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We show in the framework of the 1D nonlinear Schrödinger equation that the value of the refraction

angle of a fundamental soliton beam passing through an optical lattice can be controlled by adjusting

either the shape of an individual waveguide or the relative positions of the waveguides. In the case of the

shallow refractive index modulation, we develop a general approach for the calculation of the refraction

angle change. The shape of a single waveguide crucially affects the refraction direction due to the

appearance of a structural form factor in the expression for the density of emitted waves. For a lattice of

scatterers, wave-soliton interference inside the lattice leads to the appearance of an additional geometric

form factor. As a result, the soliton refraction is more pronounced for the disordered lattices than for the

periodic ones.
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The applications of the soliton theory are ubiquitous,
ranging from nonlinear optics [1] to Bose-Einstein con-
densation (BEC) [2]. Solitons are highly robust objects
which makes them attractive for many practical applica-
tions in all-optical devices, information transmission, etc.
[1]. One problem drawing considerable recent interest is
soliton propagation in a system of spatially localized wave-
guides [3]. The particular topics involve the study of the
formation of nonlinear surface states on interfaces of opti-
cally induced [4] or laser-written lattices [5], with the latest
studies indicating the specific peculiarities of nonlinear
optical transmission in disordered lattices [6,7]. The prop-
erties of transverse refractive index modulation for such
lattices are nowadays well controllable, which allows one
to fabricate a great variety of lattice structures with spe-
cially designed individual waveguide profiles (see, e.g.,
Ref. [8]). Because of the mathematical similarity of the
governing equations (which are usually the nonlinear
Schrödinger equation and its modifications), many effects
predicted for optical solitons have their counterparts in
BEC [9], where the influence of both disordered [10] and
periodic [11] potential on the correlated matter waves
have been addressed recently.

When an optical beam propagating in a nonlinear me-
dium encounters an imbedded optical lattice, it can become
trapped, forming localized surface states depending on the
initial power [5]. In this Letter, we consider the opposite
situation when a fundamental soliton beam does traverse
through the lattice and in the process it emits radiation
and changes its parameters. Even the presence of a single
isolated waveguide (i.e., a scatterer) causes the above
effects. Gradually increasing the complexity of the under-
lying system, in this Letter we first address how the struc-
tural form factor (FF), i.e., the particular shape of the
defect, influences the angle of soliton refraction and
show that this dependence is surprisingly nontrivial.

After that, we consider the properties of soliton transmis-
sion through both regular and disordered lattices com-
prised of the identical waveguides of various shapes. The
presence of an optical lattice results in the additional
geometric FF, which describes the Bragg scattering of the
quasilinear radiation shed by the incident soliton. These
emitted and scattered waves interact with each other and
with the soliton itself [12,13], so that the interference of the
extended modes starts to determine the properties of the
localized pulse. This effect can be understood as an effec-
tive soliton self-action which can drastically change the
transmission characteristics. This change of refraction
angle cannot be derived by the ‘‘particle’’ approach of
Refs. [8,14,15], since the latter cannot account for wave-
soliton interaction at all. The existing studies of transmis-
sion through sparse lattices [13,16,17] also do not account
for the reciprocal action of the radiation.
We model the pulse propagation by the nonlinear

Schrödinger equation for the dimensionless complex am-
plitude of the beam uð�; xÞ [1]:

iu� þ uxx þ 2juj2u ¼ "VðxÞu: (1)

In the context of nonlinear optics and spatial solitons, �
plays the role of the longitudinal coordinate for the beam
propagation, and x is the transverse one; in other applica-
tions (most notably BEC), the variable � plays the role of
time. The change of refraction angle of the beam is exactly
equivalent to the change of velocity of soliton matter wave,
and in what follows we use the term ‘‘velocity’’ through-
out, keeping in mind the one-to-one correspondence be-
tween the velocity of a dynamical soliton particle and the
refraction angle of an optical beam. Parameter " > 0 is
proportional to the depth of the refractive index modulation
(or the trap potential in BEC applications) in the transverse
direction, the profile of which is given by the effective
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linear repulsive potential VðxÞ> 0. As the initial condition,
we consider the fundamental soliton of the nonlinear
Schrödinger equation incident at the point x ¼ X having
the form

uð�; xÞ ¼ asech½aðx� 2b� � XÞ� exp½iða2 � b2Þ� þ ibx�;

where a is the initial soliton amplitude and 2b is its initial
velocity. We assume that both coordinates and the field are
given in so-called soliton units [1]. The potential VðxÞ can
be either a single localized hump of width M or a sum of
identical localized profiles, vðxÞ, forming a lattice.

We start with a specific example (see Fig. 1) of a soliton
beam scattering on a single Gaussian-shaped scatterer
(inset) and on a regular lattice of 10 such waveguides.
The results were obtained by full numerical simulations of
Eq. (1). The depth of refraction index was relatively weak,
" ¼ 0:4, and one observes that, depending on the initial
velocity 2b, soliton can either accelerate or decelerate
(increase or decrease its refraction angle).

In the case of a regular comb of scatterers, a moving
soliton colliding with the lattice produces the backward
and forward reflected waves which, when trapped inside
the lattice, evolve into spatially oscillating standing pat-
terns. Then there are two effects referring to the change of
the direction of soliton motion. First, just after passing the
lattice the refracted beam experiences a lateral backward
center-of-mass position shift �X. This effect (which is the
first-order effect in ") has been studied in detail by both the
particle approach [14,15] and soliton perturbation theory
[12,13], and we will not concentrate on it any further. The

second visible effect is the correction to the soliton velocity
�b (i.e., the change of the refraction angle), which is
negative in this particular example. This contribution be-
comes important at longer distances � from the lattice
when the soliton position Xð�Þ is ultimately determined
mainly by the velocity change. When the scatterers are
stronger, other dynamical regimes can also be observed;
see [18].
In the case of shallow index modulation (weak scatter-

ing) " � 1, the change of velocity can be described ana-
lytically. For the single pointlike scatterer VðxÞ ¼ �ðxÞ, the
perturbative approach in terms of " was developed in
Refs. [12,17], where it was demonstrated that in the first
order in " the velocity does not change at all and �b ¼ 0
up to terms �"2. It is possible to obtain the second-order
changes to the soliton parameters (including the velocity),
which was done in Ref. [12]. The key quantity for these
calculations is the spectral density of the linear radiation
[radiation density (RD)] shed by the soliton after a scat-
tering act. It is defined as the power spectrum of the non-
soliton part of solution, and for an arbitrary decaying
scattering potential VðxÞ the RD can be presented as

nðkÞ ¼ ��2�q2

25b3
sech2

�ðqþ akÞ
2a

FðqÞ; FðqÞ ¼ j ~VðqÞj2;
(2)

where � ¼ a=b, 2k is the wave number, qðkÞ �
�aðk2 þ 1Þ=2, and ~VðqÞ denotes the Fourier transform of
the potential: ~VðqÞ ¼ R

VðxÞe�iqxdx [12,17]; FðqÞ is a

corresponding FF. The result above resembles the Born
approximation for scattered waves in quantum mechanics.
The corresponding second-order correction to the soliton
velocity (i.e., the change of refraction angle) is [18]

�b ¼ � 1

4ab

Z 1

�1
dk½2abkþ a2ð1þ k2Þ�nðkÞ: (3)

The sign and the value of the velocity change are deter-
mined by two multipliers in the integrand in Eq. (3). The
first multiplier in square brackets contains the Doppler
term �bk, and the whole bracket, being negative at small
k, plays a crucial role in determining the sign of velocity
change [the effect is most pronounced when VðxÞ is a
single hump]. The second multiplier in the integrand,
nðkÞ, is always positive and defines the measure of this
change.
We begin by studying the behavior of �b for single-

hump potentials (the case of a single waveguide). The
corresponding structural FF and RD for a single shape
[Eq. (2)] will be marked with the subscript S: FSðkÞ and
nsðkÞ, respectively. In the limit VðxÞ ¼ �ðxÞ, the soliton
always decelerates:�b < 0. However, if the potential has a
finite width, the presence of the FF FSðkÞ can lead to
soliton acceleration after the scattering. In Fig. 2(a), we

FIG. 1 (color online). The intensity of a soliton beam (log
scale) scattered over a periodic comb of identical Gaussian-
shaped waveguides for a ¼ 1, M ¼ 0:2. The inset shows the
profile of a soliton beam scattering on a single defect in the
comoving reference frame after a large propagation distance: For
the soliton with velocity 2b ¼ 4 (� ¼ a=b ¼ 0:5), the refraction
angle decreases (soliton is decelerated, magenta), but for a faster
soliton, 2b ¼ 5 (� ¼ 0:4), the opposite effect of acceleration
takes place (cyan curve). The initial pulse profile is shown as a
dashed line for reference.
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display the velocity change as a function of parameter
� for several types of potential. One can see that for a
finite-width potential there always exist intervals where
the soliton accelerates. Note that there are points where
the velocity change turns to zero, so by tuning the para-
meters of a given profile VðxÞ one can attain the refraction-
less transmission (aside from the shift �X). In Figs. 2(b)
and 2(c), we plot the diagram for the sign of the velocity
change in the plane of � and widthM for the Gaussian and
sech potentials. For both shapes, the dependence is quali-
tatively the same: The slow-heavy soliton (large values
of �) decelerates, while the fast-light soliton (small �)
can also accelerate [red regions in Figs. 2(b) and 2(c)]. The
line separating the two regions corresponds to �b ¼ 0 (the
refraction angle does not change). In the limit of zero
width, M ¼ 0, i.e., for the � potential, the soliton always
decelerates.

In the case of scattering on a lattice, the total RD
acquires an additional lattice (geometrical) FF FLðkÞ, re-
ferring to the structure of lattice itself: nðkÞ ¼ FLðkÞnsðkÞ,
and the interplay between these two multipliers defines the
net lattice effect on the refraction. The FF FLðkÞ accounts
for the resonances of scattered linear waves and has its own
minima and maxima. For single-humped scattering pro-
files, the function nsðkÞ can have one or two peaks depend-
ing on the particular values of parameters [12,13,17],
notably �. For a given shape of an individual waveguide
in the lattice, one can manipulate the waveguide spacing T
to adjust the relative positions of the peaks in both factors
entering the total RD. Then if the peaks of FLðkÞ and nsðkÞ
coincide, one enhances the velocity change (refraction
angle), whereas in the case of peak mismatch we diminish
this change (even cancel it completely in some cases)—

thus controlling the refractive properties of the lattice. This
‘‘resonance matching’’ mechanism is the result of the
linearity of the soliton perturbation theory (see [18]).
Consider the lattice of N scatterers with identical pro-

files vðxÞ, so that VðxÞ ¼ PN
n¼1 vðx� xnÞ, and start with

the case of a regular lattice with the period T, so that
xn ¼ nT. Then the lattice FF is just the Bragg factor [18]:

FLðkÞ ¼ sin2
qðkÞNT

2
=sin2

qðkÞT
2

: (4)

To minimize the net velocity change, one should suppress
the main peak of the RD nsðkÞ, located, say, at k ¼ kmax. It
can be done by changing the period of the lattice so that the
first Bragg zero of Eq. (4) coincides with kmax. Conversely,
by tuning the positions of a peak of FLðkÞ to kmax, one can
enhance the refraction.
The velocity change as a function of the lattice period

for different individual shapes vðxÞ is given in Fig. 3. In
Fig. 3(a), one observes the first matched Bragg zero point
producing the minimum of the total refraction followed by
a broad plateau corresponding to a larger refraction. The
effects are clearly visible for the delta-shaped scatterer and
smeared by the structural FF for two other shapes. Higher-
order (and much weaker) resonances are also distinguish-
able. For some values of parameters � and M, the density
nsðkÞ has a more pronounced narrow peak so that the
magnitude of the refraction dip is higher [Fig. 3(b)].
Let us turn now to the case of random optical lattice

formed by a set of N scatterers uniformly distributed
within the segment of size L, so that the mean distance
between adjacent scatterers is T ¼ L=N. Intuitively, it is
clear that the resonance picture will be smeared, this time
owing not just to the structure of the factor nsðkÞ but
because of the higher Bragg resonances of FLðkÞ being
smeared. Indeed, averaging the lattice FF FLðkÞ for such a
model amounts to averaging the sum of independent partial
waves with uniform phase differences. The result of this
averaging reads [18]

FIG. 2 (color online). (a) Velocity change of a soliton with
a ¼ 1, as a function of � for the Gaussian- (red solid line) and
sech- (blue solid line) potential shapes (both with M ¼ 0:2) and
the � potential (dashed black line). The two dots correspond
directly to soliton acceleration and deceleration scenarios shown
in the inset in Fig. 1. (b),(c) The phase diagram of the sign of the
velocity change for a soliton with a ¼ 1 for the Gaussian- (b)
and sech- (c) scatterer shapes. The red regions correspond to the
soliton deceleration and the blue ones to the acceleration.

FIG. 3 (color online). The dependence of the velocity change
on the period T for the periodic system containing 10 wave-
guides. Red lines correspond to Gaussian individual shapes; blue
lines, to sech shapes, both with width M ¼ 1 and a ¼ 1; dashed
lines, to � scatterers. The parameter � defines the profile of
nsðkÞ: for (a) � ¼ 1 and (b) � ¼ 0:1.

PRL 107, 083901 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

19 AUGUST 2011

083901-3



hFLðkÞi ¼ N þ
�
1� 1

N

��
sin½qðkÞTN=2�

qðkÞT=2
�
2
: (5)

In the case qTN � 1, N � 1, the average FF above dis-
plays behavior similar to the periodic lattice: Both FFs
scale as N2 since the phase shift between the two consecu-
tive scatterers is negligible. However, if the product qTN is
not small, the FF of the disordered system approximately
equals N, while for the regular lattice it varies between
zero and N2 (the latter correspond to relatively narrow
windows near the resonances sinqT=2 ¼ 0). The inset in
Fig. 4 demonstrates the difference between the RDs for
random and periodic lattices: In general, a random se-
quence of waveguides essentially enhances the average
amount of the emitted radiation (and hence the velocity
change) as compared to its periodic counterpart. In Fig. 4,
we plot the dependence of the velocity change for the
disordered lattice on the mean distance T: This change is
a monotonically increasing function for all profiles. In the
limit of very sparse scatterers, it converges to the results of
Ref. [13]. A slightly different model of random waveguide
array has been studied recently in Ref. [7] in the opposite
case of strong scatterers, " � 1. There, however, the au-
thors studied the power reflection coefficients of the pulse
power rather than the effects of soliton refraction.

In conclusion, we have studied the influence of both the
shape and the positioning of individual waveguides in a
modulated optical lattice on the soliton transmission. The
case of shallow modulation was described analytically by
virtue of perturbation theory in terms of the modulation
depth ". The object of study was the beam refraction angle
(velocity). We have developed a general approach for
assessing the sign and the measure of the refraction angle
for a given configuration of weak scatterers. We have
demonstrated that the shape of an individual waveguide

has a crucial effect on the direction of the beam refraction
angle, and for some values of the waveguide parameters
one can suppress the refraction completely. This can be
effectively used to control optical refraction by manufac-
turing individual waveguide profiles in a prescribed way.
The waveguide lattice brings about the new effect which
accounts for the interference of the emitted waves and the
effective soliton self-action. By shifting the relative posi-
tion of resonant peaks and gaps in both the single-profile
RD nsðkÞ and the lattice FF FLðkÞ (by tuning the lattice
period), one can effectively control the beam refraction
angle. For the disordered system, the average amount of
emitted radiation is larger (unless some very special reso-
nance conditions are met) than for the periodic one. The
change of the refraction angle for a periodic system has
minima and maxima as a function of the lattice period,
while for the random scatterers this dependence is mono-
tonically decreasing. Since our work concerns mainly the
analytical investigation of the properties of scattering, the
validity range of respective results is the same as that of
the soliton perturbation theory, i.e., " � 1. However, as
additional simulations show [18], the effect of the scatterer
shape on the direction of the refraction extends qualita-
tively even beyond the formal bounds of perturbation
theory.
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