An evaluation of TCP over wired-to-wireless networks


To exploit the popularity of TCP as still the dominant sender and protocol of choice for transporting data reliably across the heterogeneous Internet, this thesis explores end-to-end performance issues and behaviours of TCP senders when transferring data to wireless end-users. The theme throughout is on end-users located specifically within 802.11 WLANs at the edges of the Internet, a largely untapped area of work. To exploit the interests of researchers wanting to study the performance of TCP accurately over heterogeneous conditions, this thesis proposes a flexible wired-to-wireless experimental testbed that better reflects conditions in the real-world. To exploit the transparent functionalities between TCP in the wired domain and the IEEE 802.11 WLAN protocols, this thesis proposes a more accurate methodology for gauging the transmission and error characteristics of real-world 802.11 WLANs. It also aims to correlate any findings with the functionality of fixed TCP senders. To exploit the popularity of Linux as a popular operating system for many of the Internet’s data servers, this thesis studies and evaluates various sender-side TCP congestion control implementations within the recent Linux v2.6. A selection of the implementations are put under systematic testing using real-world wired-to-wireless conditions in order to screen and present a viable candidate/s for further development and usage in the modern-day heterogeneous Internet. Overall, this thesis comprises a set of systematic evaluations of TCP senders over 802.11 WLANs, incorporating measurements in the form of simulations, emulations, and through the use of a real-world-like experimental testbed. The goal of the work is to ensure that all aspects concerned are comprehensively investigated in order to establish rules that can help to decide under which circumstances the deployment of TCP is optimal i.e. a set of paradigms for advancing the state-of-the-art in data transport across the Internet.

Divisions: College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry
Additional Information: If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: TCP,wired-to wireless networks
Last Modified: 08 Dec 2023 08:38
Date Deposited: 07 Oct 2011 11:10
Completed Date: 2008
Authors: Taank, R.K.


Export / Share Citation


Additional statistics for this record