmin is guaranteed to perturb the matrix G̃. It is not guaranteed to induce

a different set of vectors for the null space, than would be produced by G. This is an

important distinction, and the focus of the investigation in the next Section.
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3.4.2 Experimental Overview

The folding and recovery procedure in Section 3.2 can be applied to any sparse approxi-

mation of any image I, expressed by equation (3.4). For the Experiments in this Section,

the images I have been restricted to be the 55 astronomical images, contained in both

the training and test sets introduced in Chapter 2. The algorithm producing the sparse

approximations, is fixed to be OMP2D, and the column and row dictionaries are also

fixed. These are the matrices Dc,1
8 and Dr,1

8 who’s columns are the union of the RDC and

Euclidean basis from the previous Experiment.

For all Experiments the sparse approximations of each 55 images in the test set is folded

with the SVD procedure outlined in Section 3.2.2. Two simulations are then performed

to examine incorrect and correct recovery, from the folding procedure. The first aims

to simulate a third party attempting to recover the hidden portion of the image, without

knowledge of the perturbation applied at the folding stage. The success of this is measured

by the resulting Err. The second is to simulate the recovery obtained by a third party

who knows the value of the perturbation. The quality of this recovery is examined by the

PSNRa.

An additional third simulation is performed in Experiment 1, which is described in

that Section.

The first three Experiments investigate the keyspace parameters, 1) − 3) above, with

a fixed block size N = 8. A PSNRa = 45 ± x%dB, such that x = 1 × 10−2, was chosen

because it results in high quality approximations. The small block size of N = 8 was

chosen to reduce the processing time, and increase the number of Experiments which

could realistically be performed. The final Experiment then examined the effect on this

keyspace of changing the values of N and the PSNRa.

The Experiments in this Section are again run inside the MATLAB programming

environment with the same configuration described in Section 1.7. The Ôrth(·) operation

involved in equation (3.7) is performed by the MATLAB qr() routine, which calculates

the orthogonal-triangular decomposition of matrix. The singular vectors corresponding

to zero singular values in Section 3.3.1, are left singular vectors corresponding to zero

singular values returned from the MATLAB svd() routine.

3.4.3 Experiment 1 - Range of Perturbations

The range of perturbations which can be applied to the matrices G̃ while fulfilling require-

ments a) and b) above are examined.
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Figure 3.3: Err over the astronomical image set against the value of ǫ in equation (3.12),
applied at the folding stage. The hidden coefficients are securely hidden by adding the
perturbation ǫ to the first element of G̃ in (3.12) and then recovered without applying a
perturbation. A single standard deviation from this mean is shown above and below the
Err by the error bars. The dashes ⊳ indicate where perturbations smaller than ǫmin occur.

The Experiments described in this Section were performed with a single perturbation

ǫ added to element G̃(1, 1), when folding each image in the test set.

To examine the effect of perturbations smaller than ǫmin ≈ 4.44 × 10−16, the first

Experiment will apply a minimum perturbation of 10−20. The maximum perturbation size

for this Experiment will be 10 (chosen as it is far in excess of what could be considered

to be a perturbation of the G̃). The set E of perturbations chosen for Experiment 1 is

therefore

E = {10i}1i=−20.

In addition to the two standard simulations designed to investigate incorrect and cor-

rect recovery from the folding procedure, an additional simulation is performed. This is

to simulate a third party trying to guess the correct perturbation, by examining how close

their guess has to be.

Simulation 1

Simulation of a third party attempting to recover the hidden portion of an image, without

knowledge of the private key . For each ǫ ∈ E , added with equation (3.11), the images were

folded . The perturbation, applied with equation (3.11) at the recovery stage, is denoted

by ǫR, and for this Experiment is ǫR = 0.

Figure 3.3 shows the Err in the recovery of the hidden coefficients, for each ǫ ∈ E

applied at the folding stage. For ǫ > ǫmin, displayed on Figure 3.3 to the right of the ⊳

symbol, the Err > 120%.
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An Err greater than 100% for all ǫ > ǫmin indicates that, as expected the instability

in the calculation of the vectors spanning the space V⊥, is sensitive to all perturbations

greater than ǫmin. Thus under these test conditions, any perturbation greater than ǫmin

can prevent unauthorized access to the hidden coefficients e.

Figure 3.3 shows that for ǫ < 10−18 the Err < 10−12%. Thus ǫ < 10−18 applied

at the folding stage, does not prevent a third party, without knowledge of the correct

perturbation, from recovering the hidden coefficients.

This simulation indicates that, all ǫ > ǫmin in equation (3.11), fulfil requirement a)

for the astronomical image set. Because of this and because ǫ ≤ 10−18 did not prevent

recovery of the hidden coefficients ẽ, the set of test perturbations was restricted further to

E1 = {10
i}1i=−16. (3.20)

The main focus now being on perturbations greater than 10−15.

Remark 4. Notice that in Figure 3.3 there are three data points to the left of the ⊳ symbol,

where the Err > 120%. This indicates that correct recovery of the hidden coefficients ẽ,

is also prevented by perturbations less than ǫmin. This is because the maximum value of

any element of the matrices G can be smaller than 3, reducing the size of the minimum

perturbation ǫmin, which is guaranteed to perturb the matrix.

Simulation 2

To examine which perturbation sizes in E fulfil requirement b), all the images were folded

and recovered with the same perturbation ǫ ∈ E1, applied to G̃(1, 1) in equation (3.12).

The results plotted in Figure 3.4 show that for perturbations ǫ = 10i, i = −16, . . . ,−12,

the recovered images ĨK are identical to the approximated images IK . In other words the

approximated image IK is not numerically altered by folding and recovery procedure.

All perturbations ǫ > 10−11 introduce error to ĨK , which increases with the perturba-

tion size ǫ. This is shown in Figure 3.4 by the δPSNR. More importantly for all ǫ ≤ 10−3

the δPSNR < 2× 10−4%, less than the maximum of x = 1× 10−2%. Additionally at this

level their is no visual difference between the approximated image IK and the recovered

image ĨK . Therefore the results of this simulation indicate that ǫ ≤ 10−3 in equation

(3.12) is sufficient to fulfil requirement b) for the astronomical image set.

Simulation 3

Simulation 1 demonstrated that any perturbation ǫ ≥ ǫmin applied at the folding stage,

can prevent a third party accessing the vectors of hidden coefficients e, if ǫR = 0 at the
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Figure 3.4: δPSNR over the astronomical image set against the value of ǫ in equation
(3.12), applied at the folding and recovery stage. The images are folded and recovered
by adding ǫ to element G̃(1, 1) in (3.12). ǫ < 10−11 is not shown on the Figure because
this resulted in a δPSNR = 0. A single standard deviation is shown above and below
the δPSNR by the error bars, where the end of the error bar is not shown, if this single
standard deviation below the mean is less than or equal to zero.

recovery stage. The aim of this simulation is to determine if a difference of ǫmin, between

the perturbation applied at the folding and recovery stages, is sufficient to prevent recovery

of the hidden coefficients.

To examine this for each ǫ ∈ E1 from (3.20), the images were folded with ǫ, and then

recovered with ǫR = ǫ+ ǫmin.

For each ǫ ∈ E1, the resulting Err over the image set was greater than 123.42% with

a standard deviation less than 17.62%. This indicates that for all ǫ ∈ E1, a perturbation

differing by as little as ǫmin from the correct one, can prevent correct recovery of the

hidden coefficients.

Discussion

The results of simulation 1 in Figure 3.3 show, requirement a) is satisfied by all discrete

perturbations

E1 = {10
i}1i=−16. (3.21)

That is, any ǫ ∈ E1 applied in equation (3.12) when the images were folded , prevented

recovery of the hidden coefficients ẽq, q = 1, . . . , QN , when ǫR = 0.

Further to this, simulation 3 showed this result to hold, even when the recovery pertur-

bation was only ǫmin different, to the perturbation applied at the folding stage. To verify

this result, in the remaining Experiments all simulations designed to verify requirement

a), will apply a perturbation of ǫR = ǫ+ ǫmin, when performing the recovery.

The results of simulation 2 in Figure 3.4 show requirement b) is satisfied by ǫ =
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10i, i = −16, . . . ,−3. Therefore a set of perturbations E2, fulfilling requirements a) and b)

can be proposed. For the astronomical images processed in blocks with N = 8, initially

approximated to a PSNRa = 45± 4.5× 10−3dB, this set is,

E2 = {10
i}−3

i=−16. (3.22)

3.4.4 Experiment 2 - Location of ǫ

The effect of changing the location of the perturbation within the matrix G̃, on require-

ments a) and b) above, is investigated.

In the preceding Experiment a single perturbation was added to G̃(1, 1). In this

Experiment the perturbation will be applied to different locations within G̃. The first two

locations are fixed to be the middle G̃(4, 8), and the end G̃(8, 8), of the matrix. The other

location G̃(r1r , r
1
c ), will be determined for each block by pseudorandom numbers drawn

from MATLAB’s PRNG.

The additional locations of the middle and the end are to investigate whether any

particular fixed location in G̃, makes a difference to the instability, in the calculation of

the singular vectors. The random location, is to investigate the effect of applying the

perturbation, to many different locations within G̃.

The range of perturbations tested is again E1 from equation (3.20).

Simulation 1

For each ǫ ∈ E1, the astronomical images were folded with ǫ, and recovered with ǫR =

ǫ+ ǫmin, both applied to G̃(4, 4). This was then repeated, first applying the perturbation

to a random location in each block, and then to the fixed location G̃(4, 8). The Err was

then compared with the results from Experiment 1, Simulation 3, where the perturbation

was applied to G̃(1, 1).

Figure 3.5 shows the Err for each location against each ǫ ∈ E1, applied when folding

the images. In Figure 3.5 none of the chosen positions, result in a greater Err for all the

perturbations ǫ tested. Additionally the result of applying the perturbation to a random

location in each block, had the most consistent Err for all ǫ ∈ E1.

Simulation 2

The procedure for this simulation is the same as in simulation 1, except the images are

recovered with ǫR = ǫ instead of ǫR = ǫ+ ǫmin.
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Figure 3.5: Err over the astronomical image set, against the value of ǫ applied at the
folding stage, for four different locations within G̃. The coefficients are securely hidden
by perturbing G̃ by ǫ, and then recovered with ǫ + ǫmin. Each line shows the Err when
adding the perturbation to a different location within G̃. There are three fixed locations,
G̃(1, 1), G̃(4, 8), G̃(8, 8) and a location which is randomly assigned for each G̃.

The results in Figure 3.6 show the δPSNR for each ǫ ∈ E1 applied at the folding and

recovery stages. Figure 3.6 shows that the δPSNR is not significantly effected by the

locations chosen for this Experiment. Numerically the standard deviation between the

four locations is less than 10−5% for all ǫ < 10−3.

Discussion

The results of simulation 1 and 2 are respectively shown in Figure 3.5 and Figure 3.6.

They show that over the astronomical test set, requirements a) and b) are satisfied, by

the two fixed test locations.

An additional location within G̃, was determined for each block by numbers drawn from

a PRNG, initialized with a seed. This pseudorandom location also satisfied requirements

a) and b). If this seed is kept secret, it could be incorporated as an additional part of

the private key . Because of this possibility, in the remaining experiments, the location of

the perturbation is chosen randomly. This is to further verify that changing the location

fulfils requirements a) and b).

3.4.5 Experiment 3 - More than One ǫ

In this experiment an extra perturbation is applied to the matrix G̃, to see the effect on

requirements a) and b). Equation (3.12) is changed to accommodate two perturbations ǫ1

and ǫ2 as shown below

G̃(r1r , r
1
c ) = G̃(r1r , r

1
c )) + ǫ1,

G̃(r2r , r
2
c ) = G̃(r2r , r

2
c ) + ǫ2,

(3.23)
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Figure 3.6: δPSNR over the astronomical image set, against the value of ǫ applied at the
folding stage. The δPSNR is shown for four different locations within G̃ from equation
(3.12). For each ǫ the images are folded and expanded, with the resulting δPSNR shown
on the Figure. Each line shows the δPSNR when adding the perturbation to a different
location within G̃. There are three fixed locations, G̃(1, 1), G̃(4, 8), G̃(8, 8) and a location
which is randomly assigned for each G̃.

where the row column index pairs (r1r , r
1
c ) and (r2r , r

2
c ) are different.

The first simulation examines the effect of; a)recovering the images with a single in-

correct perturbation; and b)recovering the images with two incorrect perturbations. The

second simulation examines the error introduced into the recovered image ĨK , by this sec-

ond perturbation, when the same perturbations are applied, at the folding and recovery

stages.

Simulation 1

For each combination of ǫ1 ∈ E1 and ǫ2 ∈ E1 the astronomical images were folded . The

perturbations ǫ1 and ǫ2 were applied to the random locations within the matrix G̃ from

equation (3.23).

The images were then recovered by applying ǫ1R = ǫ1 and ǫ2R = ǫ2 + ǫmin and the Err

measured.

The result for all combinations of perturbations ǫ1 and ǫ2 was, the resulting Err did

not fall below 134.22%.

Next the images were recovered, applying ǫ1R = ǫ1 + ǫmin and ǫ2R = ǫ2 + ǫmin. For all

combinations of perturbations ǫ1 and ǫ2 the resulting Err did not fall below 134.21%.

Therefore the introduction of the extra perturbation ǫ2 ∈ E1 did not reduce the security

of the hidden numbers, under these test conditions.
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Simulation 2

The images were folded with the same procedure as simulation 1. They were then recovered

by applying the same perturbations added at the folding stage, ǫ1R = ǫ1 and ǫ2R = ǫ2.

The results showed that the δPSNR is dominated by the largest perturbation applied

to G̃. Two examples of this are shown in Figure 3.7, the top half of the Figure showing

the result for ǫ2 = 10−8 and the bottom half showing the result for ǫ2 = 10−3.

The top half of Figure 3.7 shows the δPSNR against each ǫ1 ∈ E1 when ǫ2 = 10−8. The

δPSNR from Experiment 2, Simulation 1 for a single perturbation of ǫ = 10−8 is included

in the Figure. This was a δPSNR = 1.24×10−10 and is indicated by the dashed line in the

top of the Figure. As can be seen in the top of Figure 3.7 the δPSNR for the combination

of all ǫ1 ≤ 10−8 and ǫ2 = 10−8 is of the same order as that for a single perturbation of

10−8. The bottom half of the figure shows the same result for ǫ2 = 10−3.

Discussion

Simulation 1 showed that the hidden coefficients e, cannot be recovered when an extra

perturbation ǫ2 ∈ E1 is applied at the folding stage. This is if either ǫ1R or ǫ2R, differ

by ǫmin from ǫ1 or ǫ2, applied when the images are folded . Therefore applying a second

perturbation fulfils requirement a).

The second simulation again folded and recovered the images with the same perturba-

tions, this time applying two, ǫ1 and ǫ2. The result being, the numerical error introduced

into the recovered image ĨK , was of the same order, as the error introduced by the largest

single perturbation. This implies that applying more perturbations, may keep the error

below that introduced by the largest perturbation.

3.4.6 Experiment 4 - Effect of the PSNRa on ǫ

The effect of changing the PSNRa of the approximated image IK before it is folded on the

range of perturbations fulfilling requirements a) and b) above is examined.

All the images in the preceding Experiments were approximated to a PSNRa = 45 ±

x%dB, with x = 1 × 10−2, resulting in approximations which are visibly identical to the

original. In this Experiment the images were approximated in blocks with N = 8, to two

additional quality levels, PSNRa = 55 ± x%dB and PSNRa = 65 ± x%dB, again with

x = 1 × 10−2. This is to investigate the effect of the folding and recovery procedure on

higher quality approximations.

The images were then folded with two perturbations ǫ1 and ǫ2 applied to two different
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Figure 3.7: δPSNR over the astronomical image set against the value of ǫ1 applied at the
folding stage. The top half of the figure displays the δPSNR for ǫ2 = 10−8. The dashed
line shows the value of the δPSNR for a single perturbation of ǫ = 10−8, applied to a
random location G̃. The bottom half shows the same result for ǫ2 = 10−3.

random locations within G̃, shown in equation (3.23). The first perturbation was fixed as

ǫ1 = ǫmin, and the second ǫ2 ∈ E1.

Simulation 1

Each folded image was recovered with the correct value for the first perturbation ǫ1R = ǫmin,

and the incorrect value for the second perturbation, ǫ2R = ǫ2 + ǫmin.

The result for the additional two values of PSNRa, and all perturbation sizes ǫ2 ∈ E1

applied at the folding stage, was an Err of at least 134% for every image.

Simulation 2

Each folded image was recovered with the correct value for the first and second perturba-

tions, that is ǫ1R = ǫmin and the ǫ2R = ǫ2.

The resulting δPSNR for the two levels of PSNRa tested, did not exceed x%, for all

perturbation sizes ǫ2 ∈ E1 applied at the folding stage.

Discussion

The PSNRa in the initial approximation is increased to both 55± x%dB and 65± x%dB,

before the folding procedure is applied. This increase in approximation quality is shown

experimentally, not to affect on the range of perturbations E1, which can be applied in

equation (3.23).
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3.4.7 Experiment 5 - Effect of the Block Size N on ǫ

The effect that the size of the square N×N blocks which the original image is split into, on

requirements a) and b) is investigated. Two additional block sizes of N = 16 and N = 24

are tested, and the results compared with those for N = 8, from Experiment 3.4.5.

Applying the same experimental set up described in Experiment 3.4.6, the images were

first split into square blocks of either 16 × 16 and 24 × 24, before being approximated to

a fixed PSNRa = 45± 4.5× 10−2%dB.

Simulation 1

Each folded image was recovered with the correct value for the first perturbation ǫ1R = ǫmin,

and the incorrect value for the second perturbation, ǫ2R = ǫ2 + ǫmin.

The result for the larger block sizes with N = 16 and N = 24 was, the Err did not fall

below that of blocks with N = 8.

Simulation 2

Each folded image was recovered with the correct value for the first and second perturba-

tions, that is ǫ1R = ǫmin and the ǫ2R = ǫ2.

The resulting δPSNR did not exceed x% for the two larger block sizes, N = 16 and

N = 24.

Discussion

The size of the partitions which the image is processed in was increased from N = 8 to

N = 16, or N = 24. The results of simulation 1 and 2, show that this increase still fulfils

requirements a) and b), for the range of perturbations in equation (3.22).

3.4.8 The Keyspace for the SVD Method

Before discussing the size of the keyspace, a quick review of the main results of the preced-

ing Experiments is given below, in Experiment order. The Experiments undertaken above

were performed on astronomical images, initially approximated by applying OMP2D, to

select vectors from the column and row dictionaries Dc,1
8 and Dr,1

8 . The dictionary for all

Experiments was constructed as the union of the RDC and Euclidean basis. The results

below apply to Experiments undertaken under the above conditions:

• With a fixed block size N = 8, approximating all images to a PSNRa = 45 ± 4.5 ×

10−2%dB before applying the folding procedure:
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1) The range of perturbations, which both protect the vectors of hidden coefficients

eq, q = 1, . . . , QN , and did not introduce an unacceptable level of distortion,

into the recovered image ĨK , are

E1 = {10
x}−3

x=−16.

The set E1 was determined for a single perturbation ǫ, applied to a fixed location

within each matrix G̃, as shown in equation (3.22).

These perturbations also prevented recovery of the hidden coefficients e, when

the recovery was performed with an incorrect perturbation. This was realized

experimentally by a perturbation ǫR at the recovery stage, differing by ǫmin to

that used in the folding stage.

2) Requirements a) and b) were satisfied, when the perturbation in E1 were applied

to two additional fixed locations, and a pseudorandom location in G̃.

3) Requirements a) and b) were again satisfied for two perturbations from E1.

Realized experimentally by applying all combinations of two perturbations from

E1, to two different pseudorandom locations within the matrix G̃. The second

perturbation was found not to increase the δPSNR of the recovered image,

beyond that of a single perturbation of the same size.

• Applying two perturbations to pseudorandom locations within the matrix G̃, the

first being fixed as ǫmin, and the second taking on all the values from E1:

4) With a fixed block size N = 8, increasing in the approximation quality to

PSNRa = 55± 5.5× 10−2%dB and PSNRa = 65± 6.5× 10−2%dB, the folding

and recovery procedure still fulfilled requirements a) and b).

5) With a fixed PSNRa = 45±4.5×10−2%dB, increasing the block size to N = 16

and N = 24, the folding and recovery procedure again fulfilled requirements a)

and b).

1) # of perturbation sizes #pert

As mentioned earlier perturbations less than ǫmin are not guaranteed to perturb the matrix

G̃. Therefore only perturbations greater than or equal to this amount will be considered

in this discussion.

The conclusions below assume that the results for the discrete set E1 hold for all ǫmin

precision perturbations between ǫmin and 10−3. This assumption results in a number of

unique perturbation sizes #pert, of #pert =
10−3

ǫmin
≈ 2.25 × 1012.
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A difference of ǫmin between the perturbation used to fold an image, and the pertur-

bation used recover the image fulfilled requirement b). Therefore for this discussion it is

assumed that each of the #pert perturbations, result in a different folded image If1 .

2) Location of the perturbation

First assume a single perturbation is applied to the same fixed location within each of the

H1 matrices G̃, whereH1 is the number of folded image blocks If1q , q = 1, . . . , QN . Because

the location is fixed, the total number of permutations of location over the H1 blocks, is

only N4, the same number of positions in a single matrix G̃. Alternatively if the location

with in each block is allowed to be different, the result would be, (N4)H1 permutations

of the location, over all the H1 image blocks. For this to be applied in practice, the H1

locations used at the folding stage, would have to be be passed to the recipient of the

folded image, to allow it to be recovered.

An alternative to this, applied in Experiment 3.4.4, is to generate the locations within

each G̃ with a PRNG, initialized with a known seed. This would require only one pa-

rameter, the seed, to be passed to the recipient of the folded image. The total number of

permutations over all image blocks would then be, the minimum of (N4)H1 and the total

number of seeds smax, which can initialize the PRNG.

The pseudorandom numbers could be generated by the RC4 stream cipher which has

an smax = 2256 ≈ 1.16 × 1077. In this case any image with H1 ≥ ⌈
256

log2(N
4)
⌉, has smax

possible combinations of location, over the H1 image blocks.

3) Number of perturbations Nǫ

If the results of Experiment 3.4.5 hold for more perturbations, then a fixed combination

of Nǫ perturbations, Nǫ < N4, could be applied. The SVD method only fulfils require-

ment a) and b) for perturbations smaller than 10−3. Therefore to prevent the situation

where combinations of two or more perturbations exceed this value, a maximum of one

perturbation can be applied to each location.

If the perturbation applied to each of the Nǫ locations is allowed to be different, the

order the perturbations are applied to the Nǫ locations, has to be the same at both

the folding and recovery stage. Because the order is important, this is the number of

permutations

P (N4, Nǫ) =
N4!

(N4 −Nǫ)
. (3.24)

If the same perturbation is applied to each of the Nǫ locations, the order the pertur-

bations are applied to the Nǫ locations does not make any difference. Because the order
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is not important this is the number of combinations

C(N4, Nǫ) =
P (N4, Nǫ)

Nǫ!
. (3.25)

From the above it is clear that applying a different perturbation to each location

results in a larger Nǫ shown in equation (3.24). Therefore the number of permutations for

Nǫ = 2, 3 and 4 different perturbations, is shown in the against the block size N in the

Table below.

N 8 16 24

P (N4, 2) 1.67 × 107 4.29 × 109 1.10 × 1011

P (N4, 3) 6.87 × 1010 2.81 × 1014 3.65 × 1016

P (N4, 4) 2.81 × 1014 1.84 × 1019 1.21 × 1022

Choice of Private Key

Under the assumption that each perturbation size and location combination result in a

different folded image, the private key can be, either:

1) A single perturbation. In this case the only two parameters which can be changed,

are the perturbation size and its location. Therefore the choice for a private key can

be, either one or the other, or a combination of the two.

The number of locations resulting from choosing a pseudorandom location within

each block depends on H1. In extreme cases such as H1 = 1, this results in only N4

locations. Therefore the location on its own is not suitable as a private key . The

location could however be applied in combination with the size of the perturbation.

This would increase the keyspace, from the #pert to a minimum of N4#pert, show

below for the block sizes N = 8, 16 and 24.

N 8 16 24

keyspace 9.22 × 1015 1.48 × 1017 7.47 × 1017

2) Nǫ perturbations. Combining the perturbation size with location increases the num-

ber of permutations, from those shown in equation (3.24). Each location Nǫ can have

all the #pert perturbations applied to it, however, once a perturbation has been ap-

plied the number of locations is decreased by one. Therefore for l perturbations the

size of the keyspace is calculated from

keyspace =
(N4)!

(N4 −Nǫ)!
(#pert)

Nǫ . (3.26)
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N 8 16 24

Nǫ = 2 8.51 × 1031 2.18 × 1034 5.58 × 1035

Nǫ = 3 7.85 × 1047 3.21 × 1051 4.17 × 1053

Nǫ = 4 7.23 × 1063 4.74 × 1068 3.12 × 1071

...
...

...
...

Nǫ = 10 4.40 × 10159 4.90 × 10171 5.42 × 10178

Table 3.1: The size of the keyspace for the SVD method is shown against the number of
perturbations Nǫ = 2, 3, 4 and 10, for each block size N = 8, 16 and 24.

The keyspace is shown in Table 3.1 against the number of perturbations l = 2, 3, 4

and 10, for each block size N = 8, 16 and 24.

As shown in Table 3.1 the size of the keyspace rapidly increases with the number of

perturbations Nǫ. The result for Nǫ = 10 is shown to illustrate that, even with the

smallest block size N = 8, this system can have a keyspace more than double the

smax of the RC4 stream cipher.

The keysize for the Nǫ perturbations is much larger than for a single perturbation.

Therefore the combinations of Nǫ different perturbations will be the private key for the

SVD method.

3.5 Examining the Random Method

Unlike the SVD security scheme, this method has only 2 possible parameters, both of which

are used as the seeds used for initializing a CSPRNG. The first parameter s1, initializes a

CSPRNG which generates the matrices Zn ∈ RN×N , n = 1, . . . , Ne, required in equation

(3.13). The second parameter s2, initializes a second CSPRNG which produces the matrix

of coefficients U, required in equation (3.14)

The Experiments in this Section again apply the folding and recovery procedure de-

scribed in Section 3.2, to sparse approximations of the 55 astronomical images. The

sparse approximations are calculated with OMP2D, by selecting vectors from the column

and row dictionaries, Dc,1
8 and Dr,1

8 . The approximations are therefore identical to those

from Section 3.4. The only difference in this Experiment, is the application of the ran-

dom security scheme to prevent unauthorized access, to the hidden vectors of coefficients

eq, q = 1, . . . , QN .

The PRNG’s were each initialized with 10 different seeds. The different seeds, s1 and
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s2, were stored respectively in the vectors s1 and s2. The folded images were secured by the

random method with each combination of seeds s1(i), i = 1, . . . , 10 and s2(l), l = 1, . . . , 10,

totalling 100 different combinations.

In a similar way to the Experiments in Section 3.4, two simulations were performed to

examine incorrect and correct recovery, from the folding procedure. The first simulates a

third party attempting to recover the hidden portion of the image, without knowledge of

the correct seed. This was realized by examining the Err at the recovery stage, for each of

the 100 combination of i and l. The procedure was to apply the correct value of the first

seed s1 = s2(i), and the incorrect value of the second seed s2 = s2(l) + 1.

The second simulates the recovery obtained by a third party who knows the correct

recovery seed. This is realized by examining the PSNRa at the recovery stage, for each of

the 100 combination of i and l. The procedure this time was to apply the correct value of

both the first and second seed, that is s1 = s2(i), and s2 = s2(l).

The first Experiment in this Section examines requirements a) and b), described in

Section 3.4, with a fixed block size N = 8, and PSNRa = 45 ± 4.5 × 10−3%dB. The final

two Experiments examine the effect of changing the values of N , and the PSNRa on these

requirements.

The Experiments in this Section are again run inside the MATLAB programming

environment with the same configuration described in Section 1.7. All pseudorandom

numbers will be generated by MATLAB’s default Mersenne twister [73] PRNG, simulating

a CSPRNG.

3.5.1 Experiment 1 - Requirements a) and b)

The effect of the seeds s1 and s2, which initialize the PRNG, on requirements a) and b) is

investigated. Each image is initially partitioned into blocks with N = 8 and approximated

to a PSNRa = 45± 4.5× 10−3%dB.

The results given in the left half of the top row of Table 3.2, show the average Err for

all combinations of seeds was 140.00%. More importantly the standard deviation between

the Err resulting from all combinations of seeds in s1 and s2, was only 6.66×10−2%. This

Indicates that the actual value of the seed may have very little influence on the security

of the method.

The results given in the right half of the top row of Table 3.2, show an average δPSNR

of 2.46 × 10−14 in the recovery. This level of distortion, nearly the same order as the

machines precision, is negligible.
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Err δPSNR

PSNRa x̄ s x̄ s

45 140.00% 6.66 × 10−2% 2.46 × 10−14 1.42 × 10−14

55 139.64% 8.81 × 10−2% 0 0

65 138.95% 1.39 × 10−1% 0 0

Table 3.2: Err and δPSNR against each approximation PSNRa. x̄ is the mean over the 100
different combinations of the 10 seeds in both s1 and s2, and s is the standard deviation
of the Err or δPSNR between the seed combinations.

3.5.2 Experiment 2 - Effect of the PSNRa

The effect of the PSNRa of the approximated image IK , on requirements a) and b) above

is examined. In this Experiment the images are approximated in blocks with N = 8, to

two quality levels of PSNRa = 55± 5.5× 10−3%dB and PSNRa = 65± 6.5× 10−3%dB.

The results are shown in the bottom 2 rows of Table 3.2, for these two additional quality

levels. The average Err shown in the first column of Table 3.2 decreases marginally when

the PSNRa is increased. However this value is still far in excess of 100%, indicating a

failure to recover the hidden coefficients e.

The standard deviation between the Err for each of the 100 seed pairs is shown in the

second column of Table 3.2. For all quality levels it is below 2× 10−2, indicating that the

seed has very little influence on the security of the method, for all tested levels of PSNRa.

For both additional levels of PSNRa, when the correct seed s2 is applied at the recovery

stage, the recovered images ĨK , were exactly the same as the original approximated ones,

IK .

3.5.3 Experiment 3 - Effect of the Block Size N

The effect of increasing the block size N which the images are processed in, on the range

of perturbations fulfilling requirements a) and b) above, is examined. In this Experiment

the images are first partitioned into blocks with N = 16 and 24, and then approximated

to a PSNRa = 45± 4.5× 10−3%dB.

The results are shown in the bottom 2 rows of Table 3.3, for these two larger block

sizes. The average Err shown in the first column of Table 3.2 increases marginally when

the block size N , is increased. Again this value is still far in excess of 100%, indicating a

failure to recover the hidden coefficients e. The standard deviation between the Err for

each of the 100 seed pairs shown in the second column of Table 3.3. It is below 7× 10−3
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Err δPSNR

N x̄ s x̄ s

8 140.00% 6.66 × 10−2% 2.46 × 10−14 1.42× 10−14

16 141.09% 5.09 × 10−2% 0 0

24 141.24% 4.77 × 10−2% 1.61 × 10−15 3.39× 10−15

Table 3.3: Err and δPSNR for each block size N . x̄ is the mean over the 100 different
combinations of the 10 seeds in both s1 and s2, and s is the standard deviation of the Err
or δPSNR between the seed combinations.

for all block sizes N , indicating that the actual value of the seed has little influence on the

security of the method, for these larger blocks.

The results with the correct seed s2 at the recovery stage, are shown in columns 3 and

4 of Table 3.3. The results show that for the larger block sizes N = 16 and 24, the images

ĨK were recovered with less distortion than the smaller block size N = 8. However the

level of distortion, close to machine precision, is again negligible.

3.5.4 Discussion

Images were initially split into blocks with N = 8, and approximated to a PSNRa =

45 ± 4.5 × 10−3%dB. For this block size and quality level, requirements a) and b) were

satisfied, for the 100 different combinations of seeds which initialized the PRNG. This

result was not affected by increasing the block size to N = 16 and 24. It was also not

affected by with N = 8 when increasing the PSNRa to either PSNRa = 55±5.5×10−3%dB

or PSNRa = 65 ± 6.5 × 10−3%dB. That is requirements a) and b) were still satisfied, for

N = 16 and 24, and PSNRa = 55± 5.5× 10−3%dB or PSNRa = 65± 6.5× 10−3%dB.

The standard deviation between the Err for each seed combination was always less than

2× 10−1. The average Err over all seed combinations was in also in excess of 138%. That

is for all block sizes N = 8, 16 and 24, and all quality levels PSNRa = 45±4.5×10−3%dB,

55± 5.5× 10−3% and 65± 6.5× 10−3%dB. Both these results imply that the actual value

of the seed does not influence the security of the random method.

The average δPSNR over all seed combinations was less than 1 × 10−13%. This is

for all block sizes N = 8, 16 and 24, and quality levels PSNRa = 45 ± 4.5 × 10−3%dB,

55± 5.5× 10−3% and 65± 6.5× 10−3%dB. This level of distortion, close the the machines

precision is much smaller than x%, required to fulfil requirement a).
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3.5.5 The Keysize for the Random Method

As previously mentioned, the random method requires only two parameters, both of which

are seeds for initializing a CSPRNG. Therefore the combination of the two seeds, initial-

izing the CSPRNG’s, will be the private key for the random method. The maximum

number of seeds are s1max and s2max, respectively for initializing the CSPRNG’s. Therefore

the number of permutations and hence the keysize for the random method is s1maxs
2
max.

To try and increase the security a different CSPRNG could be applied to generate the

matrices Z and U. If instead of this the RC4 stream cipher is applied to generate both

matrices or alternatively two generators with the same smax = 2256 are used, the keysize

for the random method would be 2512 ≈ 1.34154.

3.6 Comparison of the Random and SVD Security Schemes

Procedure

The SVD security scheme relies on the instability in the calculation of singular vectors of

a rank deficient matrix, corresponding to the zero singular values.

The random security scheme relies entirely on the security of a CSPRNG. This could

be an advantage because the specific CSPRNG can easily be changed, for either one with

a larger smax, or one providing a higher level of security. The example CSPRNG given in

the discussion above, was the RC4 stream cipher. Unlike the SVD method, which is based

on a recently introduced idea [87], both stream ciphers and CSPRNG have been widely

studied, in the field of cryptography [53,93].

Keysize

The keysize for the SVD method increases with the size of the blocks N , and the number of

perturbations Nǫ, applied to each block. Only Nǫ = 2 perturbations were tested and found

to fulfil requirements a) and b), in the Experiments of Section 3.4. Therefore the adopted

keysize for the SVD method can only be calculated based on Nǫ = 2. The resulting keysize

is shown in the first row of Table 3.1.

In contrast to the SVD method, the keysize for the random method relies entirely on

the value smax, for a CSPRNG.

To compare the keysize for the two methods consider the following example, again

involving the RC4 stream cipher. As discussed in Section 3.5.5 this has a keyspace of

2512 ≈ 1.34154. This is much larger than the keysize for the SVD method, when Nǫ = 2.
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Now consider the possibility of Nǫ > 2 perturbations also fulfilling requirements a) and

b). For this example with only Nǫ = 10, the keysize for the SVD scheme would be greater

than the random method. The keysize for the SVD scheme for Nǫ = 10 is shown in the

bottom of Table 3.1.

Effect on Recovery

Both the SVD and Random methods, prevented access to the hidden vectors eq, q =

1, . . . , QN when recovery is attempted with the incorrect private key .

The images were recovered, without an unacceptable level of distortion, by both SVD

and Random methods and the correct private key . However the level of distortion intro-

duced in to the recovered image ĨK , by the SVD method, was always larger than that

introduced by the random method. This level of distortion also increased with the size of

the perturbation.

3.7 Conclusions

Two methods have been proposed for securing information in a sparse approximation of

an image. The SVD method relies on the instability in the calculation of singular vectors,

corresponding to multiple zero singular values. The random method relies on a random

transformation and the security of a CSPRNG.

The procedure called image folding , utilizes a private key to control access to the

secured information. A range of private keys were proposed and tested under two simple

criteria. The first, secured information should not be recoverable by someone who is not in

possession of the correct private key . The second, when the correct private key is applied,

the recovered image ĨK , should not be visibly different to the approximated image IK .

Both methods satisfied criteria b). However the amount of distortion, introduced into

the recovered image ĨK by the random method, was always below 2.46 × 10−14. On the

other hand the level of distortion introduced by the SVD method, was dependant on the

size of the perturbation, and exceeded this amount for many perturbations tested.

The number of keys which satisfied criteria a) and b) for each scheme was then calcu-

lated to establish the keysize for each security scheme.

Under the given test conditions, the random method was shown to have a much larger

keysize than the SVD method. However the SVD method opened the possibility of having

a dramatically larger keysize, if more than two perturbations could be applied to the matrix

G̃. This was not tested experimentally to verify that it would still fulfil requirements a)
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and b), but should be investigated in future work.

Because the level of distortion did not appear to depend on the private key , and

because of the larger keysize, the random method will be applied to secure folded images,

in all remaining Chapters.

Remark 5. As discussed in Section 1.6.1 the keysize is not a measure of the cryptographic

security of a method. It is simply an enumeration of the number of private keys which

can be applied to secure the information. Therefore the random method with the largest

keysize may not in practice be the most secure.
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Self Contained Encrypted

Image Folding

The Chapter extends image folding procedure described in Chapter 3 to make it self

contained. Recall that image folding involves embedding coefficients from sections of a

sparse representation of an image, into other sections of the same sparse approximation.

This procedure is not self contained, because, in addition to the image coefficients, other

image dependent information is also required at the recovery stage.

The extension to image folding considered here, enlarges the folded image to includes

all the information required for recovery. Thus all that is needed to recover the original

sparse approximation, is the folded image and the private key.

Two methods for securing this additional information are described in this Chapter.

The first which will be referred to as the “pixel” scheme stores the additional information

as pixel intensities. The second referred to as the “ad hoc” scheme is a variation on the

folding procedure from Chapter 3.

This procedure is then extended from grey level intensity images to RGB colour images.

Two methods are considered for finding sparse approximations of RGB images, before the

folding stage is applied. The first repeats the procedure for grey level images on each of

the three planes of the colour image. The second describes an adaptation of the selection
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criteria in equation (2.4), which chooses common atoms for each colour plane.

The contents of the Chapter are as follows: the first Section contains an overview of

the additional information required to make the procedure self contained. The next two

Sections describe the two methods for securing this additional information. Experiments

then follow investigating the suitability of each method.

The remainder of the Chapter is then devoted to RGB images by first, describing

the two methods for approximating, and folding colour images. Then comparing the CR

resulting from these two methods, and finally presenting an illustration of the application

of both schemes to a colour image.

4.1 Information Required For Recovery

The recovery procedure in Section 3.2.3 requires the set of matrices {Slq(k)}
Kq

k=1, q =

1, . . . , QN . These are used to both recover the hidden coefficients, and to reconstruct

the missing sections of the original image. Therefore without knowledge of the matrices,

the image ĨK , in equation (3.10), cannot be recovered.

Because the dictionary is fixed, only the vectors of indices lq, q = 1, . . . , QN and not

the sets of matrices for each block are required. Hence, the inclusion of these indices is

the focus of the methods detailed in the next two Sections.

In addition to the folded image, private key and vectors of indices lq, q = 1, . . . , QN ,

other parameters are also required to construct the image ĨK . These are:

1 Details of the column and row dictionaries Dc and Dr, and dimension N that the

image was processed with.

2 The dimensions of the original image I, the number of host blocks H1, and any

padding p1 added to the hidden coefficients.

3 Quantization parameters minp,1 and △1, required to recover the original values from

the quantization indexes, discussed in Section 4.2.

The additional variables 1 − 3 above will be stored without security as image header

information. Such variables can be extracted before recovery takes place. This information

will require a fixed amount of space and will not be considered in the procedures detailed

in the next Sections.
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4.2 Quantization and Storage issues

The folded image will now contain all the information required to construct the recovered

image ĨK from equation (3.10). Therefore the storage of this image needs to be considered.

A simple quantization, and entropy coding approach is outlined below. The aim of this

approach is to create a self contained folded image, requiring less storage space than

the original image I. That is applying the definition of the CR from equation (2.23), a

folded image with CR > 1. The method described next is different to that discussed in

Section 2.7, which stored the coefficients of the approximation. Here the folded image

itself contains the coefficients, and it is that which needs to be stored.

Given an image If1 ∈ RNr×Nc folded by the procedure described in Chapter 3, the

coded version If1,△ (where each pixel is represented with u bits), is realized by means of

the following steps:

• Calculate the vector of quantization indices f△1 , representing the pixels in If1 , by

applying the mid-tread uniform quantizer from Section 2.7.1,

f△1 = ̂FQuant(V̂ec(If1)−minp,1,△1). (4.1)

The minimum pixel intensity minp,1, in If1 , is subtracted to make each value in f△1

positive. This procedure is to avoid having to store the sign information separately.

• Choose a suitable entropy coding algorithm and convert the vector f△1 , to a vector

of bits bf1 containing Nf1
b values.

• Take u bits at a time from bf1 to create a temporary vector t, containing ⌈
N

f1
b

u
⌉

pixels. The vector t is constructed as:

t(n) = ÛInt(bf1(i, . . . , i+ u− 1)), i = nu, n = 1, . . . ,

⌈
Nf1

b

u

⌉
. (4.2)

The operation denoted as ÛInt(·), takes a vector of u bits b(i), i = 1, . . . , u, and

converts them to an unsigned integer by the transformation
∑u

i=1 b(i)2
i. The value

of u in equation (4.13) can be any number greater than 1. However a suitable choice

is the number of bits representing each pixel in the original image. Choosing this

value guarantees folded images, constructed with the preceding steps, will be in the

same format as the original images.

• The vector of pixels t can now be reshaped to become an image If1,△ = M̂at(t, N1
r , N

1
c ).

The choice of N1
r or N1

c can be left up to the user. The image If1,△ can now be stored

in any standard lossless image format.
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The quantized representation Ĩf1 , of the folded image If1 , can be recovered by simply

reversing the procedure above by following the steps below:

• First relabel the elements of the image If1,△ back to become the vector t = V̂ec(If1,△).

• Convert each unsigned integer in t to its binary representation to populate the bit

stream bf1 ,

bf1(i, . . . , i+ u− 1) = B̂in(t(n), u), i = nu, n = 1, . . . ,

⌈
Nf1

b

u

⌉
.

The operation B̂in(·, u) takes an unsigned integer and converts it to a u bit repre-

sentation.

• Apply the decoding stage of entropy coding algorithm chosen above to, decode the

the bit stream bf1 , and recover the original vector of quantization indices f△1 .

• Reverse the quantization applied to f△1 . Then relabel the elements of f△1 to recover

the quantized version of If1 ∈ RNr×Nc , with,

Ĩf1 = M̂at( ̂RQuant(f△1 ,△) +minp,1, Nr, Nc).

4.3 Examining the Storage Requirements of the If1,△

In this Section the quantization step size △ is investigated. A suitable △ should reduce

the maximum value in If1,△, without introducing an unacceptable level of distortion, into

the recovered image Ĩf1 .

Before proceeding the quantization step size is reformulated in terms of the maximum

number of quantization indices, in the representation of If1,△. That is

△1=
2u1−1

maxp,1 −minp,1
. (4.3)

The value 2u1−1 is the maximum number of quantization indices and, maxp,1 and minp,1

are respectively, the minimum and maximum values of the pixels in the folded image If1 .

The number of bits required to store the folded image If1 ∈ RNr×Nc , is Nb = uNrNc,

with u the number of bits required to store each pixel of If1 . The CR of the folded image

can be calculated by substituting this into equation (2.23). Quantizing If1 so that each

pixel can be represented by u1 bits with u1 < u, will reduce the size of Nb and hence

increase the CR.

As discussed in Section 4.2, quantization will also introduce distortion into the re-

covered image Ĩf1 , the question now becomes how much distortion is acceptable. The
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images in the following Experiments will again be initially approximated to a PSNRa =

45±1×10−2% before applying the folding procedure. A variance of ±1×10−2% is allowed

in the approximation PSNR. Therefore a suitable amount of variance for the folding pro-

cedure, which now includes a quantization stage, will be one order of magnitude greater

than this. This is realized by allowing a δPSNR ≤ 1× 10−1% between, the approximated

images IK and the recovered images ĨK .

4.3.1 Experimental Overview

In this Experiment and the remaining experiments in this Chapter, two sets of 55 grey

level images, were approximated and then folded . The final image was quantized by

applying the additional quantization step described above, with range of values of u1.

The images were then recovered, and the smallest number of bits u1, which resulted in a

δPSNR ≤ 1× 10−2% between, the approximated and the recovered images found.

A range of dictionaries of increasing size will be required in the next Section, to test the

folded images containing the index information. Therefore in this Experiment, a range of

block sizes N = 8, 16, 24 were tested, together with a range of 8 dictionaries of increasing

size.

The B-spline based dictionaries showed promising approximation performance, over

the astronomical images in Experiment 2.6.1. Therefore in this Experiment, both the

RDBS and RDC components present in these dictionaries, and described in Section 2.4,

will be included again.

Each of the 8 dictionaries in this Experiment were separable, with Dc,2
i ≡ Dr,2

i , i =

1, . . . , 8, therefore the construction of the column dictionary Dc,2
i for each is given below:

1) Dc,2
1 = Dc

1, (RDC).

2) Dc,2
2 = Dc,1

8 = [Dc,2
1 ,Dc

2].

3) Dc,2
3 = [Dc,2

2 , {U2(n− i+ 1);n = j, . . . , N + j − 1}M2

i=1].

4) Dc,2
4 = [Dc,2

3 , {biY
2
2 (n− i+ 1);n = j, . . . , N + j − 1}M2

i=1].

5) Dc,2
5 = [Dc,2

4 , {U4(n− i+ 1);n = j, . . . , N + j − 1}M4

i=1].

6) Dc,2
6 = [Dc,2

5 , {biY
3
2 ; (n− i+ 1);n = j, . . . , N + j − 1}M3

i=1].

7) Dc,2
7 = [Dc,2

6 , {U6(n− i+ 1);n = j, . . . , N + j − 1}M6

i=1].

8) Dc,2
8 = Dc,1

5 = [Dc,2
7 , {biY

4
2 (n− i+ 1);n = j, . . . , N + j − 1}M4

i=1], (RDC-RDBS2).
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Mi

N 1 2 3 4 5 6 7 8

8 16 24 31 39 46 54 59 67

16 320 48 63 79 94 110 123 139

24 48 72 95 119 142 166 187 211

Table 4.1: The number of vectors Mi, in each dictionary Dc,2
i , i = 1, . . . , 8 against the size

of the block N.

The number of vectors Mi, in each dictionary Dc,2
i , i = 1, . . . , 8 is shown in Table 4.1,

against the size of the block N .

The Experiment was performed with two sets of 55 images. The first is the astronomical

images from Chapter 3, the second is a combination of the training and test set, of natural

images, from in Chapter 2

As mentioned above all the test images were first approximated to a PSNRa = 45 ±

1×10−2%, before being folded . The folded images If1 were all quantized to u1 = 8, . . . , 16

bits with equation (4.1). The quantization step size △ determined by the values of u1,

with equation (4.3). In this Experiment the vectors of indices {lq}
QN

q=1 for each image, are

stored exactly. They are then used at the recovery stage, to ensure that the only distortion

from the quantization procedure, is introduced into the recovered image ĨK .

The security was considered applying the random method from Section 3.3.2, with a

private key composed of two seeds, s1 = 1.43398 × 106, and =2.365658978 × 109. For this

Experiment both the folding and recovery stages were performed with the same private

key .

Experiment

The Experiment described above was first performed on the set of 55, 8 bit grey level

astronomical images.

Figure 4.1 shows the δPSNR from Dc,2
1 for each N , against the number of bits u1, I

f1

was quantize to. As discussed earlier the maximum allowable distortion, is one order of

magnitude greater, than that introduced at the approximation stage. This is indicated

in Figure 4.1 by the dashed ▽ line, which equates to a PSNR between the original and

recovered image, of 44.995dB < PSNR < 45.045dB. The Figure shows that for Dc,2
1 , a

value of u1 ≥ 12 results in an acceptable δPSNR, for all block sizes N .

The result for Dc,2
1 was the same for all other dictionaries Dc,2

i , i = 2, . . . , 8, that is a
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Figure 4.1: δPSNR over the 55, 8 bit grey astronomical image set, when approximated
with dictionary Dc,2

1 and stored with u1 = 8, . . . , 16 by applying the method in Section
4.2. The δPSNR is shown for each block size N against the number of bits u1 the images
were quantized to. The standard deviation between the 55 images was of the same order
or less than the δPSNR, for all block sizes N and # of bits u1. The dashes ▽ indicate the
maximum tolerable δPSNR.

value of u1 ≥ 12, results in an acceptable δPSNR for all block sizes N . This is demon-

strated in Figure 4.1, which shows the δPSNR for each block N against the dictionary, for

both u1 = 11 and u1 = 12.

The same Experiment described above was performed again on the set of 55, 8 bit grey

level natural images.

The result for the natural image set was the same as the result for the astronomical

image set. That is u1 ≥ 12 bits were required for the images to be recovered to an

acceptable level of δPSNR, for all block sizes N .

4.4 The “Ad Hoc” Scheme

A method for storing the indexes in an additional image If2 has been proposed in [4]. The

method involves creating some “ad hoc” host blocks, for embedding the vectors of indices

lq, q = 1 . . . , QN , with a similar method to that proposed in Chapter 3 for the coefficients

eq, q = 1 . . . ,H1. These indices can then be secured, by either of the security schemes

proposed in Chapter 3.

The method presented in this Section extends that proposed in [4] to apply the simple

quantization and entropy coding stage from Section 4.2, to reduce the storage requirements

of the folded image.

The self contained folded image, denoted as If , will be the union of two folded images.

The first is If1 from Chapter 3 containing the coefficient information, the second is the

newly created “ad hoc” folded image If2 , containing the index information.
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Figure 4.2: δPSNR over the 55, 8 bit grey astronomical image set, when approximated
with each dictionary Dc,2

i , i = 2, 3, 4, 5, 6, 7, 8 and stored to u1 = 11 and u1 = 12 bits by
applying the method in Section 4.2. The δPSNR is shown for each block size N against
the index of the dictionary applied in the approximation. The standard deviation between
the 55 images was of the same order or less than the δPSNR, for all block sizes N and
dictionaries. The dashes ▽ indicate the maximum tolerable δPSNR.

4.4.1 Folding Procedure

In the procedure below, the vectors of indices {lq(k), k = 1, . . . ,Kq}
QN

q=1 are placed into a

larger vector, through the F̂lat(·) operation. To recover the vectors of indices from this

operation the numbers Kq, q = 1, . . . , QN need to be known. Therefore in the description

below, these numbers are also stored in the “ad hoc” folded image If2 .

• Unlike the host blocks required in Chapter 3, the “ad hoc” host blocks are artificially

created square N ×N constant intensity arrays. The intensity of which is dictated

by the values Kq, q = 1, . . . ,H2 where H2 = ⌈
K+QN

N2 ⌉.

With any normalized to unity matrix, say J ∈W ⊂ RN×N , the “ad hoc” intensity

arrays J̈q ∈ RN×N , q = 1, . . . ,H2 are created as

J̈q = KqJq, q = 1, . . . ,H2. (4.4)

This leaves space for Nh = N2 − 1 indices, to be embedded in the orthogonal com-

plement W⊥ (with respect to RN×N ), of the subspace spanned by the single matrix

J.

• The vectors of indices {lq(k), k = 1, . . . ,Kq}
QN

q=1 and the remaining Kq, q = H2 +

1, . . . , QN are relabelled, to become the vectors of coefficients {h(n), n = 1, . . . , Nh}
H2

q=1

by applying the F̂lat(·) and Ŝet(·) operations defined in Appendix A. If Nb =

(H2N
2− (K +QN )) is greater than zero, then a vector of padding p2(n) ∈ RNb will
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be included as shown below:

{h}H2

q=1 = Ŝet([F̂lat({lq}
QN

q=1);KH2+1; . . . ;KQN ;p2],nh), (4.5)

where each element of the vector nh ∈ RH2 is Nh, and the elements of the vector p2

can take on any value.

• The procedure for embedding these vectors of coefficients in each J̈q, q = 1, . . . H2

is then equivalent to that for embedding the vectors of coefficients eq in the host

blocks in Section 3.2.2, that is,

– Using either the SVD or random security scheme described in Chapter 3, gen-

erate the sets of orthonormal basis for the space W⊥ = span{W⊥
q,n}

Nh

n=1, q =

1, . . . , QN orthogonal to the single matrix J.

– Build each embedded matrix Hq as

Hq =

Nh∑

n=1

hq(n)W
⊥
q,n, q = 1, . . . ,H2. (4.6)

– For q = 1, . . . ,H2 fold the blocks by the superposition If2q = J̈q + Hq and

subsequent composition If2 = ∪H2

q=1I
f2
q .

The procedure described in Section 4.2 for quantizing and coding the folded image If1

can then be applied to If2 as shown below:

• Calculate the vector of quantization indices f△2 representing the pixels in If2 by the

mid-tread uniform quantizer from Section 2.7.1 as

f△2 = ̂FQuant(V̂ec(If2)−minp,2,△2).

• Applying a suitable entropy coding algorithm convert the vector f△2 to a vector bf2,△

containing Nf2,△
b bits.

• Take u bits at a time from bf2,△ to create a temporary vector t containing ⌈
N

f2,△

b

u
⌉

pixels as,

t(n) = ÛInt(bf2,△(i, . . . , i+ u− 1)), i = nu, n = 1, . . . ,

⌈
Nf2,△

b

u

⌉
. (4.7)

Again the value of u in equation (4.7) can be any number greater than 1 however a

suitable choice is the number of bits to represent each pixel in the original image.

• The temporary vector of pixels t can now be reshaped to become an image If2,△ =

M̂at(t, N2
r , N

2
c ), where the choice of N

2
r or N2

c can be left up to the user. The image

If2,△ can now be stored in any standard lossless image format.
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The self contained folded image If is then the union of the two images, If1,△ containing

the vectors of coefficients cq, and If2,△ containing the vectors of indices lq. These are both

required in equation (3.4) to calculate the recovered image blocks ĨKq , with q = 1, . . . , QN .

4.4.2 Recovery Procedure

The procedure for recovering the vectors of indices lq, q = 1, . . . , QN from the self contained

folded image If is as follows.

First the self contained folded image If is split into If1,△ and If2,△, before reversing

the quantization and coding procedure in Section 4.2 to recover the folded image Ĩf2 .

The image Ĩf2 is then divided back into square N × N blocks Ĩf2q , q = 1, . . . ,H2 and

the vectors of indices lq, q = 1, . . . , QN for each block are recovered by the following steps:

• The numbers K̃q, q = 1, . . . ,H2 are obtained as

K̃q = 〈J, Ĩ
f2
q 〉F , q = 1, . . . ,H2

• Obtain H̃q as H̃q = Ĩf2q − K̃qJ, q = 1, . . . ,H2.

• By the same security scheme as in the folding stage, generate the sets of matrices

{W⊥
q,n, n = 1, . . . , Nh}

H2

q=1, which are an orthonormal basis for the space W⊥.

• Recover the coefficients {h̃q(n), n = 1, . . . , Nh}
H2

q=1 from H̃q,

h̃q(n) = 〈H̃q,W
⊥
q,n〉F , n = 1, . . . , Ne, q = 1, . . . ,H2. (4.8)

• Flatten the vectors of coefficients {h̃q(n), n = 1, . . . , Ne}
H2

q=1 to get a temporary

vector,

t = F̂lat({h̃q}
H2

q=1),

remove any padding p2 and recover the remaining K̃q, q = H2 + 1, . . . , QN from the

last QN −H2 − 1 remaining elements of t.

• Relabel the first K elements of the temporary vector t, to obtain the recovered

vectors of indices

{̃lq}
QN

q=1 = Ŝet(t(1 : K),nK̃),

with K is the number of coefficients chosen for all blocks in the whole image calcu-

lated in equation (2.17), and the vector nK̃(q) = K̃q, q = 1 . . . , QN .
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4.5 Examining the Storage Requirements of the If2

In this Section the number of bits u2 which the pixels of the folded image If2 can be

quantized with the mid-tread uniform quantizer described in Section 4.2 is investigated.

When If1 was quantized in Section 4.8.1 the constraint on the value of u1 was that the

δPSNR ≤ 1 × 10−1%. This criteria cannot be applied to the index information stored in

If2 , because it needs to be recovered exactly, to enable the folded image to be recovered.

Therefore the aim of the Experiment below is to find the smallest value of u2, which for

all sample images, can be used without effecting the recovery of the index information.

The size of each element of the “ad hoc” folded image If2,△ is dependent on the indices

{lq}
QN

q=1. If on average larger indices are chosen the expectation would be that on average

the size of the elements of If2,△ and hence the number of bits u2 required to quantize each

element, may also increase.

Table 4.1 shows that the number of vectors Mi in Dc,2
i , i = 1, . . . 8 increases both with

the index of the dictionary and the size of the blocks N , partitioning the image. Therefore

as either the dictionary index is increased or the block size N the number of vectors in

Dc,2
i will also increase. With Dc,2

i ≡ Dr,2
i the number of separable indices stored in the

“ad hoc” image blocks, M2
i , i = 1, . . . , 8, will also increase with both the dictionary index

and block size N .

From the above it is clear that larger dictionaries or blocks means that on average

larger indices can be chosen, however it does not mean that this will happen. Therefore

the Experiment below is to determine if increasing the dictionary size or the size of the

blocks N requires an increase in the number of bits u2, and if it does what level of increase

is required.

4.5.1 Experimental Overview

The 55 astronomical and natural images were again used as the sample for this Experiment.

The vectors of indices {lq}
QN

q=1 resulting from approximating these images to a PSNRa =

45±1×10−2% were used to create the “ad hoc” folded images with the procedure described

in Section 4.4.

Each experiment was performed with the 8 dictionaries Dc,2
i , i = 1, . . . , 8 described in

Section 4.7.5 and 3 block sizes N = 8, 16 and 24.

For u2 = 8, . . . , 20 the resulting folded images If2 were quantized to u2 bits with the

mid-tread uniform quantizer described in Section 4.2 before applying the recovery scheme

from Section 4.4.2. The smallest value of u2 which allowed the index information for all
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images in the sample to be recovered exactly was stored.

The security was again realized by the random method from Section 3.3.2 with a

private key composed of two seeds for initializing the PRNG’s, s1 = 1.43398 × 106 and

s2 = 2.365658978 × 109. For this Experiment the same private key was applied at both

the folding and recovery stages.

The normalized to unity matrix J ∈ RN×N in (4.4) was a the constant matrix

J(nr, nc) =
1
N
, nr, nc = 1, . . . , N .

Results

The minimum number of bits u2 required to perfectly recover the vectors of indices {lq}
QN

q=1

resulting from the approximation of the astronomical and natural images are shown respec-

tively in the left and right of Table 4.2 against the dictionary used in the approximation.

Table 4.2 shows that as the number of atoms is increased, either by increasing the

dictionary Dc,2
i , i = 1, . . . , 8 or the block size N , the number of bits u2 required for the

index information to be successfully recovered increases.

4.6 The CR of the “ad hoc” Scheme

Ignoring the entropy coding stage the CR of the self contained folded image If can be

expressed as

CR =
uNp

N2H1u1 +N2H2u2
.

Given that H1 = ⌈ K
N2 ⌉ and H2 = ⌈K+QN

N2 ⌉, N
2H1 ≈ K and N2H2 ≈ K. Therefore with

u1 = 12 and u, Np fixed,

CR ∝∼
1

K(12 + u2)
. (4.9)

This equation shows the CR will fall when the number of bits u2 increases, unless the

number of coefficients K is reduced at the same time. This is equivalent to saying that

the SR needs to increase to compensate for any increase in u2.

Table 4.2 shows that larger values of u2 are required as the dictionary index and/or

the block size N increases. Therefore, for the dictionaries tested the CR will fall, as the

number of vectors in the dictionary increases unless there is a suitable increase in SR in

the initial approximation.

The results of the Experiments in Chapter 2 indicated that increasing the number of

vectors in a dictionary increases the resulting SR. From the above it is clear that this is not

necessarily going to increase the CR of an “ad hoc” self contained folded image. This is

also without including the entropy coding stage. Therefore an investigation is undertaken
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in the next Section into the effect on the CR produced by applying the “ad hoc” folded

method with 8 dictionaries Dc2
i , i = 1, . . . , 8 of increasing size, in combination with the 3

block sizes N = 8, 16 and 24.

4.6.1 Experimental Overview

The 55 astronomical and natural images were used as the sample for this Experiment,

with each image being first approximated to a PSNRa = 45± 1× 10−2%. The coefficients

were then folded to produce the vector bf1 containing Nf1
b bits with u1 = 12. The indices

were then folded by the “ad hoc” method to produce the vector of bits bf2,△ containing

Nf2,△
b bits, using the values of u2 shown in Table 4.2. The CR for the self contained folded

image was then calculated as

CR =
uNp

Nf1
b +Nf2,△

b

. (4.10)

The remaining experimental set up used is the same as that in the previous Experiment

in Section 4.5.1.

Results

Figure 4.3 shows the average SR (x̄SR) over both the astronomical and natural image. The

results are shown for for each block size N = 8, 16 and 24 partitioning the image, against

the dictionary Dc,2
i , i = 1, . . . , 8, the atoms providing the approximation were chosen from.

The x̄SR in the Figure confirms two observations from the Experiments in Chapter 2,

1) Approximations made with the RDC dictionary are sparsest when N = 8 (the small-

est block size).

2) The B-spline based dictionaries produce much sparser approximations of the astro-

nomical images as the size of the block N is increased.

An additional observation from Figure 4.3 is that the x̄SR for the astronomical images

appears to increase more rapidly, than for the natural images when the dictionary index

increases. The significance of this effect on the CR is now investigated.

The average CR (x̄CR) over the 55 astronomical and natural images, calculated with

equation (4.10) is shown by the solid lines respectively in Figures 4.4 and 4.5. As expected

the x̄CR for Dc,2
1 was highest for N = 8, mirroring the result for the x̄SR.

Figure 4.4 shows the x̄CR over the astronomical images, increases with the dictionary

index for the smaller dictionaries, but not for the larger ones. Therefore a one tailed

paired sample t-test was performed, the results of which are shown in Appendix E.2.1. The
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purpose of the test was to investigate whether, the average CR produced by folding images

with the largest dictionary Dc,2
8 , was significantly higher than, the average CR produced

by the smaller dictionaries Dc,2
i , i = 1, . . . , 7. The results to a 95% confidence level show

when N = 16, the average CR produced by the largest dictionary Dc,2
8 is significantly

higher than that produced by all of the the smaller dictionaries. When N = 24 the results

show the average CR produced by the largest dictionary Dc,2
8 was significantly higher than

that produced by the five smaller dictionaries Dc,2
i , i = 1, . . . , 5.

Figure 4.5 shows that the x̄CR over the natural images, increases with the dictionary

index, but again not for every dictionary. Therefore an identical one tailed paired sample

t-test to the one for the astronomical images above was performed, with results given in

Appendix E.2.1. The conclusion of the test was, the average CR produced by the largest

dictionary Dc,2
8 is only significantly higher than the two smallest dictionaries Dc,2

i , i = 1, 2,

for a 95% confidence level.

4.6.2 Discussion

The results above show that, as expected the average CR of a self contained folded image

If constructed with the “ad hoc” scheme to store the indices is highly dependent on the

SR resulting from the initial approximation. Also as expected the SR is dependent on the

suitability of the dictionary approximating the particular image corpus.

The suitability of the B-spline based dictionaries Dc,2
i , i = 1, . . . , 8 used in this Exper-

iment for approximations of astronomical images can be seen in Figure 4.3 by the rapid

increase in x̄SR for larger dictionaries. This then translates into a significant increase

in the average CR when larger dictionaries are used to produce the self contained folded

image If1 .

The same is not true for approximations made with the same B-spline dictionaries to

calculate sparse approximations of natural images, shown in Figure 4.3. For this image

corpus the x̄SR did not increase as rapidly for larger dictionaries. This then translates

into the average CR for the largest dictionary only being significantly higher than average

CR produced by the two smallest dictionaries, for all block sizes.

4.7 The “pixel” Scheme

An alternative method for storing the vectors of indices {lq}
QN

q=1 which is discussed below

is to apply a pseudorandom permutation to the index information.

The “ad hoc” method applies a transformation to the indices and then reduces the
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Astronomical Images Natural Images

Dc,2
i ,Dr,2

i N = 8 N = 16 N = 24 N = 8 N = 16 N = 24

1 12 14 16 12 14 15

2 14 16 17 13 16 17

3 14 17 18 14 16 17

4 15 17 18 15 17 18

5 15 18 19 15 17 18

6 16 18 19 16 18 19

7 16 18 19 16 18 19

8 16 18 20 16 19 19

Table 4.2: Minimum number of bits u2 which If2 can be quantized to without distorting
the index information for any image in the 8 bit astronomical and natural image sets. The
result is shown for each column and row dictionary pair Dc,2

i ,Dr,2
i , i = 1, . . . , 8 indicated

by the index given in the first column.

1 2 3 4 5 6 7 8
2

4

6

8

10

12

14

Dictionary D
c,2
i ,D

r,2
i

x̄
S
R

 

 

S2, N = 8 S2, N = 16 S2, N = 24 S1, N = 8 S1, N = 16 S1, N = 24

Figure 4.3: Average SR (x̄SR) over the 55, 8 bit grey level astronomical and natural
image sets when atoms are picked from the dictionaries Dc,2

i , i = 1, . . . , 8 by the OMP2D

algorithm. The x̄SR is shown against the index i of each dictionary Dc,2
i , i = 1, . . . , 8 for

each block size N = 8, 16, 24. The solid lines indicates the x̄SR for the astronomical images
and the dashed lines indicate the average x̄SR for the natural images.
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1 2 3 4 5 6 7 8
2

2.5

3

3.5

4

4.5

5

5.5

Dictionary D
c,2
i ,D

r,2
i

x̄
C
R

 

 

AH,N = 8 AH, N = 16 AH,N = 24 PX ,N = 8 PX, N = 16 PX,N = 24

Figure 4.4: Average CR (x̄CR) over the 55, 8 bit grey level astronomical image set when
applying the “ad hoc” and “pixel” folding procedures. The x̄CR is shown against the
index i of each dictionary Dc,2

i , i = 1, . . . , 8 for each block size N = 8, 16, 24. The solid
lines and dashed lines indicate the x̄CR for respectively the “ad hoc” and “pixel” folding
procedures.

1 2 3 4 5 6 7 8
1

1.5

2

2.5

Dictionary D
c,2
i ,D

r,2
i

x̄
C
R

 

 
AH,N = 8 AH, N = 16 AH,N = 24 PX ,N = 8 PX, N = 16 PX,N = 24

Figure 4.5: Average CR (x̄CR) over the 55, 8 bit grey level natural image set when applying
the “ad hoc” and “pixel” folding procedures. The x̄CR is shown against the index i of each
dictionary Dc,2

i , i = 1, . . . , 8 for each block size N = 8, 16, 24. The solid lines and dashed
lines indicate the x̄CR for respectively the “ad hoc” and “pixel” folding procedures.
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storage requirement by applying a simple quantization and entropy coding stage. The ap-

proach in this Section is instead to first code the indices to reduce the storage requirement

of the indices and then control the access to this information.

This method can then be secured by means of a private key to initialize the pseudo-

random permutation, preventing a third party not in possession of the private key from

recovering the indices. The linear nature of a simple permutation without other security

measures will makes this approach susceptible to plain text attacks [50], and therefore less

secure than the “ad hoc” method.

4.7.1 Storing the Separable Indices (m1)

This approach flattens the vectors of indices {lq}
QN

q=1 required in equation (3.4), and then

entropy codes the resulting vector. Before flattening the indices two modifications are

made to them which were found to reduce the size of the resulting bit stream.

Complement coding

The aim is to find out if any index, which will be referred to as the complementary index

ic, has been chosen in over half the image blocks. If it has then the index ic is removed

from each vector {lq}
QN

q=1 which contains it and included in each vector {lq}
QN

q=1 which does

not. To recover the original sets of indices the process is simply repeated with ic.

If the index ic is chosen in the approximation of x% of the image blocks this will reduce

the number of indices by ( x
50 − 1)QN .

Index Difference

Storing the indices in independent vectors for each block means there is no restriction

on the order that the indices are in, as long as the order of the corresponding coefficient

vectors is altered so that the coefficients still correspond to the correct indices. Therefore

the indices for each image block can be sorted into ascending numerical order without

effecting the recovery. If the indices are sorted in this way then the difference between

each index for each block q = 1, . . . , QN could be stored along with the first (smallest)

index, instead of the just the indices. This is performed in 2 steps:

1) First the vectors of indices are sorted into ascending numerical order to get the

vectors {laq}
QN

q=1, where

laq(k) ≤ laq(k + 1), k = 1, . . . ,Kq − 1, q = 1, . . . , QN .
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Then storing in the vectors liq, the original position of each element of laq in lq, that

is liq is such that laq(k) = lq(l
i
q(k)), k = 1, . . . ,Kq − 1, q = 1, . . . , QN .

The coefficients which are used to create the embedded image can then be reordered

by the following relation

caq(k) = cq(l
i
q(k)), k = 1, . . . ,Kq, q = H1 + 1, . . . , QN ,

so that their position in the sorted vectors caq corresponds to the position of their

index in the corresponding vectors laq , with q = H1 + 1, . . . , QN . These vectors can

now be used in equation (3.5).

2) The difference between each index in the sorted vectors, is taken in order, and

included with the first element to get the vectors {ldq}
QN

q=1, where

ldq(1) = laq(1),

and

ldq(k) = laq(k + 1)− laq(k), k = 2, . . . ,Kq, q = 1, . . . , QN .

To recover the sorted sets of indices {laq}
QN

q=1 the procedure is simply reversed by

cumulatively summing each set of indices, that is

laq =
k∑

i=1

ldq(i), k = 1, . . . ,Kq, q = 1, . . . , QN .

Storing the Indices

The vectors of indices will now be stored in a large temporary vector t. To enable them

to be assigned back from t to the vectors of indices for each block {ldq}
QN

q=1, either the

numbers Kq, q = 1, . . . , QN can be stored, or the indices for each block split into separate

partitions. The first approach is used when creating the “ad hoc” blocks for storing the

separable indices, and the second approach is used here, as described below.

First a reserved symbol r is chosen which is not a valid index, this will be used to

separate the vectors of indices for each image block when they are placed into new larger

vector. The symbol r is first included at the end of each vector {ldq}
QN

q=1 as

ldq = [ldq ; r], q = 1, . . . , QN .

These vectors are then placed into the larger temporary vector

t = F̂lat({ldq}
QN

q=1),
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which contains the separable indices for each block separated from each other by r as

shown below.

t = [ld1(1); . . . ; l
d
1(K1); r; l

d
2(1); . . . ; l

d
2(K2); r; . . . . . . ; r; l

d
QN (1); . . . ; l

d
QN (KQN )]. (4.11)

Using a suitable entropy coding algorithm the vector of indices t can be converted to

a bit stream bm1 ∈ RN
m1

b .

4.7.2 Restricting access

Access can be restricted to the indices stored in bm1 by applying a pseudorandom permu-

tation to the order of its elements to get a reorder vector b̄m1 , which is generated in the

following way.

A vector m ∈ RN
m1

b of unique pseudorandom natural numbers is first generated by

the pseudorandom number generator initialized with a seed. These vectors are then used

to reorder the elements of the vectors bm1 by the relation

b̄m1(i) = bm1(m(i)), i = 1, . . . , Nm1

b . (4.12)

Taking u bits at a time from bm1 a new vector f containing ⌈
N

m1

b

u
⌉ pixels is created

as,

g(n) = ÛInt(b̄m1(i, . . . , i+ u− 1)), i = nu, n = 1, . . . ,

⌈
Nm1

b

u

⌉
. (4.13)

The vector of pixels g can now be reshaped to become the image If2 = M̂at(g, N3
r , N

3
c ),

where the choice of N3
r or N3

c can be left to the user.

The self contained folded image If is then the union of the two images, If1,△ containing

the vectors of coefficients cq, and If2 containing the vectors of indices lq which are both

required to recover image blocks ĨKq in equation (3.4), with q = 1, . . . , QN .

As discussed in Section 3.3.2 the pseudorandom vector m ∈ RN
m1

b should be generated

with a CSPRNG.

4.7.3 Recovery procedure

The self contained folded image If is first split into If1,△ and If2 . The indices are then

recovered from If2 by:

• Relabelling the elements of the image array If2 back to become the vector g =

V̂ec(If2).
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• Converting each unsigned integer in g back to its binary representation to create the

bit stream b̄m1 as

b̄m1(i, . . . , i+ u− 1) = B̂in(g, u), i = nu, n = 1, . . . ,

⌈
Nm1

b

u

⌉
.

• Reverse the permutation with the same vector of pseudorandom numbers m ∈ RN
m1

b

from equation (4.12) with the following procedure,

bm1(m(i)) = b̄m1(i), i = 1, . . . , Nm1

b .

• Apply the decoding phase of the entropy coding algorithm which created the original

vector bm1 torecover the vector of indices t.

• The large vector t is then split into QN smaller vectors each containing the index

information for a single block. This is achieved by placing the elements in between

the reserved symbols r shown in equation (4.11) back into the sets {ldq}
QN

q=1.

• The original sets of indices {lq}
QN

q=1 can then be recovered from {ldq}
QN

q=1, by reversing

the procedure outlined in Section 4.7.1.

4.7.4 Storing the row and column indices (m2)

An alternative to storing the vectors of separable indices {lq}
QN

q=1 intervening in (3.4) is to

store both vectors of indices {lcq}
QN

q=1 and {lrq}
QN

q=1 corresponding. This can be performed

in a similar way to the procedure above for the vectors of separable indices. The main

difference is that now the indices come in pairs, that is each separable index lq(k) now

corresponds to the index pair (lcq(k), l
r
q(k)). This means that for each block q = 1, . . . , QN

only one of the vectors of indices lcq(k), k = 1, . . . ,Kq or lrq(k), k = 1, . . . ,Kq can be sorted

in ascending numerical order, the other vector must then be reordered so that the index

pairs are still consistent. In the following discussion the convention will be to sort the

elements of the vectors {lcq}
QN

q=1 into ascending numerical order.

The procedure for coding the indices is given below. The access restriction procedure

is exactly the same as described in Section 4.7.2 and is not repeated below.

Complement coding

The aim now is to find out the most common index pair (lcq(k), l
r
q(k)), k = 1 . . . ,Kq, q =

1, . . . , QN defined as (icc, i
r
c). If this index pair, (icc, i

r
c) occurs in over half the pairs of vectors

(lcq, l
r
q), q = 1, . . . , QN then it is removed from each pair where is occurs and included in

each pair where it does not.
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That is given the pair of index vectors lcq = [1; icc; 2; i
r
c ; 4; i

c
c] and lrq = [3; 1; 2; icc; 7; i

r
c ] for

a block q containing the common index pair (icc, i
r
c), the new vectors with the compliment

removed are lcq = [1; icc; 2; i
r
c ; 4] and lrq = [3; 1; 2; icc; 7]. Then given the pair of index vectors

lcq = [1; icc; 2; i
r
c ; 4] and lrq = [3; 1; 2; icc; 7] for a block q which do not contain the common

index pair (icc, i
r
c), the new vectors with the compliment added are lcq = [1; icc; 2; i

r
c ; 4; i

c
c]

and lrq = [3; 1; 2; icc; 7; i
r
c ].

It is clear from the above that to recover the original vectors of indices the process is

simply repeated with (icc, i
r
c).

Index difference

Storing the indices in independent vectors {lcq}
QN

q=1 and {lrq}
QN

q=1 for each block again means

there is no restriction on the order that the indices are in, as long as any change to the

order of the elements in {lcq}
QN

q=1 is also made to the elements of {lrq}
QN

q=1 and {cq}
QN

q=1.

This order needs to be maintained to ensure that for q = 1, . . . , QN , each coefficient

cq(k), k = 1, . . . ,Kq still corresponds to the same column and row vectors Dc(:, lcq(k)) and

Dr(:, lrq(k)) used to generate the sparse approximation in equation (2.15). Therefore the

vectors of indices {lcq}
QN

q=1 can be sorted into ascending numerical order without effecting

the recovery. If the indices are sorted in this way the difference between each index in

each vector {lcq}
QN

q=1 could be stored along with the first (smallest) index, instead of the

just the indices. This is performed in 2 steps:

1) First the vectors of indices are sorted into ascending numerical order to get the

vectors {lc,aq }
QN

q=1, where

lc,aq (k) ≤ lc,aq (k + 1), k = 1, . . . ,Kq − 1, q = 1, . . . , QN .

Then storing in the vectors liq, the original position of each element of lc,aq in lcq, with

q = 1, . . . , QN , that is liq is such that lc,aq (k) = lcq(l
i
q(k)).

The vectors of indices {lrq}
QN

q=1 and coefficients {cq}
QN

q=1, which create the embedded

image, can then be reordered by the following

lr,aq (k) = lrq(l
i
q(k)), k = 1, . . . ,Kq, q = 1, . . . , QN ,

and

caq(k) = cq(l
i
q(k)), k = 1, . . . ,Kq, q = H1 + 1, . . . , QN .

The vectors of coefficients can now be used in equation (3.5).
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2) The difference between each index in the sorted vectors {lc,aq }
QN

q=1, is taken in order,

and included with the first element to get the vectors {lc,dq }
QN

q=1, where

lc,dq (1) = lc,aq (1),

and

lc,dq (k) = lc,aq (k + 1)− lc,aq (k), k = 2, . . . ,Kq, q = 1, . . . , QN .

To recover the sorted sets of indices {lc,aq }
QN

q=1 the procedure is simply reversed by

cumulatively summing each set of indices, that is

lc,aq =

k∑

i=1

lc,dq (k), k = 1, . . . ,Kq, q = 1, . . . , QN .

Storing the Indices

The same procedure which was applied to the vectors in Section 4.7.1 to produce the

temporary vector t, is applied here. The new temporary vector contains each {lc,dq }
QN

q=1,

separated by a reserved symbol r. This vector is then enlarged to include the sets of

vectors {lrq}
QN

q=1 as

t = [t; F̂lat({lrq}
QN

q=1)].

Through a suitable entropy coding algorithm the vector of indices t can be converted

to a bit stream bm2 ∈ RN
m2

b .

The same procedure as in Section 4.7.2 is then applied to secure the information in

bm2 and produce the image If2 . The index information can be recovered from If2 by

simply reversing the procedure, applying the method for the separable indices described

in Section 4.7.3.

4.7.5 Comparison of index storage methods

To examine which index storage method (m1 or m2) requires the smallest of bit stream

the following Experiment was realized. The entropy coding in this Experiment was again

performed with the same adaptive arithmetic coding algorithm in Section 2.7.

Given that the range of possible indices is dependent on the both the number of atoms

in the dictionary and the size N of the square blocks, three block sizes N = 8, 16, 24 were

tested together with the 8 dictionaries Dc,2
i , i = 1, . . . , 8, of increasing size described in

Section 4.8.1.

For 55 astronomical and natural images and each dictionary Dc,2
i , i = 1, . . . , 8 the

images were processed in blocks of N = 8, 16, 24 and approximated to a PSNRa of 45 ±
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4.5× 10−3dB. The indices were then coded first using m1 and then m2 and the size of the

respective bit streams Nm1

b and Nm2

b recorded.

A paired sample t-test was realized on the results of the 55 sample images to a 95%

confidence level. The aim of the test was to investigate whether the index coding methods

produce bit streams of the same size. The results for each dictionary and block size

N = 8, 16, 24 are shown in Appendix E.2.

The results for astronomical images showed that when N = 8 and 16, the bit stream

produced by m2 was significantly smaller than that produced by m1, for the dictionaries,

Dc,2
i , i = 5, . . . , 8. When N = 24, the bit stream produced by m2 was significantly smaller

than that produced by m1, for the dictionaries, Dc,2
i , i = 4, . . . , 8.

The results for the natural images were similar. For N = 8 and 16, the bit stream

produced by m2 was significantly smaller than that produced by m1, for the dictionaries,

Dc,2
i , i = 4, . . . , 8. When N = 24, the bit stream produced by m2 was significantly smaller

than that produced by m1, for dictionaries, D
c,2
i , i = 3, . . . , 8.

Both image corpus produce the same conclusion, that is, m2 produces a significantly

smaller bit stream when the number of vectors in the dictionary used increases.

In the next Experiments involving the “pixel” method, the approach used for coding

the indices will be to used the results of this Experiment to determine when to use m1 and

m2. That is when the pixel method is used, m1 will code the indices in all Experiments

for both astronomical and natural images except for experiments involving:

• astronomical images approximated by dictionaries Dc,2
i , i = 5, . . . , 8 for N = 8, 16,

and Dc,2
i , i = 4, . . . , 8 for N = 24, or experiments involving

• natural images approximated by dictionaries Dc,2
i , i = 1, . . . , 8 for N = 8, 16, and

Dc,2
i , i = 3, . . . , 8 for N = 24,

when m2 will be used.

The self contained folded image resulting from applying this will represented with Nf2
b

bits and denoted as If2 ∈ RN3
r×N3

c .

4.8 The CR of the “pixel” scheme

In this Section the CR resulting of the self contained folded images, If constructed by the

“pixel” scheme is established.

Although the “pixel” scheme stores the vectors of indices with a different procedure to

the “ad hoc” method, the increase in the range of indices resulting with larger dictionaries

147



Chapter 4 SELF CONTAINED ENCRYPTED IMAGE FOLDING

or blocks is still expected to increase the number of bits Nf2
b required to store the indices.

The Experiment below calculates the size of the CR of the self contained folded image

If when the “pixel” scheme is used to fold the indices from approximations of both the

astronomical and natural images, made with the 8 dictionaries Dc,2
i , i = 1, . . . , 8 in com-

bination with the 3 block sizes N = 8, 16 and 24. This CR is then compared with that

produces when the “ad hoc” method was used over the same set images, dictionaries and

block sizes N in Experiment 4.6.

The “pixel” scheme directly codes the indices instead of first transforming and then

quantizing them. Therefore it is expected that the number of bits Nf2
b required to store

the image If2 ∈ RN3
r×N3

c produced by the “pixel” scheme will be less than the number

of bits Nf2,△
b required to store If2,△ ∈ RN2

r×N2
c produced by the “ad hoc” method. This

will result in a larger overall CR for the self contained folded image built by the “pixel”

scheme than the self contained folded image made with the “ad hod” method, which is

investigated in the Experiment below.

4.8.1 Experimental Overview

The Experiment in this Section applies the same procedure as the Experiment in Section

4.6 except that instead of applying the “ad hoc” method for folding the indices in the image

If1 the indices are stored by the “pixel” scheme, to produce the image If2 . Therefore the

CR for the self contained folded image constructed by the “pixel” scheme to store the

indices is calculated as CR =
uNp

N
f1
b

+N
f2
b

.

The pseudorandom number genereator required by this method was initialized by the

seed s3 = 5.8453 × 107.

Results

The average CR (x̄CR) over the 55 astronomical and natural images, when processed to

produce the self contained folded image with the “pixel” method to store the indices, is

shown by the solid lines respectively in Figures 4.4 and 4.5. These results for the CR can

be summarized as follows:

1) The x̄CR shown in Figures 4.4 and 4.5 for the self contained folded images within

the “pixel” scheme is significantly higher than the x̄CR for the self contained folded

images with the “ad hoc” method for all combinations of dictionary and block size

N .

2) Figure 4.4 shows that the x̄CR, over the astronomical images, for all N increase with
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the dictionary size. Therefore a one tailed paired sample t-test was performed to

see if the x̄CR produced by folding with the largest dictionary Dc,2
8 was significantly

higher than the smaller dictionaries Dc,2
i , i = 1, . . . , 7. The results of this test are

shown in Appendix E.2.3, where it is shown that the average CR produced by the

largest dictionary Dc,2
8 is significantly higher than the average CR produced by all

of the the smaller dictionaries with N = 16 and significantly higher than the average

CR produced by all of the dictionaries except Dc,2
6 when N = 8 and 24, for a 95%

confidence level.

3) Figure 4.5 shows that the x̄CR, over the natural images again increases with the

dictionary size. Therefore a one tailed paired sample t-test was performed to see if

the x̄CR produced by folding with the largest dictionary Dc,2
8 was significantly higher

than the smaller dictionaries Dc,2
i , i = 1, . . . , 7. The results of this test are shown

in Appendix E.2.3 where it is shown that the average CR produced by the largest

dictionary Dc,2
8 is significantly higher than the two smallest dictionaries Dc,2

i , i = 1, 2

when N = 8, and significantly higher than the three smallest dictionaries Dc,2
i , i =

1, . . . , 3 when N = 16 and 24, for a 95% confidence level.

The general results above concerning the “pixel” method is used are identical to the results

of the “ad hoc” method is used, with the difference being that the “pixel” method produced

a higher x̄CR over both image sets for all dictionaries Dc,2
i , i = 1, . . . , 8 and block sizes

N = 8, 16 and 24.

Discussion

Self contained folded images were constructed by both the “ad hoc” and “pixel” methods,

resulting in a CR > 1 for all the images tested. The highest x̄CR occured for images which

applied the “pixel” method for storing the indices.

To get an idea of whether through the process of folding , the storage requirements

of the image coefficients and indices are increased, over simply coding them, the results

for N = 24 from this Experiment were compared with those from the Experiment in

Section 2.8. It is important to note that the results compared in the discussion below

were produced by two different dictionaries, however as the comparisson is just to get and

indication, the difference in the x̄SR can be ignored.

Both experiments were performed over the 45 astronomical and natural images which

were initially approximated to a PSNRa = 45 + 4.5 × 10−3. The x̄CR (and x̄SR) results

for the astronomical and natural images, constructed with the “ad hoc” method were
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respectively 8.15 (x̄SR = 15.41) and 4.10 (x̄SR = 6.32). The corresponding x̄CR (and

x̄SR) for the “pixel” method, were respectively, 5.15 (x̄SR = 13.58) and 2.31 (x̄SR =

6.10). Ignoring the reduction in the x̄SR in the initial approximations, resulting from

approximating with the RDC-RDBS2 instead of the TS3 dictionary, it is clear that the

folding procedure introduces some storage overhead.

4.9 RGB Colour Images

4.9.1 Single Channel Method

Colour images are often given as three intensity planes, representing each of the three

primary colours Red (R), Green (G) and Blue (B). Each colour plane is a grey level

intensity array of pixels which can be approximated by the selection criteria in equation

(2.4) without any modification.

This results in the sparse approximation of RGB image Iz ∈ RNr×Nc , z = 1, 2, 3 pro-

cessed using square blocks containing N row and column pixels

IKz,q =

Kz,q∑

k=1

cz,q(k)Slz,q(k), q = 1, . . . , QN , z = 1, . . . , 3. (4.14)

The self contained folded image is then constructed out of the coefficients and indices

of this approximation according to the steps below.

1) Apply the folding procedure from Chapter 3 to each set of coefficients {cz,q, q =

1, . . . , QN}3z=1 from equation (4.14) to produce a folded image If1z , z = 1, . . . , 3. This

image can be secured by either the SVD or random security procedure also discussed

in Chapter 3.

2) Each folded image If1z , z = 1, . . . , 3 is then quantized and coded with the procedure

given in Section 4.2 to produce the folded images If1,△z . Each z component containing

the coefficients from the sparse approximation (4.14) of Iz, with z = 1, . . . , 3.

3) Each set of indices {lz,q, q = 1, . . . , QN}3z=1 from equation (4.14) is then stored by

either the “ad hoc” or “pixel” methods described receptively in Sections 4.4 and

4.7 to produce the folded images If2z , each containing the indices from the sparse

approximation (4.14) of Iz, with z = 1, . . . , 3.

4) Each plane of the self contained folded image Ifz is then formed as the union of the

two images If1,△z and If2z with z = 1, . . . , 3.
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4.9.2 Multi Channel Method

Given and image Iz ∈ RNr×Nc , z = 1, 2, 3 the Single Channel method mentioned above

works by independently approximating each of the 3 colour planes. This means that each

of the vectors of indices lz,q, q = 1, . . . , QN , z = 1, . . . , 3 can be different.

The assumption behind the Multi Channel method is, there is strong correlation be-

tween the Red Green and Blue channels of a digital image. If this assumption is true

then, approximating each colour plane with the same set of atoms, should still result in a

sparse representation. In addition unlike the single channel method only one set of indices

{lq, q = 1, . . . , QN} needs to be stored in the self contained folded image. Although this

method is applied to RGB images where each array of pixels represents a single colour,

it will also be applicable to other types of colour image providing correlation between the

arrays is preserved.

The approximation is achieved by modifying the selection criteria shown in equation

(2.4) to become

l(k + 1) = argmax
m=1,...,MrMc

3∑

z=1

|〈Sm,RK
z 〉F |

with,

RK
z = Iz −

K∑

k=1

cz(k)Sl(k).

(4.15)

The resulting multi channel sparse approximation of RGB image IKz ∈ RN×N , z = 1, 2, 3

processed in square blocks containing N row and column pixels is then given as

IKz,q =

Kq∑

k=1

cz,q(k)Slq(k), q = 1, . . . , QN , z = 1, . . . , 3. (4.16)

The self contained folded image is then constructed in a similar way to the single

channel method, except that only one set of indices {lq, q = 1, . . . , QN} is stored by either

the “ad hoc” or “pixel” method through the steps described below.

1) Apply the folding procedure from Chapter 3 to each set of coefficients {cz,q, q =

1, . . . , QN}3z=1 from equation (4.16) to produce a folded image If1z , z = 1, . . . , 3. This

image can be secured by either the SVD or random security procedure also discussed

in Chapter 3.

2) Each folded image If1z , z = 1, . . . , 3 is then quantized and coded applying the pro-

cedure given in Section 4.2 to produce the folded images If1,△z , each containing the

coefficients from the sparse approximation (4.14) of Iz, with z = 1, . . . , 3.
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3) The set of indices {lq, q = 1, . . . , QN} from equation (4.16) are then stored using

either the “ad hoc” or “pixel” methods described receptively in Sections 4.4 and 4.7

to produce the folded image If2 .

4) The self contained folded image is then formed by the union of the two images

If1,△z , z = 1, . . . , 3 and If2 .

Remark 6. The self contained folded image Ifz resulting from the multi channel method

can be smaller than that for the single channel method but this will depend on how the

SR of the approximation is affected by the restriction of using only one set of indices for

all the colour planes.

4.9.3 Examining the CR

In this Section the CR resulting from the RGB folding approaches, is examined. To this

end an Experiment was performed over two sets of 55 true colour images. These were the

original RGB versions of the astronomical and natural images from Chapters 3 and 4.

Experimental Set Up

The astronomical and natural images were first partitioned into blocks and approximated

to a PSNRa of 45± 1× 10−2%.

The coefficients were secured by the random method given in Section 3.3.2 with two

seeds, s1 = 1.43398 × 106 and s2 = 2.365658978 × 109, which initialize the pseudoran-

dom number generators. The folded images containing these coefficients If1z , z = 1, . . . , 3,

were then quantized with u1 = 12 bits. This ensured the error δPSNR, between the

approximated and the recovered images was acceptable, that is a δPSNR ≤ 1× 10−1.

The indices were secured using the “pixel” method given in Section 4.7. The pseu-

dorandom number genereator required by this method was initialized by the seed s3 =

5.8453 × 107.

The private key for this Experiment was then the combination of these 3 seeds, with

the same key being used at both the folding and recovery stages.

This procedure was performed over the test images for three block sizes, N = 8, 16

and 24, and 8 dictionaries Dc,2
i , i = 1, . . . , 8.
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Figure 4.6: Average SR (x̄SR) over the 55, RGB astronomical images when atoms are
picked from the dictionaries Dc,2

i , i = 1, . . . , 8 using the single and multi channel methods.

The x̄SR is shown against the index i of each dictionary Dc,2
i , i = 1, . . . , 8 for each block

size N = 8, 16, 24. The solid lines indicates the x̄SR for the single channel method and the
dashed lines indicate the average x̄SR for the multi channel method.
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Figure 4.7: Average SR (x̄SR) over the 55, RGB natural images when atoms are picked
from the dictionaries Dc,2

i , i = 1, . . . , 8 using the single and multi channel methods. The

x̄SR is shown against the index i of each dictionary Dc,2
i , i = 1, . . . , 8 for each block size

N = 8, 16, 24. The solid lines indicates the x̄SR for the single channel method and the
dashed lines indicate the average x̄SR for the multi channel method.
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4.9.4 Results

Average SR, x̄SR

Figures 4.6 and 4.7 show the x̄SR for respectively the astronomical and natural image

sets. Each Figure shows the x̄SR resulting from the single and multi channel approxima-

tions when the images were processed in blocks N = 8, 16 and 24, against the dictionary

Dc,2
i , ı = 1, . . . , 8, used to make the approximation. Three general observations can be

made regarding the x̄SR:

1) The same general results regarding the x̄SR for the grey level astronomical and

natural images are seen for the RGB versions in Figures 4.6 and 4.7. That is the

x̄SR is greater for the astronomical images shown in Figure 4.6 than the natural

images shown in Figure 4.7, and the increase in x̄SR resulting from using larger

dictionaries is greater for the astronomical images than the natural ones.

2) The x̄SR for each block size N = 8, 16 and 24 for both the astronomical and natural

image sets is always higher for the single channel approximation.

3) For the astronomical images the x̄SR from multi channel approximation is highest

for the smallest block size N = 8. This is the opposite of the result for the single

channel approximation for dictionaries Dc,2
i , i = 3, . . . , 8 where the largest x̄SR is

produced when images are processed in the partition involving the largest block size

N = 24.

Average CR, x̄CR

Figures 4.8 and 4.9 show the x̄CR for respectively the astronomical and natural image

sets. Each Figure shows the x̄CR for the single and multi channel methods against the

dictionary Dc,2
i , i = 1, . . . , 8, for the 3 block sizes N = 8, 16 and 24. The CR results are

given below:

1) Figures 4.8 and 4.9 show that for all dictionaries Dc,2
i , i = 1, . . . , 8, and block sizes

N = 8, 16 and 24, the x̄CR > 1 over both image sets, for both the single and multi

channel methods.

2) When either the single or multi channel method is used the x̄CR over the astronomical

images is higher than the x̄CR over the natural images. This is due to the x̄SR for

the astronomical images being higher than the x̄SR for the natural images and is

identical to the result for the grey level versions used in Experiment 4.8.
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3) The multi channel method always produced a higher x̄CR over the astronomical and

natrual image sets, for each block size tested. This is a consequence of the x̄SR from

the initial approximation. The x̄SR for the multi channel approximation is close to

that of the single channel approximation. Therefore the inclusion of only a single

set of indices {lq, q = 1, . . . , QN} in self contained folded image, increases the x̄CR

over that of the single channel method.

4) The x̄CR over the astronomical images when a multi channel approximation is per-

formed, is higher for the smallest block size N = 8. This is because the x̄SR is

higher for N = 8, than for N = 16 and N = 24, in the results for the multi channel

approximation.

5) The x̄CR over the RGB astronomical images using the multi channel method with

N = 8 was higher for every dictionary Dc,2
i , i = 1, . . . , 8 than the x̄CR over the

grey level versions of the same astronomical images, shown in Figure 4.8 by the

thicker dashed line. The x̄CR over the RGB natural images using the multi channel

method was higher for every dictionary Dc,2
i , i = 1, . . . , 8 than the x̄CR and block

size N = 8, 16 and 24 than the x̄CR over the grey level versions of the same natural

images, shown in Figure 4.9 by the thicker dashed line.

6) To establish if the x̄CR over the astronomical images for the largest dictionary Dc,2
8

is significantly higher than for the smaller dictionaries Dc,2
i , i = 1, . . . , 7 a one tailed

paired sample t-test was performed. The results of this test are shown in Appendix

E.3.1 for the single and multi channel methods.

The result for the single channel method with N = 8 was: the average CR produced

by the largest dictionary Dc,2
8 is significantly higher than the average CR produced

by using all of the the smaller dictionaries except for Dc,2
6 , for a 95% confidence level.

For blocks with N = 16 and 24 the average CR produced by the largest dictionary

Dc,2
8 was significantly higher than the average CR produced by all of the the smaller

dictionaries, for a 95% confidence level.

The result for the multi channel method was: for all N = 8, 16 and 24, the average

CR produced by the largest dictionary Dc,2
8 is significantly higher than the average

CR produced by using all of the the smaller dictionaries for a 95% confidence level.

7) To establish if the x̄CR over the natural images for the largest dictionary Dc,2
8 is

significantly higher than for the smaller dictionaries Dc,2
i , i = 1, . . . , 7 a one tailed

paired sample t-test was performed. The results of this test are shown in Appendix
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Figure 4.8: Average CR (x̄CR) over the 55, RGB astronomical images when atoms are
picked from the dictionaries Dc,2

i , i = 1, . . . , 8 using the single and multi channel methods.

The x̄CR is shown against the index i of each dictionary Dc,2
i , i = 1, . . . , 8 for each block

size N = 8, 16, 24. The solid lines indicates the x̄CR for the single channel method and the
dashed lines indicate the average x̄CR for the multi channel method. The thick dashed
line is included to indicate the highest x̄CR result for each dictionary over the grey level
versions of the astronomical images.
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Figure 4.9: Average CR (x̄CR) over the 55, RGB natural images when atoms are picked
from the dictionaries Dc,2

i , i = 1, . . . , 8 using the single and multi channel methods. The

x̄CR is shown against the index i of each dictionary Dc,2
i , i = 1, . . . , 8 for each block size

N = 8, 16, 24. The solid lines indicates the x̄CR for the single channel method and the
dashed lines indicate the average x̄CR for the multi channel method. The thick dashed
line is included to indicate the highest x̄CR result for each dictionary over the grey level
versions of the natural images.
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E.3.1 for the single and multi channel methods.

The result for the single channel method with N = 8 was: the average CR produced

by the largest dictionary Dc,2
8 is significantly higher than the average CR produced

by using the two smaller dictionaries Dc,2
i , i = 1, 2, for a 95% confidence level. For

blocks with N = 16 and 24 the average CR produced by the largest dictionary

Dc,2
8 was significantly higher than the average CR produced by the three smaller

dictionaries Dc,2
i , i = 1, . . . , 3 and dictionary Dc,2

7 , for a 95% confidence level.

The result for the multi channel method with N = 8 and 16 was: the average CR

produced by the largest dictionary Dc,2
8 is significantly higher than the average CR

produced by using all of the the smaller dictionaries, for a 95% confidence level. For

N = 24 was, the average CR produced by the largest dictionary Dc,2
8 is significantly

higher than the average CR produced by using all of the the smaller dictionaries

except for Dc,2
6 , for a 95% confidence level.

Discussion

Both of the proposed methods produced compressed self contained folded versions of all

the RGB test images. That is all folded versions of the astronomical and natural images,

produced by either the single and multi channel methods resulted in x̄CR > 1.

The x̄SR over both sets of images when using the single channel method is always

greater than the multi channel because only one set of indices is used in the approximation

of the Red, Green and Blue colour plane. Conversely the x̄CR for the multi channel method

is always higher than the single channel method because only one set of indices needs to

be stored in the self contained folded image If .

The x̄CR was maximal for the astronomical images when processed using the smallest

block size, N = 8. This is the opposite of the result for the grey level images where the

x̄CR was greatest for the largest block size N = 24. The advantage of using this block

size, demonstrated in the Experiments in Chapter 2, is that it significantly reduces the

approximation processing time.

The multi channel method benefits from using larger dictionaries to a greater extent

than the single channel method. This is demonstrated by the significant increase in average

CR over both image sets, resulting from using the largest dictionary instead of the smaller

dictionaries Dc,2
i , i = 1, . . . , 5, when using the multi channel method.

Finally the multi channel method allowed RGB images to be compressed to a higher

x̄CR than their grey level versions.

157



Chapter 4 SELF CONTAINED ENCRYPTED IMAGE FOLDING

4.9.5 Folding Example

In this Section an example is given demonstrating the application of the single and multi

channel folding methods respectively from Sections 4.9.1 and 4.9.2.

Both folding procedures were applied to the “NGC 2440” image shown in the top

centre of Figure 4.10 from the Hubble Top 100 Images [83]. The image is composed of a

Red, Green and Blue channel with each channel composed of 1280 × 1280, 8 bit pixels.

The experimental set up used in the example is exactly the same as that used in the

previous two Experiments. Setting N = 8 each plane of the image was initially split into

square 8 × 8 blocks before being approximated to a PSNRa = 45 ± 1 × 10−2% by atoms

picked from dictionary Dc,2
8 .

The private key for this example was composed of the three seeds s1 = 1.43398 × 106

s2 = 2.365658978 × 109 and s3 = 5.8453 × 107 considered in the Experiments in Section

4.9.3. Each example demonstrates the recovery procedure using the correct private key ,

and an incorrect private key with the seeds s1 = 1.43398×106+1 and s2 = 2.365658978×

109 + 1.

Single Channel

The single channel method was applied to create the 241 × 1280 × 3 self contained folded

image If displayed in the centre of the third row of Figure 4.10.

The recovery was then performed, by the same private key as in the folding stage to

correctly recover the image. Due to the quantization of If1z , z = 1, 2, 3 with u1 = 12 bits

there was a difference between the PSNR of the approximated image IK and the recovered

image ĨK of 7.49 × 10−2%dB.

The recovery was then performed, using the incorrect private key which resulted in

the recovered image ĨK shown at the bottom of Figure 4.10 which is completely different

to the original image shown at the top of Figure 4.10.

Multi Channel

The multi channel method was applied to create the 196 × 1296 × 3 self contained folded

image displayed in the centre of the third row of Figure 4.11.

The recovery was then performed, by the same private key as in the folding stage to

correctly recover the image. Again due to the quantization of If1z , z = 1, 2, 3 with u1 = 12

bits there was a difference between the PSNR of the approximated image IK and the

recovered image ĨK of 6× 10−2%dB.
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The recovery was then performed, with the incorrect private key which resulted in the

recovered image ĨK shown at the bottom of Figure 4.11 which is completely different to

the original image shown at the top of Figure 4.11.

Discussion

This example demonstrates visually that the multi channel method can result in a folded

image requiring less storage than the single channel method. This size difference can be

observed in the third row of Figure 4.11, where the black border surrounding the multi

channel self contained folded image represents the size of the single channel self contained

folded image.

Both the single and multi channel method approximations result in images which

appear identical to each other when the approximation is up to the same PSNR. This can

be seen by comparing the top image in Figure 4.10 with the top image from Figure 4.11.

The single and multi channel methods successfully fold and recover the images with a

negligible loss in PSNR of respectively 7.49 × 10−2%dB and 6× 10−2%dB

4.10 Conclusions

Two methods have been proposed for storing the indices resulting from sparse approxi-

mations of an image. The first, referred to as the “ad hoc” method folds the vectors of

indices with the procedure outlined in Chapter 3. This approach can therefore be secured

with a private key , and either the SVD or random method, proposed in that Chapter.

Thus preventing a third party not in possession of the private key from recovering them.

An alternative, termed the “pixel” method applies the private key to initialize a simple

pseudorandom permutation of the indices. This prevents a third party not in possession

of the private key , from recovering them.

Both methods result in compressed versions of the original images, however it is clear

that the folding stage introduces some storage overhead into the compressed representa-

tion.

Experiments 4.5 and 4.8 calculate the average CR (x̄CR), for both variants of the self

contained folding procedure. The results of these Experiments show the x̄CR when the

“pixel” scheme is applied, is significantly higher than the x̄CR, for images folded with the

“ad hoc” method.

The result for both the “ad hoc” and “pixel” methods indicate, larger dictionaries only

offer an improvement in the folded CR, if the type of dictionary is suitable for making
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Figure 4.10: The image in the centre of the first row is the approximation IKz , z = 1, 2, 3 to
45.0039dB of the original RGB image of “NGC 2440” using a single channel approximation.
The three images from left to right on the second row show respectively the Red, Green
and Blue colour planes of this approximation. The small image in the centre of the third
row is the single channel self contained folded version of the top image. The three images
from left to right on the fourth row show respectively the Red, Green and Blue colour
planes of an attempt at recovery from the folded image using a private key different by 1
to the private key used at the folding stage. The image in the centre of the bottom row
is the recovered image RGB image using this incorrect private key .
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Figure 4.11: The image in the centre of the first row is the approximation IKz , z = 1, 2, 3 to
45.0021dB of the original RGB image of “NGC 2440” using a multi channel approximation.
The three images from left to right on the second row show respectively the Red, Green
and Blue colour planes of this approximation. The small image in the centre of the third
row is the multi channel self contained folded version of the top image. The black frame
around this image is set to the size of the single channel self contained folded version of the
top image to demonstrate the reduction in size resulting from the multi channel method.
The three images from left to right on the fourth row show respectively the Red, Green
and Blue colour planes of an attempt at recovery from the folded image using a private
key different by 1 to the private key used at the folding stage. The image in the centre of
the bottom row is the recovered image RGB image using this incorrect private key .
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sparse approximations, of the images being folded . If the dictionary is not suitable then

as the dictionary size increases the CR will fall.

Two methods have been proposed, and shown experimentally to produce self contained

folded RGB images with a CR greater than 1. The first a single channel method, simply

repeats the procedure proposed at the beginning of this Chapter, on each colour plane

of an RGB image. The second a multi channel method, operates by applying a modified

selection criteria, indicated in equation (4.15), during the approximation process. This

modification produces only one set of atom indices {lq, q = 1, . . . , QN}, instead of the

three {lz,q, q = 1, . . . , QN}3z=1, produced by the single channel approximation.

The multi channel modification was shown experimentally to reduce the average SR

from that of the single channel approximation. However the multi channel self contained

folded image, only requires one third of the indices stored by the single channel method.

Therefore with recourse to two test sets, each containing 55 images, the multi channel

method produced folded version of every image with a larger CR, than that produced by

the single channel method. Additionally this allowed the RGB images to be folded to a

higher average CR, than their corresponding grey level versions.

The multi channel method produced a significantly higher average SR with the largest

dictionary. This was over both the image corpus tested, implying the possibility that even

larger dictionaries will continue to increase the CR.

The security of both the proposed methods can be secured with private key to prevent

access to the;

• coefficients from the initial approximation. Applying either the SVD or random

methods proposed in Chapter 3, and

• the indices. Securing them with either the “ad hoc” or “pixel” scheme..

Finally an example was given applying both the single and multi channel approaches

to the same image. The results in Figure 4.11 show visually how much smaller the multi

channel self contained folded image is, than the corresponding single channel version.

162



5

Conclusions and Directions

for Future Work

Sparse signal representation can be realized by many techniques. Generally the specific

application or type of solution, dictates the approach which is undertaken. In this work the

specific application was to performing sparse approximations of images. That is finding

a method to attack the minimization problem shown in equation (1.12), repeated again

below,

min ‖c‖0 subject to ‖f −Dc‖ ≤ ρ.

In this work the combinatorial problem above was addressed by greedy pursuit strategies.

An approach whose suitability was ratified, by producing approximations sparse enough

to rival current image compression standards.

The investigation into sparse image approximations began in Chapter 2. The initial

investigation concentrated on sparse approximations of astronomical grey level images,

processed in square blocks, ofN×N pixels. These approximations were made by the greedy

algorithms, MP2D, OMP2D and OOMP. Of these algorithms OMP2D was established as

the most suitable, both in terms of sparsity and processing time. This identifies OMP2D

as an appropriate algorithm for making sparse approximations of astronomical images, but

more importantly it implies that it can be successfully applied to other classes of images
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as well.

When the size N , of the blocks partitioning the images, was increased, OMP2D pro-

duced even sparser representations. The only issue was the resulting processing time,

which for this algorithm, became prohibitive for larger blocks, especially when N = 32.

Therefore the choice of block size should be determined from the users priorities. A simple

rule of thumb which can be applied, is to process images in blocks with N = 32 if sparsity

is more important, if not use blocks with N = 8, because this smaller size still produces

very sparse representations.

The processing time for larger blocks was reduced, with the application of the newly

proposed SPMP2D1 algorithm. This algorithm is theoretically equivalent to OMP2D,

however it has a smaller memory footprint. It was shown experimentally, for N = 32,

to reduce the processing time over OMP2D, whilst maintaining an equivalent level of

sparsity. This result is encouraging and suggests that when N = 8, 16 and 24 images

should be approximated with OMP2D, and for N = 32, SPMP2D1 should be chosen.

The level of sparsity was highly dependant on the dictionary, or transform applied to

the image blocks. In the experiments in Chapter 2 images were approximated by both

the DCT and CDF9/7 wavelet transform as well as several dictionaries including, trained,

and, B-spline and wavelet based dictionaries. Of these, the trained dictionaries produced

the sparsest approximations, of the original test images. Therefore the prescription for

generating sparse image approximations should be, to process images in blocks with N =

32, choosing atoms from trained dictionaries, with SPMP2D1.

Applying the above prescription for producing sparse image approximations, made it

possible to implement a successful dictionary coding scheme. Success being a measure

of the schemes ability to produce compressed images, requiring less storage than those

produced by JPEG2000. The result is encouraging and implies that sparse approximations

should be considered as an important first step in a future image compression algorithm.

Chapter 3 proposed an image security approach, with possible applications in an online

image distribution service. It operates by securing some of the sparse coefficients produced

by OMP2D, in a procedure termed image folding . Both the SVD and random methods

were proposed for securing these coefficients. The SVD method relies on instability in

the calculation of singular vectors, corresponding to multiple zero singular values, and

the random method relies on a random transformation. Of the two the random security

scheme offered a larger keyspace, and therefore greater resistance to brute force attacks.

This method was therefore applied in the remaining chapter, for securing the hidden

coefficients.
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The folded image produced in Chapter 3 did not contain all the information required

to recover the original sparse approximation of an image. Therefore in Chapter 4 the

additional information was included and secured, by two alternative methods, producing

a so called, self contained folded image. Of the two security methods tested, the “pixel”

scheme was found to produce the smallest compressed images. Because of the promising

results this procedure was then extended from grey level to RGB true colour images.

Two alternative approaches were enlisted to approximate RGB colour images, made

with OMP2D. The first known as the single channel method simply repeated the procedure

for a grey level images on the, Red, Green, and Blue, planes of a colour image. The second,

multi channel method, instead operated on all three colour planes at once. Of the two, the

multi channel method was shown to produce the smallest compressed images, which were,

in all cases smaller than their compressed grey level counterparts. This method was also

shown to benefit, in terms of resulting CR from using the largest dictionary. This suggests

that the CR for the multi channel method may increase further, when approximations are

made with even larger dictionaries.

The resulting suggested path for producing self contained folded images, is therefore

to first produce the sparsest approximation possible, then to apply the “pixel” scheme as

described in Chapter 4. In addition if the original images are RGB colour images then the

multi channel procedure should be applied increase the CR of the folded image.

5.1 Future Directions

The results and experience gained through the research undertaken, suggest the following

directions for future research:

• Applying MP implementations to SPMP

The SPMP algorithm proposed operates on image blocks, recalculating all the inner

products at every iteration, thus making it impractical to apply to whole images at

once. Implementations of the MP algorithm with small support atoms, operate over

the whole image at once. This is achieved by, at each iteration, only recalculating

the inner products for regions of an image, which have been effected by the atom

chosen. Essentially the SPMP algorithm is two separate rounds of MP. When applied

to image blocks the largest an atom in a block can be is N , these atoms therefore

have small support as N ≤ 32. It is therefore possible to apply the SPMP algorithm

in the same way as MP, to process an entire image at once, instead of in blocks.

This would allow the sparse approximation performance of the OMP algorithm to
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be investigated, both with, and without blocking.

• Process images in blocks larger than 32× 32

In Chapter 2 the sparsity of the image approximations increased up until the largest

block size N tested. The largest block size tested was N = 32, because blocks

containing 32×32 pixels required a dramatic increase in processing time over blocks

of 24× 24, when processed with OMP2D. The newly proposed SPMP2D1 algorithm

was found to significantly reduce the processing time for larger blocks. Therefore

images could to be processed with N > 32 to investigate the effect this has on the

sparsity of the resulting approximations.

• Image coding

The proposed dictionary coding method produced promising compression results,

however it is not at an advance stage, suggesting that improvements can be made.

Therefore additional research should be undertaken into the possible ways of increas-

ing the compression performance.

• Increasing the number of perturbations applied in the SVD method

The size of the keyspace for the SVD method increases dramatically with the number

of perturbations. Experimentally only two perturbations were applied, therefore the

possibility of increasing the number of perturbations without effecting the quality of

the recovered images should be investigated.

• Larger dictionaries

The CR produced by the multi channel method on RGB images was highest, for

each N , for the largest dictionary. Therefore larger dictionary constructions should

be investigated to see if the CR can be increased further.

• Wavelet Domain

In both [48] and [86], images were first transformed into the CDF9/7 wavelet domain,

before performing sparse approximations. The authors of both papers found that

the results produced by this approach were superior, in terms of sparsity, to the same

approximations, when carried out in the pixel domain. This initial first step should

be applied within the framework of the experiments in Chapter 2, to investigate

whether both the SR and CR reported their can be increased.
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A

Matrix and Vector

Operations

A.1 Defining and Accessing Elements

A column vector v ∈ RN will always be represented using lower case bold font, the notation

for accessing each element of of v is v(n), n = 1, . . . , Nr. A row vector will be represented

as the transpose of this, that is vT where the superscript indicates the transpose operation,

is a row vector containing the same elements as v.

Accessing a range of elements from index i, inclusive to index n of a vector v ∈ RNr

will be indicate by the expression v(i : n).

The notation for constructing a column vector v ∈ RNr from the elements xn ∈ R, n =

1, . . . , Nr is

v = [x1;x2; . . . ;xNr ]

Alternatively a column vector v ∈ RNr can be constructed from two or more other

column vectors ui ∈ RNr,i , i = 1, . . . , l, with Nr =
∑l

i=1 Nr,i as,

v = [u1;u2; . . . ;ul].

A matrix M ∈ RNr×Nc will always be represented using upper case bold font. Each
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element in a matrix M can be accessed using the elements row nr, and column nc, indices,

as M(nr, nc), nr = 1, . . . , Nr, nc = 1, . . . , Nc.

The transpose of the matrix M ∈ RNr×Nc is denoted using the superscript T , as MT

where

MT (nc, nr) = M(nr, nc), nr = 1, . . . , Nr, nc = 1, . . . , Nc.

Each row or column of the matrix M ∈ RNr×Nc is accessed respectively using the

following notation M(nr, :), nr = 1, . . . , Nr or M(:, nc), nc = 1, . . . , Nc.

A new matrix M ∈ RNr×Nc can be constructed from two or more other matrices

Ni ∈ RNr×Nc,i , i = 1, . . . , l, with Nc =
∑l

i=1Nc,i as,

M = [N1,N2, . . . ,Nl]. (A.1)

If one or more of the matrices Ni ∈ RNr×Nc,i , i = 1, . . . , l above is a set of Nc,i column

vectors {un}
Nc,i

n=1 the construction is equivalent. That is if N2 = {un}
Nc,2

n=1 then M below

M = [N1, {un}
Nc,2

n=1 , . . . ,Nl],

is equivalent to that in equation (A.1).

A.2 Reshaping

A.2.1 From v ∈ R
NrNc to M ∈ R

Nr×Nc

The elements of a vector v ∈ RNrNc can be relabelled using column major order to become

the elements of a matrix M ∈ RNr×Nc , this procedure will be indicated using the M̂at(·)

operation as

M = M̂at(v, Nr, Nc).

The convention used for determining the pair of indices in M(nr, nc), nr = 1, . . . , Nr, nc =

1, . . . , Nc from the linear index in v(n), n = 1, . . . , NrNc is shown below

nr = n− (nc − 1)Nr, nc =

⌈
n

Nr

⌉
, n = 1, . . . , NrNc. (A.2)

The resulting matrix is then

M = M̂at(v) =




v(1) v(Nr + 1) · · · v(Nr(Nc − 1) + 1)

v(2) v(Nr + 2) · · · v(Nr(Nc − 1) + 2)
...

...
. . .

...

v(Nr) v(2Nr) · · · v(NrNc)



.
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A.2.2 From M ∈ R
Nr×Nc to v ∈ R

NrNc

The M̂at(·) operation can be reversed to relabel all the elements ofM ∈ RNr×Nc to become

the elements of a vector v ∈ RNrNc . This will be indicated by the V̂ec(·) operation as

v = V̂ec(M).

The convention for determining the linear index in v(n), n = 1, . . . , NrMc from the index

pair used in M(nr, nc), nr = 1, . . . , Nr, nc = 1, . . . , Nc is

n = (nc − 1)Nr + nr, nr = 1, . . . , Nr, nc = 1, . . . , Nc. (A.3)

The resulting vector in then,

v =[M(1, 1);M(2, 1); . . . ;M(Nr, 1);M(1, 2);M(2, 2); . . . ;M(Nr, 2); . . . . . . ;

M(1, Nc);M(2, Nc); . . . ;M(Nr, Nc)].

A.2.3 From V to v

A set of l vectors V = {ui ∈ RNr,i}li=1 can be placed one after the other in a larger vector

v ∈ RNr , with

Nr =

l∑

i=1

Nr,i.

This will be denoted using the F̂lat(·) operation as

v = F̂lat(V). (A.4)

The convention for assigning elements from the vectors in V to become elements of the

larger vector v is

v(n) = ui(nr), n =

i−1∑

m=1

Nr,m + nr nr = 1, . . . , Nr,i, i = 1, . . . , l,

that is

v =[u1(1); . . . ;u1(Nr,1);u2(1); . . . ;u2(Nr,2); . . . . . . ;ul(1); . . . ;ul(Nl)].

A.2.4 From v to V

The F̂lat(·) operation can be reversed to split a larger vector into a set of l smaller vectors,

where the size of each vector is stored in an additional vector n ∈ Rl, with

n(i) = Nr,i, i = 1, . . . , l.
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This is denoted using the Ŝet(·) operation as

V = Ŝet(v,n). (A.5)

The convention for assigning elements from the the large vector w to become elements of

the vectors in V is

ui(nr) = v(n), nr = n−
i−1∑

m=1

Nr,m, i = argmin
h

(
h∑

m=1

Nr,m ≥ n

)
, n = 1, . . . , Nr,

that is

u1 =v(1, . . . , Nr,1),

u2 =v(Nr,1 + 1, . . . , Nr,1 +Nr,2),

. . .

ul =v(Nr,l−1 + 1, . . . , Nr).

A.3 Inner Products and Norms

The following definitions have been taken from [78,94,95].

A.3.1 Vector Inner Product

Definition 3. The inner product between two real matrices v ∈ RNr and u ∈ RNr denoted

〈v,u〉 is defined as:

〈v,u〉 =
Nr∑

nr=1

v(nr)u(nr) (A.6)

A.3.2 Euclidean Norm

Definition 4. The Euclidean norm of a vector v ∈ RNr denoted ‖v‖ is defined as:

‖v‖ = (〈v,v〉)
1

2 (A.7)

A.3.3 Frobenius Inner Product

Definition 5. The Frobenius inner product between two real matrices M ∈ RNr×Nc and

N ∈ RNr×Nc, denoted 〈M,N〉F is defined as:

〈M,N〉F =

Nr∑

nr=1

Nc∑

nc=1

M(nr, nc)N(nr, nc). (A.8)
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A.3.4 Frobenius Norm

Definition 6. The Frobenius norm of a matrix Z ∈ RNr×Nc, denoted ‖M‖F is defined

as:

‖M‖F = (〈M,M〉F )
1

2 . (A.9)

A.4 Kronecker Product

Definition 7. The Kronecker product between two real vectors v ∈ RNr and u ∈ RNc,

denoted v ⊗ u is defined as:

v⊗ u =




v(1)u(1) v(1)u(2) · · · v(1)u(Nc)

v(2)u(1) v(2)u(2) · · · v(2)u(Nc)
...

...
. . .

...

v(Nr)u(1) v(Nr)u(2) · · · v(Nr)u(Nc)



.

Definition 8. The Kronecker product between two real matrices M ∈ RNr×Nc and N,

denoted M⊗N is defined as:

M⊗N =




M(1, 1)N M(1, 2)N · · · M(1, Nc)N

M(2, 1)N M(2, 2)N · · · M(2, Nc)N
...

...
. . .

...

M(Nr, 1)N M(Nr, 2)N · · · M(Nr, Nc)N



.
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B

B-Spline Dictionary

Construction

The B-spline atoms are constructed using the procedure detailed in [2] repeated below for

completeness.

We consider equally spaced knots so that the corresponding B-splines are called car-

dinal. All the cardinal B-splines of order m can be obtained from one cardinal B-spline

B(x) associated with the uniform simple knot sequence δ = 0, 1, . . . ,m. Such a function

is given as [96]

Bm(x) =
1

m!

m∑

i=0

(−1)i
(
m

i

)
(x− i)m−1

+ , (B.1)

where (x− i)m−1
+ is equal to (x− i)m−1 if x− i > 0 and 0 otherwise. We shall consider only

B-Splines of order m = 2 and m = 4 and include associated derivatives. For m = 2 the

corresponding space is the space of piece wise linear functions and can be spanned by a

linear B-spline basis, or dictionaries of broader support, arising by translating a prototype

‘hat’ function. Equivalently, the cubic spline space corresponding to m = 4 is spanned

by the usual cubic B-spline basis, or dictionaries of cubic B-spline functions of broader

support. Details on how to build B-spline dictionaries are given in [79,80]. The numerical

construction of the cases m = 2 and m = 4 considered here is very simple and arises by

translations of the prototype functions given below:
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Bl
2(x) =





x

l
if 0 ≤ x < l (B.2a)

2−
x

l
if l ≤ x < 2l (B.2b)

0 otherwise. (B.2c)

Bl
4(x) =





x3

6l3
if 0 ≤ x < l (B.3a)

−
x3

2l3
+ 2

x2

l2
− 2

x

l
+

2

3
if l ≤ x < 2l (B.3b)

x3

2l3
− 4

x2

l2
+ 10

x

l
−

22

3
if 2l ≤ x < 3l (B.3c)

−
x3

6l3
+ 2

x2

l2
− 8

x

l
+

32

3
if 3l ≤ x < 4l (B.3d)

0 otherwise. (B.3e)

The B-spline basis for the cardinal spline space corresponding to m = 2 is constructed by

considering l = 1 in (B.2) and translating the prototype every knot. Dictionaries for the

identical space of functions of broader support arise by setting l ∈ N in order to fix the

desired support. The B-spline basis for the cubic cardinal spline space, corresponding to

m = 4, requires to set l = 1 in (B.3) and translate the concomitant prototype. Dictionaries

are obtained by taking larger values of l.

As discussed below, derivatives of the above functions also provide suitable prototypes

to achieve higher levels of sparsity in the representation of a signal. Now, for constructing

dictionaries for digital image processing we need to

a) Discretize the functions to obtain adequate Euclidean vectors.

b) Restrict the functions to intervals which allows images to be approximated in small

blocks.

We carry out the discretization by taking the value of a prototype function only at the

knots (c.f. small circles in graphs Fig. 2.2) and translating the prototype one sampling

point at each translation step. At the boundaries we apply the ‘cut off’ approach and keep

all the vectors whose support has nonzero intersection with the interval being considered.

Remark 7. It is worth mentioning that by the proposed discretization the hat B-spline basis

for the corresponding interval becomes the standard set of vectors forming a Euclidean

basis for the space RN . The matrix Dc
2 is constructed from these Euclidean vectors as

shown below

Dc
2(n,m) = Y 2

2 (n−m+ 1), n = 1, . . . , N,m = 1 . . . ,M. (B.4)

By discretizing the hats of broader support the samples preserve the hat shape.
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As mentioned earlier for a finite dimension Euclidean space one can construct arbitrary

dictionaries. In particular, redundant B-spline based dictionaries with prototypes of differ-

ent support and shapes arising from the functions (B.2) and (B.3) and their corresponding

derivatives.

Indicating as d1Bl
m(x) the derivative of Bl

m(x) and as d2Bl
m(x) its second deriva-

tive, in addition to linear and cubic B-splines we shall consider the additional prototypes

d1Bl
2(x), d

1Bl
4(x) and d2Bl

4(x). The union of the following 8 sets of vectors,

{biY
s
m(n− i+ 1);n = j, . . . , N + j − 1}Ms

i=1, m = 2, 4, s = 1, 2, 3, 5, 6, 7, 8, 9,

with bi, i = 1, . . . ,Ms the normalization constants, forms a set of different supports j.

The matrix Dc
3 referred to as the RDBS dictionary is constructed from this set of vectors,

with each one forming a column of Dc
3. Each column of Dc

3 will therefore contain N

discrete values, with j representing the length of the supports, which are, respectively

1, 3, 5, 2, 4, 7, 7, 7 for s = 1, 2, 3, 5, 6, 7, 8, 9.

The arrays Y s
2 , s = 1, 2, 3, Y 7

4 , shown consecutively in the left graph of Fig. 2.2, and

Y s
2 , s = 5, 6, Y s

4 , s = 8, 9 shown consecutively in the right graph of the same figure, are

defined as follows:

Y s
2 =

{
Bl

2, l = 1, 2, 3, 4 for s=1,2,3,4 (respectively) (B.5a)

d1Bl
2, l = 2, 3 for s=5,6 (respectively). (B.5b)

Y s
4 =





B2
4 for s=7 (B.6a)

d1B2
4 for s=8 (B.6b)

d2B2
4 for s=9. (B.6c)

The cut off approach applied to the boundaries implies that the numbers Ms of total

atoms in the sth-dictionary varies according to the atom’s support.
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C Separable ILS-DLA

The separable ILS-DLA with OMP2D is applied up to iteration J to find the row and

column dictionaries Dc,(J) ∈ RNc×Mc and Dr,(J) ∈ RNr×Mr using the following steps.

Begin by choosing, a tolerance ρ for OMP2D, a dictionary convergence parameter τ ,

initial dictionaries Dc,(0) ∈ RNc×Mc and Dr,(0) ∈ RNr×Mr , and a set of Q image blocks

Xq ∈ RNr×Nc , q = 1, . . . , Q, taken from a set of training images. The algorithm at iteration

i+ 1 then evolves as follows:

a) Using OMP2D with dictionaries Dc,(i) and Dr,(i), find a sparse representation of

each image block Xq ∈ RNr×Nc , q = 1, . . . , Q, as

X
Kq
q =

Kq∑

k=1

Dc,(i)(:, lc,(i)q (k))c(i)q (k)(Dr,(i)(:, lr,(i)q (k))T ,

subject to ‖X
Kq
q −Xq‖ < ρ, for q = 1, . . . , Q.

b) Fixing the vectors of coefficients and indices respectively to be c
(i)
q and (l

c,(i)
q , l

r,(i)
q )

the idea is to find a solution, Dc,(i+1) and Dr,(i+1), to the following sets of equations

Xq =

Kq∑

k=1

Dc,(i+1)(:, lc,(i)q (k))c(i)q (k)(Dr,(i+1)(:, lr,(i)q (k)))T , q = 1, . . . , Q. (C.1)
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Because these equations cannot be reduced to a linear problem they are reduced to

two linear problems.

First equation (C.1) is simplified to become

Xq = Dc,(i+1)K(i)
q (Dr,(i+1))T , q = 1, . . . , Q, (C.2)

where the matrices K
(i)
q ∈ RMc×Mr contain zeros, except at positions

K(i)
q (lc,(i)q (k), lr,(i)q (k)) = c(i)q (k), k = 1, . . . ,Kq.

A solution to equation (C.2) is then found by recursively solving the two least squares

problems below, until both ‖Dr,(i+1) −Dr,(i)‖ < τ , and ‖Dc,(i+1) −Dc,(i)‖ < τ , are

satisfied.

1) Fix the row dictionary to be Dr,(i), and find the least squares solution Dc,(i+1),

to the sets of equations

Xq = Dc,(i+1)Kr,(i)
q , q = 1, . . . , Q, (C.3)

with

Kr,(i)
q = K(i)

q (Dr,(i))T .

2) Use the solution to equation (C.3) to find the least squares solution, Dr,(i+1) to

Xq = Kc,(i)
q (Dr,(i+1))T , q = 1, . . . , Q,

with

Kc,(i)
q = Dc,(i+1)K(i)

q .
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D SPMP2D Pseudo Code

Algorithm 1 [IK , c]← SPMP2D(I,Dr,Dc, ρ, τ)

Input: I ∈ RNr×Nc ; Dc ∈ RNc×Mc with ‖Dc(:,mc)‖ = 1,mc = 1, . . . ,Mc;

Dr ∈ RNr×Mr with ‖Dr(:,mr)‖ = 1,mr = 1, . . . ,Mr; ρ > 0; τ > 0; p ≥ 1.

Output: IK ∈ RNr×Nc ; c ∈ RK .

Initialize: Γ← {∅}, R← I, k ← 1, Error1 ← 2ρ.

while Error1 > ρ do

i← 1

while Error1 > ρ and i ≤ p do

[{lc(k), lr(k)}, c] ← Select Atom MP(R,Dc,Dr)

[R,Error1]← Update Residual(R, c,Dc(:, k),Dr(:, k))

[c, k,Γ]← Update Coefficient(c, c, {lc(k), lr(k)},Γ, k)

i← i+ 1

end while

[R, c,Error1]← ProjMP2D(R,Dc(:, lc),Dr(:, lr),Γ, c, ρ)

end while

IK ← I−R
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Algorithm 2 [{lc(k), lr(k)}, c]← Select Atom MP(R,Dc,Dr)

A = |DcR(Dr)T |

{lc(k), lr(k)} ← max(A) // row and column index of the maximum element in A

c← A(lc(k), lr(k))

Algorithm 3 [c, k,Γ]← Update Coefficient(c, c, {lc(k), lr(k)},Γ, k)

if Γ contains {lc(k), lr(k)} then

c(i)← c(i) + c, with i such that Γ(i) = {lc(k), lr(k)}

else

c(k)← c

Γ← Γ ∪ {lc(k), lr(k)}

k ← k + 1 // a new atom has been chosen

end if

Algorithm 4 [R,Error1]← Update Residule(R, c,Dc(:, k),Dr(:, k))

R← R−Dc(:, k)Dr(:, k)T c

Error1 ← ‖R‖F

Algorithm 5 [R, c]← ProjMP2D(R,Dc(:, lc),Dr(:, lr),Γ, c, ρ)

1: Initialize: c← 2ρ

2: while c > ρ do

3: [l, c]← Select Atom(R,Dc(:, lc),Dr(:, lr), k)

4: [R,Error1]← Update Residual(R, c,Dc(:, lc(l)),Dr(:, lr(l)))

5: c(l) = c(l) + c

6: end while

Algorithm 6 [l, c]← Select Atom(R,Dc(:, lc),Dr(:, lr), k)

for i = 1 to k do

a(i)← Dc(:, lc(i))TRDr(:, lr(i))

end for

l← max(a) // index of the maximum element in a

c← a(l)
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E Paired Sample t-tests

E.1 Sparse Image Representation with Greedy Algorithms

E.1.1 Sparsity of Greedy Algorithms

SR produced by OMP2D and SPMP2D10

A one tailed paired sample t-test was performed over the 45 astronomical sample images

to determine if the SR produced by choosing atoms from the RDC-RDBS dictionary using

OMP2D was significantly higher than using SPMP2D10. The test was performed for

each block size N = 8, 16, 24, 32. The mean sample SR for OMP2D and SPMP2D10 are

respectively denoted as x̄1 and x̄2.

The null hypothesis (H0) is that the SR for both OMP2D and SPMP2D10 is the same,

µ1 = µ2. The alternative hypothesis (H1) is that the SR produced by using OMP2D is

greater than the that produced by SPMP2D10, µ1 > µ2.

The results of the paired sample t-test are shown in Table 2.1. Table 2.1 shows the

difference between the sample mean for OMP2D and SPMP2D10, x̄d, the sample standard

deviation, the t-statistic and the p-value for N = 8, 16, 24, 32. The test has 44 degrees of

freedom and the critical t-value for the test with α = 0.05 is 1.68.
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N x̄d sd t-statistic p-value

8 1.57 × 10−1 5.45× 10−1 1.93 0.03

16 1.84 × 10−1 5.02× 10−1 2.46 < 0.01

24 1.59 × 10−1 3.83× 10−1 2.79 < 0.01

32 1.49 × 10−1 2.97× 10−1 3.37 < 0.01

Table E.1: Results of one tailed paired t-test undertaken on the 45 grey level astronomical
images to determine if the SR produced by choosing atoms from the RDC-RDBS dictionary
using OMP2D is significantly higher than using SPMP2D10. The results are shown for
N = 8, 16, 24, 32. The mean sample SR for OMP2D and SPMP2D10 are respectively
denoted as x̄1 and x̄2 with the sample mean and standard deviation being respectively
x̄d = x̄1 − x̄2 and sd. The null hypothesis (H0) is that the population mean is zero and
alternative hypothesis (Ha) is that population mean is greater than zero, the test has 44
degrees of freedom and the critical t-value is 1.68.

Table 2.1 shows that for all N there is enough evidence to reject the null hypothesis

in favour of the alternative hypothesis at the 95% confidence level. That is the SR result-

ing from approximating using OMP2D is significantly higher than the SR resulting from

approximating using SPMP2D10.

SR produced by OMP2D and SPMP2D1 for N = 24, 32

A one tailed paired sample t-test was performed over the 45 astronomical sample images

to determine if the SR produced by choosing atoms from the RDC-RDBS dictionary with

N = 24, 32 is significantly higher for OMP2D than for SPMP2D1. The mean sample SR

for OMP2D and SPMP2D1 are respectively denoted as x̄1 and x̄2.

The null hypothesis (H0) is that the SR for both OMP2D and SPMP2D1 is the same

µ1 = µ2. The alternative hypothesis (H1) is that the SR produced by using OMP2D is

larger than the that produced by SPMP2D1, µ1 > µ2.

For N = 24 the difference between the sample means shown in column 3 rows 1 and 3

of Table 2.1 respectively for OMP2D and SPMP2D1 is, x̄d = −0.04. Therefore for N = 24

the SR for OMP2D is not significantly higher than for SPMP2D1.

For N = 32 the difference between the sample means shown in column 3 rows 1 and

3 of Table 2.1 respectively for OMP2D and SPMP2D1 is, x̄d = 6.32 × 10−3, the sample

standard deviation is sd = 3.04 × 10−1, the t-statistic is 1.40 × 10−1 and the p-value is

0.44. The test has 44 degrees of freedom and the critical t-value for the test with α = 0.05

is 1.68. Therefore for N = 32 there is not enough evidence to reject the null hypothesis

in favour of the alternative hypothesis at a 95% confidence level. That is for N = 32 the
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SR for OMP2D is not significantly greater than SPMP2D1.

Processing time for OMP2D and SPMP2D1 with N = 24, 32

A one tailed paired sample t-test was performed over the 45 astronomical sample images

to determine if the processing time resulting from choosing atoms from the RDC-RDBS

dictionary with N = 24, 32 is significantly higher for OMP2D than for SPMP2D1. The

mean sample processing time for OMP2D and SPMP2D1 are respectively denoted as x̄1

and x̄2.

The null hypothesis (H0) is that the processing time for both OMP2D and SPMP2D1

is the same µ1 = µ2. The alternative hypothesis (H1) is that the processing time when

using OMP2D is larger than by SPMP2D1, µ1 > µ2.

For N = 24 the difference between the sample means shown in column 3 rows 1 and

3 of Table 2.1 respectively for OMP2D and SPMP2D1 is, x̄d = 1.83, the sample standard

deviation is sd = 11.28, the t-statistic is 1.09 and the p-value is 0.14. The test has 44

degrees of freedom and the critical t-value for the test with α = 0.05 is 1.68. Therefore

for N = 24 there is not enough evidence to reject the null hypothesis in favour of the

alternative hypothesis at a 95% confidence level. That is for N = 24 the processing time

for OMP2D is not significantly greater than SPMP2D1.

For N = 32 the difference between the sample means shown in row 4 columns 1 and 3

of Table 2.1 respectively for OMP2D and SPMP2D1 is, x̄d = 88.31, the sample standard

deviation is sd = 88.00, the t-statistic is 6.73 and the p-value is < 0.01. The test has 44

degrees of freedom and the critical t-value for the test with α = 0.05 is 1.68. Therefore for

N = 32 there is enough evidence to reject the null hypothesis in favour of the alternative

hypothesis at a 95% confidence level. That is for N = 32 the processing time for OMP2D

is significantly greater than SPMP2D1.

E.1.2 Dictionary Selection

Dc,1
3 (RDCT-RDW) and Dc,1

4 (RDCT-RR)

A one tailed paired sample t-test was performed over the 45 astronomical and natural

sample images to determine if the SR produced by approximating using OMP2D with

either the the Dc,1
3 dictionary or the Dc,1

4 dictionary is the same for these two image

corpus. The test was performed for each block size N = 8, 16, 24, 32. The mean sample

SR for Dc,1
3 and Dc,1

4 are respectively denoted as x̄1 and x̄2.

The null hypothesis (H0) is that the SR produced by OMP2D using each dictionary
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45 Grey Level Astronomical Images

N x̄d sd t-statistic p-value

8 2.89 × 10−1 2.24× 10−1 8.53 < 0.01

16 3.16 × 10−1 4.29× 10−1 4.87 < 0.01

24 2.51 × 10−1 5.18× 10−1 3.21 < 0.01

32 2.00 × 10−1 5.60× 10−1 2.37 0.01

45 Grey Level Natural Images

N x̄d sd t-statistic p-value

8 7.07 × 10−2 5.82× 10−2 8.07 < 0.01

16 5.74 × 10−1 1.36 2.81 < 0.01

24 6.22 × 10−1 1.36 3.05 < 0.01

32 6.13 × 10−1 1.37 2.97 < 0.01

Table E.2: Results of one tailed paired t-test undertaken on 45, grey level astronomical
and natural images to determine if the SR produced by the approximation with OMP2D
using either dictionary Dc,1

3 or dictionary Dc,1
4 is equivalent. The results are shown for

N = 8, 16, 24, 32. The mean sample SR for Dc,1
3 and Dc,1

4 are respectively denoted as x̄1
and x̄2 with the sample mean and standard deviation being respectively x̄d = x̄1 − x̄2
and sd. The null hypothesis (H0) is that the population mean is zero and alternative
hypothesis (Ha) is that population mean is greater than zero, the test has 44 degrees of
freedom and the critical t-value is 1.68.

is equivalent, µ1 = µ2. The alternative hypothesis (H1) is that the SR produced by the

Dc,1
3 dictionary is greater, µ1 > µ2.

Table E.2 shows the difference between the sample means x̄d = x̄1 − x̄2, the sample

standard deviation sd, the t-statistic and the p-value for the astronomical and natural

image sets. The test has 44 degrees of freedom and the critical t-value for the test with

α = 0.05 is 1.67.

For both image corpus shown in Table E.2 there is enough evidence to reject the null

hypothesis in favour of the alternative hypothesis at a 95% confidence level all block sizes

N = 8, 16, 24, 32. That is the average SR produced by dictionary Dc,1
3 is significantly

higher than that produced by dictionary Dc,1
4 .

Dc,1
2 (RDCT-RDBS) and Dc,1

3 (RDCT-RDW)

A one tailed paired sample t-test was performed over the 45 natural sample images to

determine if the SR produced by approximating using OMP2D with either the the Dc,1
2

dictionary or the Dc,1
3 dictionary is the same for these two image corpus. The test was
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45 Grey Level Natural Images

N x̄d sd t-statistic p-value

8 1.55 × 10−1 1.61× 10−1 6.41 < 0.01

16 3.76 × 10−1 4.47× 10−1 5.57 < 0.01

24 4.82 × 10−1 6.77× 10−1 4.72 < 0.01

32 5.21 × 10−1 7.54× 10−1 4.58 < 0.01

Table E.3: Results of one tailed paired t-test undertaken on 45, grey level natural images to
determine if the SR produced by the approximation with OMP2D using either dictionary
Dc,1

2 or dictionary Dc,1
3 is equivalent. The results are shown for N = 8, 16, 24, 32. The

mean sample SR for Dc,1
2 and Dc,1

3 are respectively denoted as x̄1 and x̄2 with the sample
mean and standard deviation being respectively x̄d = x̄1− x̄2 and sd. The null hypothesis
(H0) is that the population mean is zero and alternative hypothesis (Ha) is that population
mean is greater than zero, the test has 44 degrees of freedom and the critical t-value is
1.68.

performed for each block size N = 8, 16, 24, 32. The mean sample SR for Dc,1
2 and Dc,1

3

are respectively denoted as x̄1 and x̄2.

The null hypothesis (H0) is that the SR produced by OMP2D using each dictionary

is equivalent, µ1 = µ2. The alternative hypothesis (H1) is that the SR produced by the

Dc,1
2 dictionary is greater, µ1 > µ2.

Table E.3 shows the difference between the sample means x̄d = x̄1 − x̄2, the sample

standard deviation sd, the t-statistic and the p-value for the natural image set. The test

has 44 degrees of freedom and the critical t-value for the test with α = 0.05 is 1.67.

For the natural image corpus shown in Table E.3 there is enough evidence to reject

the null hypothesis in favour of the alternative hypothesis at a 95% confidence level for

all block sizes N = 8, 16, 24, 32. That is the average SR produced by the RDC-RDBS

dictionary, Dc,1
2 is significantly higher than that produced by the RDCT-RDWdictionary

Dc,1
3 .

Dc,1
5 (RDCT-RDW) and Dc,1

3 (RDCT-SM)

A one tailed paired sample t-test was performed over the 45 astronomical and natural

sample images to determine if the SR produced by approximating using OMP2D with

either the the Dc,1
5 dictionary or the Dc,1

3 dictionary is the same for these two image

corpus. The test was performed for each block size N = 8, 16, 24, 32. The mean sample

SR for Dc,1
5 and Dc,1

3 are respectively denoted as x̄1 and x̄2.

The null hypothesis (H0) is that the SR produced by OMP2D using each dictionary
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45 Grey Level Astronomical Images

N x̄d sd t-statistic p-value

8 5.85 × 10−1 6.11 × 10−1 6.35 < 0.01

16 1.10 1.29 5.65 < 0.01

24 1.42 1.62 5.81 < 0.01

32 1.60 1.80 5.90 < 0.01

45 Grey Level Natural Images

N x̄d sd t-statistic p-value

8 2.63 × 10−1 1.31 × 10−1 −13.26 > 0.99

16 1.92 × 10−1 1.46 × 10−1 −8.73 > 0.99

24 −1.53× 10−1 1.66 × 10−1 −6.12 > 0.99

32 −1.50× 10−1 1.65 × 10−1 −6.03 > 0.99

Table E.4: Results of one tailed paired t-test undertaken on 45, grey level astronomical
and natural images to determine if the SR produced by the approximation with OMP2D
using either dictionary Dc,1

5 or dictionary Dc,1
3 is equivalent. The results are shown for

N = 8, 16, 24, 32. The mean sample SR for Dc,1
5 and Dc,1

3 are respectively denoted as x̄1
and x̄2 with the sample mean and standard deviation being respectively x̄d = x̄1 − x̄2
and sd. The null hypothesis (H0) is that the population mean is zero and alternative
hypothesis (Ha) is that population mean is greater than zero, the test has 44 degrees of
freedom and the critical t-value is 1.68.

is equivalent, µ1 = µ2. The alternative hypothesis (H1) is that the SR produced by the

Dc,1
5 dictionary is greater, µ1 > µ2.

Table E.4 shows the difference between the sample means x̄d = x̄1 − x̄2, the sample

standard deviation sd, the t-statistic and the p-value for the astronomical and natural

image sets. The test has 44 degrees of freedom and the critical t-value for the test with

α = 0.05 is 1.67.

For the astronomical image corpus shown in the top of Table E.4 there is enough

evidence to reject the null hypothesis in favour of the alternative hypothesis at a 95%

confidence level all block sizes N = 8, 16, 24, 32. That is the average SR produced by the

smaller dictionary, Dc,1
5 is significantly higher than that produced by dictionary Dc,1

3 .

For the natural image corpus shown in the bottom of Table E.4 there is not enough

evidence to reject the null hypothesis in favour of the alternative hypothesis at a 95%

confidence level all block sizes N = 8, 16, 24, 32. That is the average SR produced by the

smaller dictionary, Dc,1
5 is not significantly higher than that produced by dictionary Dc,1

3 .
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Dc,1
7 (TS2) and Dc,1

2 (RDCT-RDBS)

A one tailed paired sample t-test was performed over the 45 astronomical and natural

sample images to determine if the SR produced by approximating using OMP2D with

either the theDc,1
7 dictionary or theDc,1

2 dictionary is the same for these two image corpus.

The test was performed for each block size N = 8, 16, 24, 32, including an additional test

for N = 24 using dictionary Dc,1
7 against N = 32 for dictionary Dc,1

2 shown in the bottom

of Table E.5. The mean sample SR for Dc,1
7 and Dc,1

2 are respectively denoted as x̄1 and

x̄2.

The null hypothesis (H0) is that the SR produced by OMP2D using each dictionary

is equivalent, µ1 = µ2. The alternative hypothesis (H1) is that the SR produced by the

Dc,1
7 dictionary is greater, µ1 > µ2.

Table E.5 shows the difference between the sample means x̄d = x̄1 − x̄2, the sample

standard deviation sd, the t-statistic and the p-value for the astronomical and natural

image sets. The test has 44 degrees of freedom and the critical t-value for the test with

α = 0.05 is 1.67.

For the astronomical image corpus shown in the top of Table E.5 there is enough

evidence to reject the null hypothesis in favour of the alternative hypothesis at a 95%

confidence level all block sizes N = 8, 16, 24, 32. That is the average SR produced by the

trained dictionary, Dc,1
7 is significantly higher than that produced by dictionary Dc,1

2 .

For the natural image corpus shown in the bottom of Table E.5 there is enough evidence

to reject the null hypothesis in favour of the alternative hypothesis for block sizes N =

8, 16, 24 and not enough evidence for N = 32, both at a 95% confidence level. That is

the average SR produced by the trained dictionary, Dc,1
7 is significantly higher than that

produced by dictionary Dc,1
2 for blocks when N = 8, 16, 24 and the average SR produced

by the trained dictionary, Dc,1
7 is not significantly higher than that produced by dictionary

Dc,1
2 for blocks when N = 32.

Even though the SR produced by Dc,1
7 for N = 32 is not significantly higher than

dictionary Dc,1
2 , the SR for Dc,1

7 with N = 24 is , shown in the last row of Table E.5.

E.1.3 Image Compression

TS3, JPEG, JPEG2000

A one tailed paired sample t-test was performed over the 45 astronomical and natural

sample images to determine if the number of bpp required when approximating using

OMP2D with N = 32 using the the trained dictionary Dc,1
8 is significantly different to
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45 Grey Level Astronomical Images

N x̄d sd t-statistic p-value

8 1.09 8.91× 10−1 8.12 < 0.01

16 1.4 2.02 5.08 < 0.01

24 1.47 2.45 3.97 < 0.01

32 1.12 2.64 2.83 < 0.01

45 Grey Level Natural Images

N x̄d sd t-statistic p-value

8 3.29× 10−1 2.23× 10−1 9.50 < 0.01

16 2.44× 10−1 2.93× 10−1 5.53 < 0.01

24 1.30× 10−1 3.28× 10−1 2.43 < 0.01

32 −1.06 × 10−1 5.61× 10−1 −1.26 0.89

24 9.03× 10−2 3.40× 10−1 1.76 0.04

Table E.5: Results of one tailed paired t-test undertaken on 45, grey level astronomical
and natural images to determine if the SR produced by the approximation with OMP2D
using either dictionary Dc,1

7 or dictionary Dc,1
2 is equivalent. The results are shown for

N = 8, 16, 24, 32 for both image sets. An additional result is shown for the natural images
set, comparing the SR for Dc,1

7 with N = 24 to that of Dc,1
2 with N = 32. The mean

sample SR for Dc,1
7 and Dc,1

2 are respectively denoted as x̄1 and x̄2 with the sample mean
and standard deviation being respectively x̄d = x̄1 − x̄2 and sd. The null hypothesis (H0)
is that the population mean is zero and alternative hypothesis (Ha) is that population
mean is greater than zero, the test has 44 degrees of freedom and the critical t-value is
1.68.
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the that produced by the JPEG2000 algorithm. The mean sample number of bpp for

JPEG2000 and Dc,1
8 are respectively denoted as x̄1 and x̄2.

The null hypothesis (H0) is that number of bpp produced equivalent for JPEG2000

and OMP2D with N = 32 using dictionary Dc,1
8 , µ1 = µ2. The alternative hypothesis

(H1) is that the number of bpp produced when using OMP2D with N = 32 and dictionary

Dc,1
8 is greater, µ1 > µ2.

Table E.6 shows the difference between the sample means x̄d = x̄1 − x̄2, the sample

standard deviation sd, the t-statistic and the p-value for the astronomical and natural

image sets. The test has 44 degrees of freedom and the critical t-value for the test with

α = 0.05 is 1.67.

For both the astronomical and natural image corpus shown in Table E.6 there is not

enough evidence to reject the null hypothesis in favour of the alternative hypothesis for

lower 3 levels of PSNR, and enough evidence to reject the null hypothesis for the highest

level of PSNR at a 95% confidence level. That is for astronomical and natural images the

average number of bpp produced by JPEG2000 is significantly higher than that produced

by the trained dictionary, Dc,1
8 for the highest quality approximation tested, of respectively

45.43dB and 46.45dB.

An additional test was performed using the same parameters on the astronomical image

set to determine if the number of bpp required when approximating using OMP2D with

N = 32 using the the trained dictionary Dc,1
8 is significantly higher than produced by the

JPEG algorithm for PSNR of 45.43dB. The mean sample number of bpp for JPEG and

Dc,1
8 are respectively denoted as x̄1 and x̄2.

The null hypothesis (H0) is that number of bpp produced equivalent for JPEG and

OMP2D with N = 32 using dictionary Dc,1
8 , µ1 = µ2. The alternative hypothesis (H1) is

that the number of bpp produced when using JPEG is greater, µ1 > µ2.

The results for this test, displayed in the last row of the top of Table E.6, show there is

enough evidence to reject the null hypothesis in favour of the alternative hypothesis at a

95% confidence level. That is for the astronomical image corpus the average number of bpp

produced by JPEG is significantly higher than that produced by the trained dictionary,

Dc,1
8 for a PSNR of 45.43dB.

TS3, N = 32

A one tailed paired sample t-test was performed over the 45 astronomical and natural

sample images to determine if the number of bpp required by the dictionary coding method,

when approximating using the largest block size with N = 32 is significantly lower than
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45 Grey Level Astronomical Images

PSNRa x̄d sd t-statistic p-value

30.44dB −1.91× 10−2 2.86 × 10−2 −4.45 > 0.99

35.17dB −2.86× 10−2 4.98 × 10−2 −3.81 > 0.99

40.25dB −1.34× 10−2 1.38 × 10−1 −0.65 0.74

45.43dB 2.30 × 10−1 2.12 × 10−1 7.20 < 0.01

45.43dB 4.95 × 10−2 1.70 × 10−1 1.93 0.03

45 Grey Level Natural Images

PSNRa x̄d sd t-statistic p-value

30.08dB −2.00× 10−2 6.23 × 10−2 −2.13 0.98

35.12dB −3.95× 10−2 8.33 × 10−2 −3.15 > 0.99

40.50dB −8.79× 10−2 1.03 × 10−1 −5.67 > 0.99

46.45dB 3.86 × 10−1 2.41 × 10−1 10.60 < 0.01

Table E.6: Results of one tailed paired t-test undertaken on 45, grey level astronomical
and natural images to determine if the number of bpp produced the approximation with
OMP2D with N = 32 using dictionary Dc,1

8 is equivalent to JPEG or JPEG2000. The
results are shown for against the average PSNR over the image set of the approximation.
The mean number of bpp for JPEG or JPEG2000 and OMP2D are respectively denoted as
x̄1 and x̄2 with the sample mean and standard deviation being respectively x̄d = x̄1 − x̄2
and sd. The null hypothesis (H0) is that the population mean is zero and alternative
hypothesis (Ha) is that population mean is greater than zero, the test has 44 degrees of
freedom and the critical t-value is 1.68.
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using the smaller block sizes, N = 8, 16 and 24. The mean sample number of bpp for

N = 8, 16 and 24, and for the largest block size N = 32 are respectively denoted as x̄1

and x̄2.

The null hypothesis (H0) is that number of bpp produced when using the largest block

size N = 32 is equivalent to that of the smaller block sizes, N = 8, 16 and 24. The

alternative hypothesis (H1) is that the number of bpp produced when N = 32 is smaller,

µ1 > µ2.

Table E.7 and E.8 show respectively the difference between the sample means x̄d = x̄1−

x̄2, the sample standard deviation sd, the t-statistic and the p-value for the astronomical

and natural image sets. The test has 44 degrees of freedom and the critical t-value for the

test with α = 0.05 is 1.67.

For both the astronomical and natural image corpus, for all PSNRa, for bothN = 8 and

16 shown in the top two Tables of respectively E.7 and E.8 there was enough evidence to

reject the null hypothesis in favour of the alternative hypothesis at a 95% confidence level.

That is for astronomical and natural images the average number of bpp produced by the

dictionary coding method for all PSNRa tested, when images are initially approximated

with either N = 8 or N = 16 is significantly higher than when images are initially

approximated with N = 32.

For the astronomical image corpus shown in the bottom Table of E.7 when images

were initially approximated in blocks with N = 24 to a PSNRa of 40.25 and 45.43 with

N = 24 there was enough evidence to reject the null hypothesis in favour of the alternative

hypothesis at a 95% confidence level. That is for astronomical images the average number

of bpp produced by the dictionary coding method for the higher quality approximations

tested (PSNRa = 40.25dB and 45.43dB) when the images are initially approximated using

blocks with N = 24 is significantly higher than the number of bpp produced when the

images are initially approximated using blocks with N = 32.

For the natural image corpus shown in the bottom Table of E.8 when images were

initially approximated in blocks with N = 24 to a PSNRa of 30.08 and 46.45 with N =

24 there was enough evidence to reject the null hypothesis in favour of the alternative

hypothesis at a 95% confidence level. That is for astronomical images the average number

of bpp produced by the dictionary coding method for the lowest and highest quality

approximations tested (PSNRa = 30.08dB and 46.45dB) when the images are initially

approximated using blocks with N = 24 is significantly higher than the number of bpp

produced when the images are initially approximated using blocks with N = 32.
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N = 8

PSNRa x̄d sd t-statistic p-value

30.44dB 6.401 × 10−2 4.37 × 10−2 9.72 < 0.01

35.17dB 1.02 × 10−1 8.27 × 10−2 8.15 < 0.01

40.25dB 1.76 × 10−1 1.36 × 10−1 8.60 < 0.01

45.43dB 3.61 × 10−1 2.36 × 10−1 10.14 < 0.01

N = 16

PSNRa x̄d sd t-statistic p-value

30.44dB 1.07 × 10−2 2.52 × 10−2 2.82 < 0.01

35.17dB 2.87 × 10−2 5.89 × 10−2 3.23 < 0.01

40.25dB 6.61 × 10−1 6.46 × 10−2 6.79 < 0.01

45.43dB 3.06 × 10−1 2.31 × 10−1 8.81 < 0.01

N = 24

PSNRa x̄d sd t-statistic p-value

30.44dB −1.32× 10−3 2.08 × 10−2 −0.42 0.66

35.17dB 7.71 × 10−3 3.39 × 10−2 1.51 0.07

40.25dB 2.51 × 10−2 3.89 × 10−2 4.28 < 0.01

45.43dB 9.86 × 10−2 1.30 × 10−1 5.01 < 0.01

Table E.7: Results of one tailed paired t-test undertaken on 45, grey level astronomical
images to determine if the number of bpp produced the dictionary coding method using
N = 32 is significantly lower than for N = 8, 16 and 24. The results are shown for against
the average PSNRa over the image set. The mean number of bpp for the smaller block
sizes N = 8, 16 and 24, and N = 32 are respectively denoted as x̄1 and x̄2 with the sample
mean and standard deviation being respectively x̄d = x̄1− x̄2 and sd. The null hypothesis
(H0) is that the population mean is zero and alternative hypothesis (Ha) is that population
mean is greater than zero, the test has 44 degrees of freedom and the critical t-value is
1.68.
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N=8

PSNRa x̄d sd t-statistic p-value

30.08dB 2.01 × 10−1 1.27 × 10−1 10.46 < 0.01

35.12dB 3.90 × 10−1 2.40 × 10−1 10.79 < 0.01

40.50dB 6.22 × 10−1 2.82 × 10−1 14.61 < 0.01

46.45dB 1.28 4.82 × 10−1 17.45 < 0.01

N = 16

PSNRa x̄d sd t-statistic p-value

30.08dB 4.99 × 10−2 7.03 × 10−2 4.71 < 0.01

35.12dB 1.11 × 10−1 1.05 × 10−1 6.98 < 0.01

40.50dB 1.56 × 10−1 1.29 × 10−1 8.07 < 0.01

46.45dB 7.30 × 10−1 3.92 × 10−1 12.36 < 0.01

N = 24

PSNRa x̄d sd t-statistic p-value

30.08dB 1.52 × 10−2 5.89 × 10−2 1.72 0.04

35.12dB −9.84× 10−4 8.46 × 10−2 −0.08 0.53

40.50dB −6.43× 10−3 8.02 × 10−2 −0.53 0.70

46.45dB 1.07 × 10−1 2.90 × 10−1 2.45 < 0.01

Table E.8: Results of one tailed paired t-test undertaken on 45, grey level natural images
to determine if the number of bpp produced the dictionary coding method using N = 32
is significantly lower than for N = 8, 16 and 24. The results are shown for against the
average PSNRa over the image set. The mean number of bpp for the smaller block sizes
N = 8, 16 and 24, and N = 32 are respectively denoted as x̄1 and x̄2 with the sample mean
and standard deviation being respectively x̄d = x̄1 − x̄2 and sd. The null hypothesis (H0)
is that the population mean is zero and alternative hypothesis (Ha) is that population
mean is greater than zero, the test has 44 degrees of freedom and the critical t-value is
1.68.
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E.2 Self Contained Encrypted Image Folding

E.2.1 The CR of the “ad hoc” Scheme

A one tailed paired sample t-test was performed over the 55 astronomical and natural

sample images, folded using the “ad hoc” method, to determine if the average CR resulting

from folding the images with the largest dictionary Dc,2
8 (µ1) was significantly higher

than the CR produced by the smaller dictionaries Dc,2
i , i = 1, . . . , 7 (µ2). The test was

performed for each block size N = 8, 16 and 24. The mean sample CR for the largest

dictionary Dc,2
8 is denoted by x̄1 and the mean sample CR for the smaller dictionaries will

be denoted by x̄2.

The null hypothesis (H0) is that CR produced by using the largest dictionary Dc,2
8 is

equivalent to that of the smaller dictionaries Dc,2
i , i = 1, . . . , 7. The alternative hypothesis

(H1) is that the CR produced by the largest dictionary Dc,2
8 is higher, µ1 > µ2.

Table E.9 and E.10 show respectively the difference between the sample means x̄d =

x̄1− x̄2, the sample standard deviation sd, the t-statistic and the p-value for the astronom-

ical and natural image sets. The test has 54 degrees of freedom and the critical t-value

for the test with α = 0.05 is 1.67.

The results for the astronomical images processed with N = 8 shown in the top of

Table E.9 show that for dictionaries Dc,2
i , 2, 4, 6, 7 there was enough evidence to reject the

null hypothesis in favour of the alternative hypothesis at a 95% confidence level. That is

for astronomical images processed with N = 8 the average CR produced by using the “ad

hoc” folding method with image approximations made using the largest dictionaryDc,2
8 is

significantly higher than dictionaries Dc,2
i , 2, 4, 6, 7.

The results for the astronomical images processed with N = 16 shown in the middle

of Table E.9 show that for all dictionaries there was enough evidence to reject the null

hypothesis in favour of the alternative hypothesis at a 95% confidence level. That is for

astronomical images processed with N = 16 the average CR produced by using the “ad

hoc” folding method with image approximations made using the largest dictionary Dc,2
8

is significantly higher than all the smaller dictionaries.

The results for the astronomical images processed with N = 24 shown in the top of

Table E.9 show that for dictionaries Dc,2
i , i = 1, . . . , 5 there was enough evidence to reject

the null hypothesis in favour of the alternative hypothesis at a 95% confidence level. That

is for astronomical images processed with N = 24 the average CR produced by using the

“ad hoc” folding method with image approximations made using the largest dictionaryDc,2
8

is significantly higher than the smaller dictionaries Dc,2
i , i = 1, . . . , 5.
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The results for the natural images processed with N = 8 shown in the top of Table

E.10 show that for the two smallest dictionaries Dc,2
i , i = 1, 2 there was enough evidence

to reject the null hypothesis in favour of the alternative hypothesis at a 95% confidence

level. That is for natural images processed with N = 8 the average CR produced by using

the “ad hoc” folding method with image approximations made using the largest dictionary

Dc,2
8 is significantly higher than the two smaller dictionaries Dc,2

i , i = 1, 2.

The results for the natural images processed with N = 16 shown in the middle of Table

E.10 show that for the three smallest dictionaries Dc,2
i , i = 1, . . . , 3 there was enough

evidence to reject the null hypothesis in favour of the alternative hypothesis at a 95%

confidence level. That is for natural images processed with N = 16 the average CR

produced by using the “ad hoc” folding method with image approximations made using the

largest dictionary Dc,2
8 is significantly higher than the three smaller dictionaries Dc,2

i , i =

1, . . . , 3.

The results for the natural images processed with N = 24 shown in the top of Table

E.10 show that for the three smallest dictionaries Dc,2
i , i = 1, . . . , 3 and dictionary Dc,2

7

there was enough evidence to reject the null hypothesis in favour of the alternative hy-

pothesis at a 95% confidence level. That is for natural images processed with N = 24 the

average CR produced by using the “ad hoc” folding method with image approximations

made using the largest dictionaryDc,2
8 is significantly higher than three smaller dictionaries

Dc,2
i , i = 1, . . . , 3 and dictionary Dc,2

7 .

E.2.2 Comparison of Index Storage Methods

A one tailed paired sample t-test was performed over the 55 astronomical and natural

sample images to determine if the two index coding methods m1 and m2 described in

Section 4.7 produce bit streams of equivalent size. The test was performed for each

dictionary D2
i , i = 1, . . . , 8 and for each block size N = 8, 16, 24.

The null hypothesis (H0) is that the size of the bit streams Nm1

b and Nm2

b produced

by each method are equal, that is Nm1

b = Nm2

b . The alternative hypothesis (H1) is that

Nm1

b > Nm2

b .

Tables E.11 and E.12 show respectively the difference between the sample means

xd = xm1
− xm2

, the sample standard deviation, the t-statistic and the p-value for the

astronomical and natural image sets. The test has 54 degrees of freedom and the critical

t-value for the test with α = 0.05 is 1.67.

For the astronomical corpus blocked using N = 8, 16 shown in the first two parts

of Table E.11 there is enough evidence to reject the null hypothesis in favour of the
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N Dc,2
i ,Dr,2

i x̄d sd t-statistic p-value

8

1 −2.52 × 10−2 2.62× 10−1 −0.71 0.76

2 1.52× 10−1 1.10× 10−1 10.30 < 0.01

3 1.74× 10−2 9.85× 10−2 1.31 0.10

4 2.27× 10−2 7.00× 10−1 2.40 0.01

5 −2.87 × 10−2 6.17× 10−2 −3.46 > 0.99

6 6.50× 10−2 3.91× 10−2 12.34 < 0.01

7 3.91× 10−2 3.49× 10−2 8.30 < 0.01

16

1 9.09× 10−1 6.71× 10−1 10.05 < 0.01

2 6.64× 10−1 4.42× 10−1 11.13 < 0.01

3 4.70× 10−1 3.60× 10−1 9.68 < 0.01

4 2.00× 10−1 2.03× 10−1 7.31 < 0.01

5 2.53× 10−1 2.30× 10−1 8.17 < 0.01

6 1.06× 10−1 9.48× 10−2 8.33 < 0.01

7 7.50× 10−2 8.27× 10−2 6.72 < 0.01

24

1 1.23 9.51× 10−1 9.58 < 0.01

2 6.96× 10−1 5.42× 10−1 9.53 < 0.01

3 4.24× 10−1 3.90× 10−1 8.06 < 0.01

4 1.24× 10−1 1.94× 10−1 4.74 < 0.01

5 1.61× 10−1 2.15× 10−1 5.54 < 0.01

6 −3.49 × 10−1 5.71× 10−2 −0.45 0.67

7 −3.36 × 10−2 5.91× 10−2 −4.22 > 0.99

Table E.9: Results of a one tailed paired sample t-test performed over the 55 astronomical
sample images, folded using the “ad hoc” method, to determine if the average CR resulting
from folding the images with the largest dictionary Dc,2

8 (µ1) was significantly higher

than the average CR produced by the smaller dictionaries Dc,2
i , i = 1, . . . , 7 (µ2). The

results are split into 3 sub tables, one for each block size N = 8, 16 and 24 which the
images were processed in. The result is shown for each column and row dictionary pair
Dc,2

i ,Dr,2
i , i = 1, . . . , 7 indicated by the index given in the second column. The sample

mean and standard deviation are respectively x̄d and sd. The null hypothesis (H0) is that
the population mean is zero and alternative hypothesis (Ha) is that population mean is
greater than zero, the test has 54 degrees of freedom and the critical t-value is 1.67.
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N Dc,2
i ,Dr,2

i x̄d sd t-statistic p-value

8

1 8.16× 10−2 7.00× 10−2 8.64 < 0.01

2 2.40× 10−2 5.33× 10−2 3.34 < 0.01

3 −6.93 × 10−2 6.59× 10−2 −7.80 > 0.99

4 −5.45 × 10−2 4.43× 10−1 −9.13 > 0.99

5 −7.87 × 10−2 4.90× 10−2 −11.90 > 0.99

6 −3.58 × 10−2 2.36× 10−2 −11.27 > 0.99

7 −4.56 × 10−2 3.01× 10−2 −11.24 > 0.99

16

1 3.68× 10−1 3.24× 10−1 8.43 < 0.01

2 1.30× 10−1 1.21× 10−1 7.98 < 0.01

3 4.88× 10−2 4.43× 10−2 8.17 < 0.01

4 −1.80 × 10−2 2.18× 10−2 −6.10 > 0.99

5 4.50× 10−3 2.11× 10−2 1.58 0.06

6 −2.94 × 10−2 4.12× 10−2 −5.28 > 0.99

7 −3.92 × 10−2 4.54× 10−2 −6.40 > 0.99

24

1 4.21× 10−1 3.70× 10−1 8.42 < 0.01

2 1.54× 10−1 1.32× 10−1 8.66 < 0.01

3 5.52× 10−2 4.53× 10−2 9.05 < 0.01

4 −2.40 × 10−2 7.29× 10−2 −2.43 > 0.99

5 7.71× 10−3 4.88× 10−2 1.17 0.12

6 −2.41 × 10−2 3.48× 10−2 −5.14 > 0.99

7 1.90× 10−2 2.39× 10−2 5.90 < 0.01

Table E.10: Results of a one tailed paired sample t-test performed over the 55 natural
sample images, folded using the “ad hoc” method, to determine if the average CR resulting
from folding the images with the largest dictionary Dc,2

8 (µ1) was significantly higher

than the average CR produced by the smaller dictionaries Dc,2
i , i = 1, . . . , 7 (µ2). The

results are split into 3 sub tables, one for each block size N = 8, 16 and 24 which the
images were processed in. The result is shown for each column and row dictionary pair
Dc,2

i ,Dr,2
i , i = 1, . . . , 7 indicated by the index given in the second column. The sample

mean and standard deviation are respectively x̄d and sd. The null hypothesis (H0) is that
the population mean is zero and alternative hypothesis (Ha) is that population mean is
greater than zero, the test has 54 degrees of freedom and the critical t-value is 1.67.
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alternative hypothesis at a 95% confidence level for dictionaries Dc,2
i , i = 5, . . . , 8. That

is for the astronomical corpus, blocked with N = 8, 16, the average size of the bit stream

produced bym2 is significantly smaller than that produced bym1 for the larger dictionaries

Dc,2
i , i = 5, . . . , 8. For N = 24 shown at the bottom of Table E.11 there is enough evidence

to reject the null hypothesis in favour of the alternative hypothesis at a 95% confidence

level for dictionaries Dc,2
i , i = 4, . . . , 8. That is for the astronomical corpus, blocked with

N = 24, the average size of the bit stream produced by m2 is significantly smaller than

that produced by m1 for the larger dictionaries Dc,2
i , i = 4, . . . , 8.

For the natural corpus blocked using N = 8, 16 shown in the first two parts of Table

E.12 there is enough evidence to reject the null hypothesis in favour of the alternative

hypothesis at a 95% confidence level for dictionaries Dc,2
i , i = 4, . . . , 8. That is for the

natural corpus, blocked with N = 8, 16, the average size of the bit stream produced by

m2 is significantly smaller than that produced by m1 for the larger dictionaries Dc,2
i , i =

4, . . . , 8. For N = 24 shown at the bottom of Table E.12 there is enough evidence to reject

the null hypothesis in favour of the alternative hypothesis at a 95% confidence level for

dictionaries Dc,2
i , i = 3, . . . , 8. That is for the natural corpus, blocked with N = 24, the

average size of the bit stream produced by m2 is significantly smaller than that produced

by m1 for the larger dictionaries Dc,2
i , i = 3, . . . , 8.

E.2.3 Examining the CR of the Pixel Scheme

A one tailed paired sample t-test was performed over the 55 astronomical and natural

sample images, folded using the “pixel” method, to determine if the average CR resulting

from folding the images with the largest dictionary Dc,2
8 (µ1) was significantly higher

than the CR produced by the smaller dictionaries Dc,2
i , i = 1, . . . , 7 (µ2). The test was

performed for each block size N = 8, 16 and 24. The mean sample CR for the largest

dictionary Dc,2
8 is denoted by x̄1 and the mean sample CR for the smaller dictionaries will

be denoted by x̄2.

The null hypothesis (H0) is that CR produced by using the largest dictionary Dc,2
8 is

equivalent to that of the smaller dictionaries Dc,2
i , i = 1, . . . , 7. The alternative hypothesis

(H1) is that the CR produced by the largest dictionary Dc,2
8 is higher, µ1 > µ2.

Table E.13 and E.14 show respectively the difference between the sample means x̄d =

x̄1− x̄2, the sample standard deviation sd, the t-statistic and the p-value for the astronom-

ical and natural image sets. The test has 54 degrees of freedom and the critical t-value

for the test with α = 0.05 is 1.67.

The results for the astronomical images processed with N = 8 and 24 shown in the top
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N Dc,2
i ,Dr,2

i x̄d sd t-statistic p-value

8

1 −12.24 18.87 −4.81 > 0.99

2 −4.46 8.72 −3.79 > 0.99

3 −1.60 4.76 −2.50 0.99

4 0.35 3.37 0.76 0.23

5 1.66 2.53 4.88 < 0.01

6 3.32 1.88 13.08 < 0.01

7 4.19 1.77 17.53 < 0.01

8 5.98 2.20 20.19 < 0.01

16

1 −36.29 39.23 −6.86 > 0.99

2 −11.49 13.85 −6.15 > 0.99

3 −3.43 7.48 −3.39 > 0.99

4 0.64 5.01 0.95 0.17

5 3.23 3.43 6.98 < 0.01

6 6.53 1.92 25.29 < 0.01

7 8.64 1.85 34.63 < 0.01

8 11.97 2.86 31.00 < 0.01

24

1 −50.58 50.06 −7.49 > 0.99

2 −15.01 18.08 −6.16 > 0.99

3 −3.46 10.34 −2.48 0.99

4 2.90 6.94 3.10 < 0.01

5 7.17 5.58 9.53 < 0.01

6 12.07 5.13 17.44 < 0.01

7 15.35 6.26 18.19 < 0.01

8 20.13 6.98 21.40 < 0.01

Table E.11: Results of one tailed paired sample t-test undertaken on the 55 astronomical
test images to determine if the two index coding methods m1 and m2 described in Section
4.7 produce bit streams of equivalent size. The results are split into 3 sub tables, one for
each block size N = 8, 16 and 24 which the images were processed in. The result is shown
for each column and row dictionary pair Dc,2

i ,Dr,2
i , i = 1, . . . , 8 indicated by the index

given in the second column. The sample mean and standard deviation are respectively
x̄d and sd. The null hypothesis (H0) is that the population mean is zero and alternative
hypothesis (Ha) is that population mean is greater than zero, the test has 54 degrees of
freedom and the critical t-value is 1.67.
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N = 8

N D2
i µd sd t-statistic p-value

8

1 −5.13 2.52 −15.10 > 0.99

2 −1.52 0.90 −12.49 > 0.99

3 −0.59 0.56 −7.76 > 0.99

4 0.15 0.35 3.04 < 0.01

5 0.73 0.20 27.85 < 0.01

6 1.46 0.16 65.90 < 0.01

7 1.82 0.21 64.21 < 0.01

8 2.61 0.39 49.79 < 0.01

16

1 −8.45 3.90 −16.05 > 0.99

2 −2.12 1.63 −9.67 > 0.99

3 −0.07 1.24 −0.42 0.66

4 1.43 1.18 9.02 < 0.01

5 2.61 1.31 14.81 < 0.01

6 4.01 1.45 20.55 < 0.01

7 5.08 1.62 23.17 < 0.01

8 6.53 1.91 25.38 < 0.01

24

1 −10.51 4.73 −16.49 > 0.99

2 −2.02 2.47 −6.05 > 0.99

3 0.99 2.25 3.27 < 0.01

4 3.24 2.67 9.01 < 0.01

5 5.05 3.11 12.06 < 0.01

6 7.06 3.79 13.82 < 0.01

7 8.44 4.30 14.54 < 0.01

8 10.48 5.03 15.44 < 0.01

Table E.12: Results of one tailed paired sample t-test undertaken on the 55 natural test
images to determine if the two index coding methods m1 and m2 described in Section 4.7
produce bit streams of equivalent size. The results are split into 3 sub tables, one for each
block size N = 8, 16 and 24 which the images were processed in. The result is shown for
each column and row dictionary pair Dc,2

i ,Dr,2
i , i = 1, . . . , 8 indicated by the index given in

the second column. The sample mean and standard deviation are respectively x̄d and sd.
The null hypothesis (H0) is that the population mean is zero and alternative hypothesis
(Ha) is that population mean is greater than zero, the test has 54 degrees of freedom and
the critical t-value is 1.67.
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and bottom of Table E.13 show that for all of the smaller dictionaries except Dc,2
6 there

was enough evidence to reject the null hypothesis in favour of the alternative hypothesis

at a 95% confidence level. That is for astronomical images processed with N = 8 and

24 the average CR produced by using the “ad hoc” folding method with image approxi-

mations made using the largest dictionary Dc,2
8 is significantly higher than all the smaller

dictionaries, with the exception of Dc,2
6 .

The results for the astronomical images processed with N = 16 shown in the middle

of Table E.13 show that for all of the smaller dictionaries there was enough evidence to

reject the null hypothesis in favour of the alternative hypothesis at a 95% confidence level.

That is for astronomical images processed with N = 16 the average CR produced by using

the “pixel” folding method with image approximations made using the largest dictionary

Dc,2
8 is significantly higher than all the smaller dictionaries.

The results for the natural images processed with N = 8 shown in the top of Table

E.14 show that for the two smallest dictionaries Dc,2
i , i = 1, 2 there was enough evidence

to reject the null hypothesis in favour of the alternative hypothesis at a 95% confidence

level. That is for natural images processed with N = 8 the average CR produced by using

the “pixel” folding method with image approximations made using the largest dictionary

Dc,2
8 is significantly higher than the two smaller dictionaries Dc,2

i , i = 1, 2.

The results for the natural images processed with N = 16 shown in the middle of Table

E.14 show that for the three smallest dictionaries Dc,2
i , i = 1, . . . , 3 there was enough

evidence to reject the null hypothesis in favour of the alternative hypothesis at a 95%

confidence level. That is for natural images processed with N = 16 the average CR

produced by using the “pixel” folding method with image approximations made using the

largest dictionary Dc,2
8 is significantly higher than the three smaller dictionaries Dc,2

i , i =

1, . . . , 3.

The results for the natural images processed with N = 24 shown in the top of Table

E.14 show that for the three smallest dictionaries Dc,2
i , i = 1, . . . , 3 and dictionary Dc,2

7

there was enough evidence to reject the null hypothesis in favour of the alternative hy-

pothesis at a 95% confidence level. That is for natural images processed with N = 24

the average CR produced by using the “pixel” folding method with image approximations

made using the largest dictionaryDc,2
8 is significantly higher than three smaller dictionaries

Dc,2
i , i = 1, . . . , 3 and dictionary Dc,2

7 .
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N Dc,2
i ,Dr,2

i x̄d sd t-statistic p-value

8

1 1.96× 10−1 3.21 × 10−1 4.53 > 0.01

2 2.31× 10−1 2.26 × 10−1 7.56 < 0.01

3 2.27× 10−1 2.04 × 10−1 8.23 < 0.01

4 9.18× 10−2 1.54 × 10−1 4.42 < 0.01

5 9.16× 10−2 1.34 × 10−1 5.08 < 0.01

6 2.58× 10−3 4.96 × 10−2 0.38 0.35

7 1.72× 10−2 5.93 × 10−2 2.15 0.02

16

1 1.04 9.66 × 10−1 7.95 < 0.01

2 5.62× 10−1 4.79 × 10−1 8.71 < 0.01

3 3.68× 10−1 3.90 × 10−1 7.00 < 0.01

4 1.90× 10−1 2.71 × 10−1 5.21 < 0.01

5 1.37× 10−1 1.99 × 10−1 5.12 < 0.01

6 1.17× 10−2 4.98 × 10−2 1.75 0.04

7 5.60× 10−2 9.18 × 10−2 4.52 < 0.01

24

1 1.33 1.24 7.96 < 0.01

2 6.76× 10−1 6.03 × 10−1 8.32 < 0.01

3 4.52× 10−1 5.06 × 10−1 6.61 < 0.01

4 1.19× 10−1 1.74 × 10−1 5.08 < 0.01

5 1.52× 10−1 2.38 × 10−1 4.74 < 0.01

6 1.07× 10−2 5.25 × 10−2 1.51 0.07

7 6.63× 10−2 1.08 × 10−1 4.54 < 0.01

Table E.13: Results of a one tailed paired sample t-test performed over the 55 astronomical
sample images, folded using the “pixel” method, to determine if the average CR resulting
from folding the images with the largest dictionary Dc,2

8 (µ1) was significantly higher

than the average CR produced by the smaller dictionaries Dc,2
i , i = 1, . . . , 7 (µ2). The

results are split into 3 sub tables, one for each block size N = 8, 16 and 24 which the
images were processed in. The result is shown for each column and row dictionary pair
Dc,2

i ,Dr,2
i , i = 1, . . . , 7 indicated by the index given in the second column. The sample

mean and standard deviation are respectively x̄d and sd. The null hypothesis (H0) is that
the population mean is zero and alternative hypothesis (Ha) is that population mean is
greater than zero, the test has 54 degrees of freedom and the critical t-value is 1.67.
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N Dc,2
i ,Dr,2

i x̄d sd t-statistic p-value

8

1 1.85× 10−1 1.96× 10−1 7.02 < 0.01

2 4.98× 10−2 6.21× 10−2 5.95 < 0.01

3 1.55× 10−2 7.80× 10−2 1.48 0.07

4 −1.09 × 10−2 2.64× 10−2 −3.06 > 0.99

5 1.72× 10−5 2.22× 10−2 0.01 0.50

6 −7.37 × 10−3 1.11× 10−2 −4.93 > 0.99

7 1.25× 10−3 1.51× 10−2 0.61 0.27

16

1 3.55× 10−1 4.57× 10−1 5.75 < 0.01

2 1.21× 10−1 2.48× 10−1 3.63 < 0.01

3 6.94× 10−2 2.37× 10−1 2.17 0.02

4 −8.65 × 10−3 2.55× 10−2 −2.51 > 0.99

5 5.07× 10−3 4.64× 10−2 −0.81 0.79

6 −1.41 × 10−2 4.09× 10−2 −2.55 > 0.99

7 3.96× 10−3 2.35× 10−2 1.25 0.11

24

1 4.04× 10−1 4.98× 10−1 6.01 < 0.01

2 1.79× 10−1 3.35× 10−1 3.95 < 0.01

3 2.23× 10−2 6.54× 10−2 2.53 0.01

4 −1.74 × 10−2 7.07× 10−2 −1.82 0.96

5 5.08× 10−3 5.01× 10−2 0.75 0.23

6 −7.78 × 10−3 3.15× 10−2 −1.83 0.96

7 1.05× 10−2 3.03× 10−2 2.58 0.01

Table E.14: Results of a one tailed paired sample t-test performed over the 55 natural
sample images, folded using the “pixel” method, to determine if the average CR resulting
from folding the images with the largest dictionary Dc,2

8 (µ1) was significantly higher

than the average CR produced by the smaller dictionaries Dc,2
i , i = 1, . . . , 7 (µ2). The

results are split into 3 sub tables, one for each block size N = 8, 16 and 24 which the
images were processed in. The result is shown for each column and row dictionary pair
Dc,2

i ,Dr,2
i , i = 1, . . . , 7 indicated by the index given in the second column. The sample

mean and standard deviation are respectively x̄d and sd. The null hypothesis (H0) is that
the population mean is zero and alternative hypothesis (Ha) is that population mean is
greater than zero, the test has 54 degrees of freedom and the critical t-value is 1.67.
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E.3 Folding Colour Images

E.3.1 Examining the CR

A one tailed paired sample t-test was performed over the 55 RGB astronomical and natural

sample images, folded using the single and multi channel “pixel” methods, to determine if

the average CR resulting from folding the images with the largest dictionary Dc,2
8 (µ1) was

significantly higher than the CR produced by the smaller dictionaries Dc,2
i , i = 1, . . . , 7

(µ2). The test was performed for each block size N = 8, 16 and 24. The mean sample CR

for the largest dictionary Dc,2
8 is denoted by x̄1 and the mean sample CR for the smaller

dictionaries will be denoted by x̄2.

The null hypothesis (H0) is that CR produced by using the largest dictionary Dc,2
8 is

equivalent to that of the smaller dictionaries Dc,2
i , i = 1, . . . , 7. The alternative hypothesis

(H1) is that the CR produced by the largest dictionary Dc,2
8 is higher, µ1 > µ2.

Tables E.15 and E.16, and Tables E.17 and E.18 show respectively the difference be-

tween the sample means x̄d = x̄1 − x̄2, the sample standard deviation sd, the t-statistic

and the p-value for the RGB astronomical and natural image sets. The test has 54 degrees

of freedom and the critical t-value for the test with α = 0.05 is 1.67.

Astronomical Images

The results for the astronomical images folded using the single channel “pixel” method in

blocks with N = 8, 16 and 24 shown in of Table E.15 show that for all of the dictionaries

except Dc,2
6 when N = 16 there was enough evidence to reject the null hypothesis in favour

of the alternative hypothesis at a 95% confidence level. That is for astronomical images

folded using the single channel “pixel” method in blocks with N = 8, 16 and 24 for all

of the dictionaries except Dc,2
6 , when processing is performed blocks with N = 16, the

average CR produced by largest dictionary Dc,2
8 is significantly higher than all the smaller

dictionaries.

The results for the astronomical images folded using the multi channel “pixel” method

in blocks with N = 8, 16 and 24 shown in of Table E.16 show that for all of the dictio-

naries there was enough evidence to reject the null hypothesis in favour of the alternative

hypothesis at a 95% confidence level. That is for astronomical images folded using the

multi channel “pixel” method in blocks with N = 8, 16 and 24 for all of the dictionaries,

the average CR produced by the largest dictionary Dc,2
8 is significantly higher than all the

smaller dictionaries.

The results for the natural images folded using the single channel “pixel” method
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with N = 8 shown in the top of Table E.17 show that for the two smallest dictionaries

Dc,2
i , i = 1, 2 there was enough evidence to reject the null hypothesis in favour of the

alternative hypothesis at a 95% confidence level. That is for natural images folded using

the single channel “pixel” method in blocks withN = 8 the average CR produced by largest

dictionary Dc,2
8 is significantly higher than the two smaller dictionaries Dc,2

i , i = 1, 2.

Natural Images

The results for the natural images folded using the single channel “pixel” method with

N = 16 and 24 shown in the middle and bottom of Table E.17 show that for the three

smallest dictionaries Dc,2
i , i = 1, 2 and dictionary Dc,2

7 there was enough evidence to reject

the null hypothesis in favour of the alternative hypothesis at a 95% confidence level. That

is for natural images folded using the single channel “pixel” method in blocks with N = 8

and 24 the average CR produced by largest dictionary Dc,2
8 is significantly higher than

three smaller dictionaries Dc,2
i , i = 1, 2, and dictionary Dc,2

7 .

The results for the natural images folded using the multi channel “pixel” method in

blocks with N = 8, 16 and 24 shown in of Table E.18 show that for all of the dictionaries

except Dc,2
6 when N = 24 there was enough evidence to reject the null hypothesis in

favour of the alternative hypothesis at a 95% confidence level. That is for natural images

folded using the multi channel “pixel” method in blocks with N = 8, 16 and 24 for all

of the dictionaries except Dc,2
6 , when processing is performed blocks with N = 24, the

average CR produced by largest dictionary Dc,2
8 is significantly higher than all the smaller

dictionaries.
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N Dc,2
i ,Dr,2

i x̄d sd t-statistic p-value

8

1 7.22× 10−2 2.59× 10−1 2.07 0.02

2 1.30× 10−1 1.73× 10−1 5.58 < 0.01

3 1.85× 10−1 1.84× 10−1 7.46 < 0.01

4 7.79× 10−2 1.46× 10−1 3.97 < 0.01

5 8.97× 10−2 1.32× 10−1 5.06 < 0.01

6 −1.35 × 10−3 4.95× 10−2 −0.20 0.58

7 2.85× 10−2 6.18× 10−2 3.42 < 0.01

16

1 9.02× 10−1 7.41× 10−1 9.02 < 0.01

2 4.65× 10−1 4.16× 10−1 8.29 < 0.01

3 3.17× 10−1 3.35× 10−1 7.02 < 0.01

4 1.86× 10−1 2.64× 10−1 5.23 < 0.01

5 1.38× 10−1 1.82× 10−1 5.61 < 0.01

6 2.18× 10−2 5.56× 10−2 2.91 < 0.01

7 5.54× 10−2 8.36× 10−2 4.92 < 0.01

24

1 1.14 9.84× 10−1 8.60 < 0.01

2 5.41× 10−1 4.88× 10−1 8.21 < 0.01

3 3.67× 10−1 4.03× 10−1 6.76 < 0.01

4 1.31× 10−1 1.67× 10−1 5.82 < 0.01

5 1.43× 10−1 1.95× 10−1 5.43 < 0.01

6 2.49× 10−2 4.85× 10−2 3.80 < 0.01

7 5.53× 10−2 8.81× 10−2 4.65 < 0.01

Table E.15: Results of a one tailed paired sample t-test performed over the 55 RGB
astronomical sample images, folded using the single channel “pixel” method, to determine
if the average CR resulting from folding the images with the largest dictionary Dc,2

8 (µ1)

was significantly higher than the average CR produced by the smaller dictionaries Dc,2
i , i =

1, . . . , 7 (µ2). The results are split into 3 sub tables, one for each block size N = 8, 16
and 24 which the images were processed in. The result is shown for each column and row
dictionary pair Dc,2

i ,Dr,2
i , i = 1, . . . , 7 indicated by the index given in the second column.

The sample mean and standard deviation are respectively x̄d and sd. The null hypothesis
(H0) is that the population mean is zero and alternative hypothesis (Ha) is that population
mean is greater than zero, the test has 54 degrees of freedom and the critical t-value is
1.67.
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N Dc,2
i ,Dr,2

i x̄d sd t-statistic p-value

8

1 8.93× 10−2 3.48 × 10−1 1.90 0.03

2 1.35× 10−1 2.48 × 10−1 4.05 < 0.01

3 2.45× 10−1 2.17 × 10−1 8.37 < 0.01

4 1.53× 10−1 1.69 × 10−1 6.70 < 0.01

5 1.76× 10−1 1.58 × 10−2 8.24 < 0.01

6 5.51× 10−2 1.07 × 10−1 3.81 < 0.01

7 7.38× 10−2 9.36 × 10−2 5.85 < 0.01

16

1 9.65× 10−1 8.45 × 10−1 8.46 < 0.01

2 5.19× 10−1 5.07 × 10−1 7.60 < 0.01

3 3.84× 10−1 3.75 × 10−1 7.61 < 0.01

4 2.26× 10−1 2.89 × 10−1 5.81 < 0.01

5 2.16× 10−1 2.24 × 10−1 7.16 < 0.01

6 7.24× 10−2 8.94 × 10−2 6.01 < 0.01

7 8.30× 10−1 9.79 × 10−2 6.29 < 0.01

24

1 1.20 1.06 8.37 < 0.01

2 5.89× 10−1 5.51 × 10−1 7.93 < 0.01

3 4.12× 10−1 4.10 × 10−1 7.46 < 0.01

4 2.28× 10−1 2.25 × 10−1 7.54 < 0.01

5 2.03× 10−1 2.09 × 10−1 7.22 < 0.01

6 5.73× 10−2 7.95 × 10−2 5.34 < 0.01

7 8.25× 10−2 1.18 × 10−1 5.16 < 0.01

Table E.16: Results of a one tailed paired sample t-test performed over the 55 RGB
astronomical sample images, folded using the multi channel “pixel” method, to determine
if the average CR resulting from folding the images with the largest dictionary Dc,2

8 (µ1)

was significantly higher than the average CR produced by the smaller dictionaries Dc,2
i , i =

1, . . . , 7 (µ2). The results are split into 3 sub tables, one for each block size N = 8, 16
and 24 which the images were processed in. The result is shown for each column and row
dictionary pair Dc,2

i ,Dr,2
i , i = 1, . . . , 7 indicated by the index given in the second column.

The sample mean and standard deviation are respectively x̄d and sd. The null hypothesis
(H0) is that the population mean is zero and alternative hypothesis (Ha) is that population
mean is greater than zero, the test has 54 degrees of freedom and the critical t-value is
1.67.
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N Dc,2
i ,Dr,2

i x̄d sd t-statistic p-value

8

1 1.73× 10−1 1.80× 10−1 7.12 < 0.01

2 4.38× 10−2 6.15× 10−2 5.28 < 0.01

3 1.20× 10−2 6.90× 10−2 1.29 0.10

4 −1.51 × 10−2 3.59× 10−2 −3.11 > 0.99

5 −1.25 × 10−3 2.98× 10−2 −0.31 0.62

6 −7.24 × 10−3 1.73× 10−2 −3.11 > 0.99

7 −3.73 × 10−4 2.13× 10−2 −0.13 0.55

16

1 3.42× 10−1 4.17× 10−1 6.08 < 0.01

2 1.19× 10−1 2.62× 10−1 3.37 < 0.01

3 7.23× 10−2 2.60× 10−1 2.06 0.02

4 −1.08 × 10−2 4.64× 10−2 −1.73 0.96

5 4.57× 10−3 2.79× 10−2 1.21 0.11

6 −9.79 × 10−3 2.07× 10−2 −3.50 > 0.99

7 8.71× 10−3 2.03× 10−2 3.19 < 0.01

24

1 3.90× 10−1 4.52× 10−1 6.39 < 0.01

2 1.71× 10−1 3.25× 10−1 3.89 < 0.01

3 3.31× 10−2 4.80× 10−2 5.10 < 0.01

4 −1.37 × 10−2 2.95× 10−2 −3.44 > 0.99

5 −7.71 × 10−4 5.80× 10−2 −0.10 0.54

6 −1.17 × 10−2 2.70× 10−2 −3.21 > 0.99

7 1.10× 10−2 2.63× 10−2 3.11 < 0.01

Table E.17: Results of a one tailed paired sample t-test performed over the 55 RGB natural
sample images, folded using the single channel “pixel” method, to determine if the average
CR resulting from folding the images with the largest dictionary Dc,2

8 (µ1) was significantly

higher than the average CR produced by the smaller dictionaries Dc,2
i , i = 1, . . . , 7 (µ2).

The results are split into 3 sub tables, one for each block size N = 8, 16 and 24 which the
images were processed in. The result is shown for each column and row dictionary pair
Dc,2

i ,Dr,2
i , i = 1, . . . , 7 indicated by the index given in the second column. The sample

mean and standard deviation are respectively x̄d and sd. The null hypothesis (H0) is that
the population mean is zero and alternative hypothesis (Ha) is that population mean is
greater than zero, the test has 54 degrees of freedom and the critical t-value is 1.67.
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N Dc,2
i ,Dr,2

i x̄d sd t-statistic p-value

8

1 3.61× 10−1 2.60 × 10−1 10.31 < 0.01

2 1.48× 10−1 1.05 × 10−1 10.42 < 0.01

3 9.40× 10−2 8.64 × 10−2 8.07 < 0.01

4 4.16× 10−2 4.01 × 10−2 7.69 < 0.01

5 4.11× 10−2 4.61 × 10−2 6.62 < 0.01

6 1.24× 10−2 3.48 × 10−2 2.65 0.01

7 1.42× 10−2 3.56 × 10−2 2.96 < 0.01

16

1 5.93× 10−1 6.46 × 10−1 6.81 < 0.01

2 2.11× 10−1 3.46 × 10−1 4.52 < 0.01

3 1.12× 10−1 2.11 × 10−1 3.93 < 0.01

4 4.25× 10−2 1.04 × 10−1 3.04 < 0.01

5 4.87× 10−2 5.18 × 10−2 6.97 < 0.01

6 1.92× 10−2 5.50 × 10−2 2.59 0.01

7 4.12× 10−2 1.03 × 10−1 2.98 < 0.01

24

1 6.45× 10−1 6.78 × 10−1 7.05 < 0.01

2 2.40× 10−1 2.54 × 10−1 7.01 < 0.01

3 1.11× 10−1 1.48 × 10−1 5.59 < 0.01

4 3.16× 10−2 7.64 × 10−2 3.07 < 0.01

5 3.98× 10−2 4.84 × 10−2 6.10 < 0.01

6 6.16× 10−3 4.92 × 10−2 0.99 0.18

7 2.55× 10−2 4.89 × 10−2 3.87 < 0.01

Table E.18: Results of a one tailed paired sample t-test performed over the 55 RGB natural
sample images, folded using the multi channel “pixel” method, to determine if the average
CR resulting from folding the images with the largest dictionary Dc,2

8 (µ1) was significantly

higher than the average CR produced by the smaller dictionaries Dc,2
i , i = 1, . . . , 7 (µ2).

The results are split into 3 sub tables, one for each block size N = 8, 16 and 24 which the
images were processed in. The result is shown for each column and row dictionary pair
Dc,2

i ,Dr,2
i , i = 1, . . . , 7 indicated by the index given in the second column. The sample

mean and standard deviation are respectively x̄d and sd. The null hypothesis (H0) is that
the population mean is zero and alternative hypothesis (Ha) is that population mean is
greater than zero, the test has 54 degrees of freedom and the critical t-value is 1.67.
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