Controlling soliton refraction in optical lattices

Abstract

We show in the framework of the 1D nonlinear Schrödinger equation that the value of the refraction angle of a fundamental soliton beam passing through an optical lattice can be controlled by adjusting either the shape of an individual waveguide or the relative positions of the waveguides. In the case of the shallow refractive index modulation, we develop a general approach for the calculation of the refraction angle change. The shape of a single waveguide crucially affects the refraction direction due to the appearance of a structural form factor in the expression for the density of emitted waves. For a lattice of scatterers, wave-soliton interference inside the lattice leads to the appearance of an additional geometric form factor. As a result, the soliton refraction is more pronounced for the disordered lattices than for the periodic ones.

Publication DOI: https://doi.org/10.1103/PhysRevLett.107.083901
Divisions: College of Engineering & Physical Sciences > Mathematics
College of Engineering & Physical Sciences > Electrical, Electronic & Power Engineering
College of Engineering & Physical Sciences > Systems analytics research institute (SARI)
Additional Information: © 2011 American Physical Society
Uncontrolled Keywords: 1D nonlinear Schrödinger equation,refraction angle,optical lattice,fundamental soliton beam,waveguide,soliton refraction,Physics and Astronomy(all)
Full Text Link: http://link.aps ... Lett.107.083901
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2011-08-17
Authors: Derevyanko, Stanislav
Prilepsky, Jaroslaw E. (ORCID Profile 0000-0002-3035-4112)
Gredeskul, Sergey A.

Download

[img]

Version: Published Version


Export / Share Citation


Statistics

Additional statistics for this record