Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately

AN EVALUATION OF TCP OVER
WIRED-TO-WIRELESS
NETWORKS

RITESH KUMAR TAANK
Doctor of Philosophy

ASTON UNIVERSITY
October 2008

This copy of the thesis has been supplied on the condition that
anyone who consults with it understands to recognise that its
copyright rests with its author and that no quotation from the thesis
and no information derived from it may be published without proper
acknowledgement.

ASTON UNIVERSITY
AN EVALUATION OF TCP OVER WIRED-TO-WIRELESS NETWORKS

RITESH KUMAR TAANK
Doctor of Philosophy, 2008

Thesis Summary

Even though the Internet has evolved into a heterogencous mesh of interconnected
networks, many of the services we take for granted today, such as e-mail, web-browsing, and
file downloads still depend on TCP to provide the high performance Internet services modern
society has come to expect. However, this heterogeneity has become a cause for concern for
standard TCP implementations in the Internet today. Today there exist the class of wireless
end-users who can remain connected to the Internet without the need for a physical medium
(wire). This is the mobile and wireless networking revolution. The field has expanded rapidly
recently, particularly the uptake of IEEE 802.11 WLANS, coupled with a penetration of
broadband Internet access into everyday lives of homes and offices around the world. 802.11
WLANS are typically concentrated at the edges of the Internet; hence the last-hop portion of
the journey for TCP traffic arriving from the Internet must now traverse a radio (wireless)
link before reaching the end-user. It is well known that wireless transmission channels are
unreliable due to the general characteristics and complexities associated with the use of
radiowaves as a communications link. Since TCP servers are still responsible for sending
over 90% of today’s Internet traffic, an understanding of the protocol’s sender-side dynamics
is crucial for the future dimensioning of a heterogeneous Internet. The problem is that TCP
senders are unable to distinguish between a wired path and a wireless path, and are therefore
unable to differentiate between losses in the wired path or losses in the wireless path, reacting
to both incidents identically.

To exploit the popularity of TCP as still the dominant sender and protocol of choice for
transporting data reliably across the heterogeneous Internet, this thesis explores end-to-end
performance issues and behaviours of TCP senders when transferring data to wireless end-
users. The theme throughout is on end-users located specifically within 802.11 WLANSs at
the edges of the Internet, a largely untapped area of work.

To exploit the interests of researchers wanting to study the performance of TCP
accurately over heterogeneous conditions, this thesis proposes a flexible wired-to-wireless
experimental testbed that better reflects conditions in the real-world.

To exploit the transparent functionalities between TCP in the wired domain and the IEEE
802.11 WLAN protocols, this thesis proposes a more accurate methodology for gauging the
transmission and error characteristics of real-world 802.11 WLANSs. It also aims to correlate
any findings with the functionality of fixed TCP senders.

To exploit the popularity of Linux as a popular operating system for many of the
Internet’s data servers, this thesis studies and evaluates various sender-side TCP congestion
control implementations within the recent Linux v2.6. A selection of the implementations are
put under systematic testing using real-world wired-to-wireless conditions in order to screen
and present a viable candidate/s for further development and usage in the modern-day
heterogeneous Internet.

Overall, this thesis comprises a set of systematic evaluations of TCP senders over 802.11
WLANS, incorporating measurements in the form of simulations, emulations, and through the
use of a real-world-like experimental testbed. The goal of the work is to ensure that all
aspects concerned are comprehensively investigated in order to establish rules that can help
to decide under which circumstances the deployment of TCP is optimal i.e. a set of
paradigms for advancing the state-of-the-art in data transport across the Internet.

Keywords: IEEE 802.11, WLAN, Congestion Control, Linux, Frame Error Rate

To my dearest wife, Paminder...

Acknowledgements

I have always dreamt of pursuing the Ph.D. degree. Given the great effort and sacrifice
that has been put into the realisation of this dream, the research presented in this thesis
has only been made possible through the culmination of fantastic support 1 have
received from the people surrounding me since the day I set out. Hence, I feel it is my

duty to say thank you to all of them here, with no words spared.

First and foremost, without the constant support and encouragement from my wife,
Paminder, I very much doubt if my Ph.D. thesis would have ever been anything more
than just a dream. She believed in me and stood by my side, rejoicing when things
went well and gently nudging me along during periods of negativity. She is my source
of motivation and the force that keeps me going, daily. Therefore I would like to
dedicate a very special message to my dearest Paminder; thank you for all your
patience and understanding, for the many times where 1 have had to work during the
weekends, and thank you for always being there to support me. Ultimately, thank you

Sfor your love that has always been my main source of strength.

Secondly, I am very grateful to my supervisor Dr. Xiaohong Peng for giving me this
wonderful opportunity to pursue my research interests in the first place. Without his
superior guidance, patience, and good-hearted discussions throughout my research
period, it is difficult to imagine what the outcomes could have been. So thank you

Xiaohong, for everything.

Being a proud member of the Adaptive Communication Networks Research Group
(ACNRG) at Aston University, I have profited dearly from the many passionate
discussions with my fellow colleagues over the years. With this regard, I dedicate a
special thanks to Satyajit Mukherjee and Richard Haywood for their immediate
availability and for always offering a helping hand upon request, which helped me to
progress forward each time, maybe not always in the technical sense, but it was always

of pivotal importance by reinstating the gears into motion.

The other students in my research group have also been wonderful to work alongside
throughout my time at Aston University and I would therefore like to mention
especially Qasim Igbal, Tim Porter, Xingjun Zhang, and Guchun Zhang - they never
hesitated to lend a patient ear or a helpful hand. Thanks guys.

I would like to express my gratitude to my parents, for providing me with a love for
education and learning, and for the encouragement to pursue my interests; my brother
Amar, for his never-ending faith in me and his words of wisdom; and my in-laws, for
being so very understanding, encouraging and supportive at all times. I am grateful to
have had all of you in my life so close to me - you all have contributed to the success
of my research activity. My grandparents inspired me through their values and the
courage they possessed in overcoming the daily challenges of life, and I am saddened

that they did not live to see my graduation.

Finally, my acknowledgements and thanks go out to Stephen Hemminger of the Linux
Foundation for his sheer patience and solid guidance in helping me to understand and
master the TCP stack of the Linux kernel, as well as with the development of the
various tools and techniques that made my life easier. Thanks also go out to CACE
Technologies for providing me with equipment at subsidised rates, which proved very

useful.

Table of Contents

List of Figures and Tablescccoooiiiiiiiiiiieccce st s 9
CRAPLET ..ottt st s 12
INEPOAUCHION 1.ttt b e eb e ra e b e eaasbeseeesesbesn e e enes 12
1.1 The Challenges and MOtIVAtIONS.cceeriierierieriueeieeienieeseeessee e s e ssesnessene 15
1.1.1 Evolution of 802.11 WLANSs and the Impacts on TCP Senders.................. 15
1.1.2 Testing Wired-to-Wireless TCP in More Realistic Conditions................... 18
1.1.3 Transmission Characteristics of Indoor IEEE 802.11 WLANSccoccevveenen 20
1.1.4 Screening Linux TCP Implementations for Wired-to-Wireless Paths......... 22

1.2 Objectives 0F the ThESIS ..covviviiiiiicieiicie et e e sr e eae b e nes 23
1.3 THESIS SIIUCTUIE....vvieiieeiieeiieti et eteseaseerseseareeranesbeeesaeeseesbseesnneebsabsaenseensesnses 24
CRAPLCY 2.ttt b e s e e e b e e e b b e ba e sbbe s b e e enbeebesebaesaaebaaas 28
Background InfOrmationccveeieiiiiiiiiiiiecieesne et eanesana s 28
2.1 TCP — AN OVEIVIEW.....oiiiiiitiieieeeeeeee et e e eseesateesse e seaests e esseeessassasensessesabnans 29
2.1.1 Evolution of TCP and Internet Congestion Control..........cccoeevivveeiieineecnnns 30
2.1.2 Key Features 0f TCP ..c.viviiiiieie ettt 31
2.1.2.1 End-to-End SemantiCs.........ccoovmiiriiiiiieiiiiicieie et 31
2.1.2.2 Ordered Data Transfers........ccooivieiiniiiiiiiccicncnccciese e 32
2.1.2.3 Cumulative Acknowledgements ... 32
2.1.2.4 Round Trip Timing ... e re e e e et e st e e e eaeeae e e beeebeaesaeenteenresanes 32
2.1.2.5 End-to-End Flow C ontrol ettt s a b e D2
2.1.2.6 AIMD Congestion Control . O RPROPPORPPINC K

2.2 TCP Congestion Control in the Intemel Today .. 34
2.2.1 Slow Start... OSSPSR RPRUSROTURRNE I
2.2.2 Congestion Avmdanw ... 35
2.2.3 Loss Detection in TCP ..ot 36
2.2.3.1 Duplicate Acknowledgements (DUPACKS)......cccouermrenimiirieneeeneiereenns 36
2.2.3.2 Retransmission Timeout (RTO).....ccovvriiiviiiienniiiseee e 37
2.2.4 Fast RetransSmit..........cocveiiiiiiriioiniinie sttt iasbse st s ne st saeesane 38
2.2.5 FaSt RECOVEIY cuviiiiiiiiieriiecie ittt sae e s s e an e ssa s eaae s s 39
2.2.6 Common TCP Features in the Modern-Day Internet...........ccccocevveerienieennnns 42
2.2.6.1 Selective Acknowledgements (SACK)cooviviriciieiieciicciecce e 42
2.2.6.2 Reno vS. NEWRENOcciiiiiiiiiiiiceiictet ettt 43
2.2.6.3 Maximum Segment S1Z€cccivviiriiiiiiiiieeiiieiieireee e sre s sane e 44
2.2.6.4 WINAOW SCalINg ...c..coiriiiiiiiieiieieceteeirie ettt sbaesaeessneas 44
2.2.6.5 TIMESTAIMPS cvveievreeieeiiiiiireeitee e e et e sraeeess e esresseaeesaesbbessse e sbesstsesseeensesssnas 45
2.2.6.6 Delayed ACKS ..ottt st 45

2.3 IEEE 802.11 WLANS — AN OVEIVIEWocoiirieiiieereesricceeeeesee e s essesressaesaaens 46
2.3.1 Typical WLAN TOPOIoZYcovecriiiiiiiiiiiiiccrci ettt 47
2.3.2802. 11 MAC .. ittt st 47
2.3.2.1 DCF Operating Mode (CSMA/CA) ...cvverieiviiiiiieereeieesae e csne e s v 48
2.3.2.2 Transmission of Frames.......... rrreeee e e s enreareeseesanesessraneesnrnseees 4O
2.3.2.3 Error Detection and Recovcry w1th DCF 50

2.4 Multiple Slandards .. 53
241 TEEE 802.1TD oottt s 54

2.42 IEEE 802.11g... .. TSRS TOPORPPRRUPURP T
2.5 Radio Channels in 802 11 W[ANS ... 55
2.5.1 Interference and Noise in Indoor Environmentscccoccocvcivviieiineeeciennnn. 36
2.5.2 Measuring Signal QUalityccoeiveeviiiieeiiiiecieerie s enesnesneseees O 1

Related WOTK ...coveieee et ettt 58
Introduction............. et e rareenaes D8
3.1 End-to- End TCP in Wned to W1reless Enwronments rrrrerereeereeebeeerneeens 99

3.1.1 Wired-to-Wireless Paths for TCP .. rreerrrrennreeaeenn 99
3.1.2 Inappropriate Reductions of the Scndcr Congcstlon Wmdow ceeerrreerennnen 00
3.1.3 Non-Congestion Related Delays.........cccooviviiiiiiiiiiiiii 61
3.1.4 Link Asymmetry Issues... SRR 4 X
3.2 Characteristics of Indoor 802. 11 WLAN Channels SRRSO o -
3.3.1 Frame Transmission Errors and Losses 64
3.3.2 Variable Frame Transmission Delays.......c.cocveevivieiivnniinieirininnneniennnenn 05
- 3.3.3 Frame Collisions .. SORUUSUSRSRRRSRRRNY o ¥ |
3.3 TCP Performance Issues over IEF}' 802 11 WLAN‘; rrrerenrerenreerirreeareneeens 08
3.3.1 Unnecessary TCP RetransmiSSIONScoeiiueeeiveeiirerireiireaisseerseessesssessseessnens 68
3.3.2 Suffering Throughputs for End-Users........cccovvevviiiiriniecrveenicvevinenssinennne. 70
3.3.3 Unfairness of TCP Flows in 802.11 WLANSccooiiviiiiiirecceeree e 72
3.3.4 Capture Effect on TCP Traffic ..o, 74
3.3.5 Self-Collisions of TCP Trafficcccccovveiiiire e e 75
3.4 TCP Enhancements for Wired-to-Wireless Paths.. SRR [
3.4.1 Approaches for Enhancing Wired-to- Wneless T(,P Performance VSRR oY |
3.4.1.1 End-to-End SOIUHONScoiiiiiiiiiieieeiiceiieee et 77
3.4.1.2 Connection SPIENG......ccoviiiiiiiiiii i 79
3.4.1.3 Link-Layer (L) SChemes.........cccoiiiiiiiiiiiiieieceeeeeee e 82
3.4.2 Sender-Side End-to-End Approachescccoceeveveiviiviieciieicniccciiinireecneen, 86
3.4.2.1 Reactive SOIULIONS. ...ciuvviiieiiiiiiecieeeieeeseiee e eeeae e e sneessbaeesasaeesreesaseaesrnaeaenne 87
TOP REHIO ettt s ettt e et e e s sb e sba e e s e e ebanas 87
SACK Option... SO U USROS R U PP OO SRS TUSUUURPPUUPURUURPTURPPIIORE . 1.
TCP NewReno and Va; iants .. e eeteeereeeiaeeee—eeeeaaeeeearteenareaebaeesseeanteeaaeeerares OO
DSACK EXIEHSTON ...eovveeneieeeieeeeiaeete ettt saae e e esee e st e e e aessseeesbassasseenseaesenns 89
SACK S oot e e e e bbbt bbb e e e e et 91
3.4.2.2 Proactive SOIIHIONS.cciieiiiiiiiceeieeeeie ettt ee D2
TOP SANIA CFUZ oo eeeeeeeaee e e eeeeseeeeasasraeaeeeseessnnaaeseesnsnsansnns D2
TOP VRO cecvvveeeeeeeceie e ete e raa e s e e ssbe s basesbaseseasssnsesesnaesenses DO
CP Hybz‘a ... 98
3 4 2 3 RTO Approaches S O U R TP OTUUSPPTRRUROTRTORURUPTRROROR £) 2
Eifel Detection AIGOFTIRMc.covuiviiviiiiiiieciieiece sttt 103
FoRTO oottt b e s et e e s b e eae et e e e ens 104
3.4.2.4 Loss Differentiation AIOTIthMScocvvviiiiiieiieiiieiiennieccieccecinecnneeennen, 105
Non-Congestion Packet LOSS DeteClioNcc..oeivviiieeiieiiiiiiiiiiisissesnssinesnsnees 105
Packet Loss Pairs and Hidden Markov Models.............cccccceveevvceeecceecineerinnnn 106
ZBS Hybrid SCHeme............ccccccoviveiviiceieiiiiriisseiresciseeessessssssssessessssesssssesssnasssns 107

TCP Westwood with Bulk Repedt...............ccccevvveeiveiinienceeeeiieniieereerinserenennens 108
TOP-ROS...oiiteoieeieete et ettt ettt ettt b et sas et eneenaen 110
LD-LogWeStwood+ TCOP.....c.ccoveeiviiiiiiiiieeiise st eesee sttt seaaarae s 110

3.5 Chapter CONCIUSIONS ...iivvviciiiiiiiiie et srb e s ens 112
CRAPLEE ..o e s et e e e s e s ae e st e e e e eanae s baae s 113
TCP Sender Resilience to BERs over 802.11 Channelsco.coovieviiiinieiieceiecine e 113
4.1 INEEOAUCTION 1..vtiirccitis ettt b e e b e s e e e be e b e e b e rbae b 113
4.2 Background INfOrmationceeeveeuiiviieeiie et eanesseeeas e eaneeaeas 114
4.3 OPNET Modeler™ Network SImulator..........o....cocceervvenreeeneeerensereees oo, 115
4.3.1 OPNET Modeler™ ...t 115
4.3.2 TCP Implementation in Modeler ™coovomrermriieriinrsessreseseenienns 116
4.3.3 IEEE 802.11 Implementation in Modeler™ ..o 116
4.3.3.1 WLAN Channel Model........ccovioiiieriiiiiiiieseese e e 116

4.4 SImulation ENVIFONMIMENTvoiveeeieiieiiecieeeee et eae s eaeesseessssesaessneeessessesssns 117
4.4.1 Scenarios and SetNZS........cceirieiiiieiiiiieeeeeseee e 118
4.4.2 Implementation of Custom BER Generator.........cccccueevvvevreeeieeciecoriernnenn, 120

4.5 Simulation Results and DiSCUSSIONS........ccvvevriieiiieerrisisieeniecsiresireenesesae e eeseens 121
4.5.1 TCP Server Congestion Window Behaviourc.cccccvevivieeniiiiinniecienn, 121
4.5.2 Throughput Performance over the WLANcocooiiiiiiiice 126
4.5.3 Transfer Time Performance for FTP Downloads..........ccccevvveevneeviinennnnn 127
4.5.4 Web-page Response Times for HTTP Requests.....cccoveicieeiieciiecnecnneenne, 128

4.6 Chapter COonCIUSIONS ...vovvivirieiiiciiiie et sar bbb e 129
Chapter 5... e e 131
Umdlrcctlonal VS. Bldnectlonal [0sses . e 131
5.1 Introduction............ 131
5.2 Related Work dﬂd Motwallom ... 132
5.3 Experimental Setup and Procedures.......c.ooovviviiiiiiiecriececieccrecciree e 134
5.3.1 End-to-End TCP Emulation Platform.........cccooovviiiiniiieiicscie, 134
5.3.2 Traffic Generation and Chosen Variables.........ccccovveiicieivinieeieiecenesensenens 136

S RESUILS ottt et s s 137
5.4.1 Maximum End-to-End Bandwidth Achieved..........ccccooevvvieriviviiiincinenen. 137
5.4.2 100 Mbytes Transfer Time Performancecccoevvveveerenriieviienencnneenne. 140
5.4.3 Sender Congestion Window Behaviour..........ccccevveviveveeiviecinicsiiesrecneenne. 142

5.5 Discussion of RESUlSccocciiiiiiiiiiii e 146
5.5.1 Sender Congestion Window Dynamicsccecevereneeeresieresenernennenns 149

5.6 Chapter CONCIUSIONSciiiiiiiiiiecieeieee et eeee et ae s e ebeasaeesreeaseenses 150
CRAPLET ...ttt eab e se e e b b e beessebese b e easeenbeeseebeenseens 152
A Testbed for Evaluating TCP over 802.11 WLANScooviiviiiiccieecieeee e 152
6.1 INETOAUCTION 1..eviiriciicc et e et s e saae s nasraessane s 152
6.2 Related Work and MOtIVAIONSc.eeeuieveievveeriireeeeeiseecaeeseesseeeaeeeaesessesaeesanens 154
6.3 Proposed Experimental Testbed and Architecture...........oceeeeveeireiviieniieninennn 156
6.3.1 Testbed ATChItECIUIE ..c.viiiiiiii e 157
6.3.1 TCP Server Settings... e 158
6.3.1.1 Capturing and Analysmg T(,P Traff iC. ... 160
6.3.2 Internet Emulator Setup and Confi gunatlon ... 162
6.3.3 The Last-hop 802.11 WLAN ...cccoiiiiiiiiieiieieeeieeeecre e senens 103
6.3.3.1 Capturing 802.11 TraffiC.....cooicoviiiiiiiiiiiee e 164

6.3.3.2 Analysing 802.11 Traffic .. crevereeenn. 164

Computing the 802.11 Frame Rclransmlssmn Dlstrlbutlons f01 TCP e 165
Calculating Downlink/Uplink 802.11 Frame Error Rates (FERs) for T(,P 168
Transmission Delays at the 802.11 MAC for TCP Traffic......cccceeeveeveevrennnene. 169

6.4 Evaluating the Impacts of an 802.11g WLAN on TCP ...c..oovvvevcvieiviiiieceenneen 171
6.4.1 MOTIVALIONS .eeviitiiiiiiiieee ettt sse e aesa bt s b e et easasbaeseenaees 172
6.4.2 Testbed Configuration Setings.......cccceveeeriierimniirieiceeee s 173
6.4.3 Measurements and SCENATIO.......c.viveereerierreeiiie e sa e saenes 174
6.4.4 Results and DISCUSSIONSvcviereriivieiiiinieeieiiiscses ettt ese e e 176
Downlink and Uplink Frame Error RAIES..........c.covaeeeveerieeeeiniieerieseesesaenens 176
TCP Sender Retransmission BeRAVIOUFcc.ccccoovviiivniiirienieeiiescereeresie s 179
Probability Distribution of Frame Retransmission Attempts by the AP 181
Probability Distribution of Frame Retransmission Attempts by End-Device.....186

6.5 Chapter CONCIUSIONScooiiiiiiiiiieiieiie st sas e ere e e e s e esnseessseeeenes 190
CRAPLEE T.oiii et ettt b e bt eb e bs e st e asees s b e saseaebeeasesbesbnenbeas 192
Evaluation of Linux Sender-Side TCP Implementations..........eceeovveevvveeieeeneeecerinnens 192
7.1 Introduction and MOtIVAtIONSccieiiiiiieeniirii et 192

7.2 Prerequisite KNOWIEAZEccvevivviveeiiiiiiieieiieisrecesseccsveeesvesrenesesseseenenes 194

TOP HYBIA ..ottt e eaa e s s e ena e enes 197
TCOP WeSHWOOt ...occovviviiiiiiiiiisiteeiies ettt et s bes 198
TOP VERNO ..ottt bttt st 199
7.3 Testbed Setup and Procedurescccoceeviiiveeiiceiiecceeieeeeeevire e 2011
7.3.1 Hardware Setup... OSSO PPOOURORPRRRPROPNA | 7.
7.3.2 Software Conhguratlom et snessneseeens 209
7.4 Real-World Home WLAN SC&DdI‘lO”; e eesennnesnesseeenns 209
7.4.1 Scenario 1 — Multiple 802.11g End Uscr‘; ... 206
7.4.1.1 Experiments and Selected Measurements...........co.coveeeveeenreeiiveerveinneenn, 208
7.4.1.2 Analysis of Effective FERs over the WLANccoovveviiiiiceiiiccieceieeee, 210
7.4.2 Scenario 2 — Varying the Location of the 802.11g End-Device................. 212
7.4.2.1 Experiments and Selected Measurements..........cooeeevveeeienieeesieercnneeennen. 212
7.4.2.2 Analysis of Effective FERs and Retransmission Characteristics............ 213
7.4.2.3 Analysis of Transmission Delays for TCP Traffic over the WLAN.......223
7.5 Scenario 1 — Results and DISCUSSIONS ...cc.veeiveeeveeeireierieeseeereeeeeeeeveeseessseesse e 228
7.5.1 Small TCP Transferscccoviiiiiiiiieciiie e 228
7.5.2 Medium TCP Transfers ..o 231
7.5.3 Large TCP Transferscoovvveiciiiiieiiiieec e ae e eana e ebaseeeenns 233
7.5.4 Retransmission Timeout (RTO) TIMercccovvveveriieeeieecceeeeeceesene 236
7.6 Scenario 2 — Results and DiSCUSSIONScvieriieiieiiiiiiirieiesee e 239
7.6.1 Transfer Time Performance for 30 Mb Downloadooveeveevvviiverenerinnns 239
7.6.2 End-User Throughput Performancecc.coovvieeeveniinieies i 240
7.6.3 Retransmission Timeout (RTO) Timerccovvvvvieviiciierieeeecieeeecereecareee, 242
7.6.4 Retransmission Behaviour at TCP Server.........ccccocevvvveeeciiviciecieceeceenns 243
7.7 Chapter CONCIUSIONS ...cviivuiiiiiiiiieeieeieeee et e e e s et saasseesbeeesbeensenesbeesseeses 244
CRAaPLer 8.ttt e et e e et eeebaeens 248
Thesis Conclusions and Future Work ..o, 248
8.1 Summary of CONCIUSIONSccviiiiiiiiiiee e 248

8.2 Summary of ContribUIONSccuieeiiierieeee ettt es e eea e 252
8.2.1 A New Synthesis of TCP Issues over IEEE 802.11 Wireless Paths..........252
8.2.1 A CBG Module for the WLAN Model in OPNET Modeler ™..................252
8.2.2 Significance of Bidirectional Error Models for TCP Experiments............252
8.2.3 A Platform for TCP Experiments over Wired-to-Wireless Paths............... 253
8.2.4 Real-World Error Characteristics of IEEE 802.11 WLANSs...................... 253
8.2.5 Evaluating Linux v2.6 TCP Variants over Wired-to-Wireless Paths253

8.3 Directions for Future Worki.......ccccovvvvvieiiiiiiiiiiicec i enee e 294

List of Publications.........c.ooooviiiiiiiiiiiiicc et rnne s srae e 257
GloSSATY OF TEIINSooeovviiiicicecee e et a b s baaenns 208

| 2 () 1 L = TR OTRRRRRPO1 - |

List of Figures and Tables

Figure 1.1: The changing end-to-end scenario for TCP connections in the heterogeneous Internet........
Figure 2.1: A typical last-hop WLAN path scenario for TCP servers in the Internetcocovvevvvninnne.
Figure 2.2: The concept of ACKs, DUPACKSs, ewnd size evolution, and retransmissions.........c....ovveee
Figure 2.3: Evolution of TCP Reno sender’s ewnd size under no losses (ssthresh = 65 Kb)..ooocvvveenen.
Figure 2.4: Evolution of TCP Reno sender’s cwnd size under the reception of three DUPACKS...........
Figure 2.5: Evolution of TCP Reno sender’s cwnd size under a retransmission timeout event...............
Figure 2.6: The IEEE 802 family ... e
Figure 2.7: The structure of 802.11 data framesc.cooiiiiiicii s
Figure 2.8: 802.11 frame exchange sequence diagram under a data frame 10SSccocveiiiiiiinnnnne
Figure 2.9: 802.11 frame exchange sequence diagram under an 802.11 ACK 1085coccciiiiiiiiiinnn,
Figure 2.10: The 802.11 PHY family with a common MAC ...
Figure 3.1: Differences in the evolution of a sender’s cwnd size for different paths RTTs...................
Figure 3.2: Highlighting the impacts of a large RTO timer on a sender’s ewnd size evolution...............
Figure 3.3: The hidden node problem in 802.11 WLANS ..ot
Figure 3.4: Concept of downlink (forward channel) and uplink (reverse channel) 802.11 flows............
Figure 3.5: The four exchanges between the AP and end-device per TCP data segment
Figure 3.6: Concept of an end-to-end solution for TCP over wired-to-wireless paths................ccccooe.
Figure 3.7: Concept of splitting a TCP connection at the gateway to the wireless domain
Figure 4.1: OPNET Modeler M Radio Transceiver Pipeling (RTP) Stagesooovvvuereevevveesemriverreenne
Figure 4.2: The wired-to-wireless topology used in OPNET Modeler™ v14.0.......c.cvovveeveeeereerrrrenene.
Figure 4.3: OPNET Modeler™ TCP settings used by the SErVer.........c.ovuevevecverveiresereeeeeesissese e
Figure 4.4: Comparison of cwnd evolutions for wired versus wired-to-wireless TCP paths
Figure 4.5: The ewnd evolution of a TCP sender for wired-to-wireless paths under varying BERs......
Figure 4.6: The ewnd evolution of a TCP sender for a wired-to-wireless path with a high BER
Figure 4.7: Average TCP RTT and RTO timer values per connection under varying BERs.................
Figure 4.8: Average number of frame retransmission attempts made by 802.11 MAC at the AP.........
Figure 4.9: Maximum throughput performance over the 802.11 WLAN ...,
Figure 4.10: Time to download 15 Mb files by the 802.11 device using FTP under varying BERs......
Figure 4.11: Web-page download times for 802.11 device using HTTP under varying BERs..............
Figure 5.1: The TCP emulation platform topology ..o
Figure 5.2: TCP Reno — Maximum achieved channel bandwidth performance.........cccococvnvivncninnnn,
Figure 5.3: TCP BIC - Maximum achieved channel bandwidth performancec.cocoovvvnnnicnnninnnn
Figure 5.4: TCP Veno — Maximum achieved channel bandwidth performancecccoovivininnnnns
Figure 5.5: TCP Reno — 100 Mb transfer time performance............cccooooneiinnciiiicicinccceenes
Figure 5.6: TCP BIC — 100 Mb transfer time performancecoooiiiiiiniiiniiiicc s
Figure 5.7: TCP Veno — 100 Mb transfer time performance
Figure 5.8: TCP Reno — 0.001% loss rate — unidirectional versus bidirectional channel errors

Figure 5.9: TCP Reno — 0.01% loss rate — unidirectional versus bidirectional channel errors

14
28
37
40
41
41
48
50
51
52
54
61
62
67
73
76
78
79
117
117
118
122
123
124
125
126
127
128
129
134
138
139
139
140
141
141
142
143

Figure 5.10: TCP Reno — 0.1% loss rate — unidirectional versus bidirectional channel errors...............

Figure 5.11: TCP BIC - 0.001% loss rate — unidirectional versus bidirectional channel errors............

Figure 5.12: TCP BIC - 0.01% loss rate — unidirectional versus bidirectional channel errors..............

Figure 5.13: TCP BIC — 0.1% loss rate — unidirectional versus bidirectional channel errors................

Figure 5.14: TCP Veno — 0.001% loss rate — unidirectional versus bidirectional channel errors

Figure 5.15: TCP Veno — 0.01% loss rate — unidirectional versus bidirectional channel errors............

Figure 5.16: TCP Veno — 0.1% loss rate — unidirectional versus bidirectional channel errors..............

Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:
Figure 6.8:
Figure 6.9:

The typical scenario today for TCP senders running over last-hop WLANS. ...
The proposed wired-to-wireless TCP experimental testbed ..o,
The flow of TCP traffic over the wired-to-wireless testbedocoocvvviiinnvcninienenn
Site survey results using netstumbler WLAN SCANNET......cccvvioiiiiirirriinieeie e
Forward channel FERs over the WLAN under OFDM modulation schemes......................
Reverse channel FERs over the WLAN under OFDM modulation schemes
Number of data segment retransmissions by TCP at the wired server..........ccococevvviiicriene,
Probability distribution of frame retransmission attempts by AP (2m / SNR = 50dB)........
Probability distribution of frame retransmission attempts by AP (4m / SNR = 44dB)........

Figure 6.10: Probability distribution of frame retransmission attempts by AP (6m / SNR = 42dB)......

Figure 6.11: Probability distribution of frame retransmission attempts by AP (8m / SNR = 38dB)......

Figure 6.12: Probability distribution of frame retransmission attempts by AP (10m / SNR = 32dB)....

Figure 6.13: Probability distribution of retransmission attempts by end-device (2m / SNR = 50dB) ...

Figure 6.14: Probability distribution of retransmission attempts by end-device (4m / SNR = 44dB) ...

Figure 6.15: Probability distribution of retransmission attempts by end-device (6m / SNR = 42dB) ...

Figure 6.16: Probability distribution of retransmission attempts by end-device (8m / SNR = 38dB) ...

Figure 6.17: Probability distribution of retransmission attempts by end-device (10m / SNR = 32dB)..

Figure 7.1:
Figure 7.2:
Figure 7.3:
Figure 7.4:
Figure 7.5:
Figure 7.6:
Figure 7.7:
Figure 7.8:
Figure 7.9:

Figure 7.12: Average transmission delays for downlink and uplink TCP traffic.......ccccccvune.
Figure 7.13: Probabilities of transmission delays at AP in good conditions (SNR~30dB)........cccc.....
Figure 7.14: Probabilities of transmission delays at SEAMOSS in good conditions (SNR~30dB).......
Figure 7.15: Probabilities of transmission delays at AP in fair conditions (SNR~20dB)coccecvrunens
Figure 7.16: Probabilities of transmission delays at SEAMOSS in fair conditions (SNR~20dB).........

The adapted wired-to-wireless testbed ...
The real-world home WLAN floor plan (12.3 X 10.4 MEres)cccovvveriiivivnncnrrnieninnene
802.11 FERs using TCP data flows under varying number of end-devicesc.ccooeueuee

802.11 FERs using TCP data flows over varying channel conditions...........cccecevvveinirinens

The 802.11 AP-client data interchange SEqUENCEcoveeveeiiieiiiriiese et

Retransmission probabilities of the AP in good conditions (SNR~30dB)........cccccccvvinnns
Retransmission probabilities of the AP in fair conditions (SNR~20dB)c..ccocvrvevvninne
Retransmission probabilities of the AP in poor conditions (SNR~10dB)cccoerveernene.
Retransmission probabilities of SEAMOSS in good conditions (SNR~30dB)cceee.
Figure 7.10: Retransmission probabilities of SEAMOSS in fair conditions (SNR~20dB)........cc.ccoveue.
Figure 7.11: Retransmission probabilities of SEAMOSS in poor conditions (SNR~10dB)..................
..224

10

143
144
144
145
145
146
146
153
157
164
176
177
178
181
183
184
184
185
185
187
188
188
189
189
202
206
211
213
215
219
220
220
221
221
222

225
225
226
226

Figure 7.17: Probabilities of transmission delays at AP in poor conditions (SNR~10dB)........ccecuevveene.
Figure 7.18: Probabilities of transmission delays at SEAMOSS in poor conditions (SNR~10dB)
Figure 7.19: Short TCP flows: Average 802.11g end-user download time for 1 Mb of data.................
Figure 7.20: Short TCP flows: Average throughput achieved by 802.11g end-user.............ccovvveeeeenne.
Figure 7.21: Medium TCP flows: Average 802.11g end-user download time for 10 Mb of data..........
Figure 7.22: Medium TCP flows: Average throughput achieved by 802.11g end-user.........cocevevinnnn.
Figure 7.23: Large TCP flows: Average 802.11g end-user download time for 50 Mb of data..............
Figure 7.24: Large TCP flows: Average throughput achieved by 802.11g end-user.........ccccoevvevvinnns
Figure 7.25: Small TCP transfer: Average RTO timer value at TCP senderccccoeveecrrvveriinveneennenns
Figure 7.26: Medium TCP transfer: Average RTO timer value at TCP sender........coocovevvereicnniiinnns
Figure 7.27: Large TCP transfer: Average RTO timer value at TCP sendercoccoevevveirvvinecnviricnenns
Figure 7.28: Download time for 30 Mb of data by 802.112 end-USer..........cccevvivirmeiievrieeriierecnenae
Figure 7.29: Throughput achieved by 802.11g end-user over varying WLAN conditions....................
Figure 7.30: Average RTO timer value at TCP sender over varying WLAN channel conditions

Figure 7.31: Retransmissions by the TCP sender over varying WLAN channel conditions..................

Table 2.1:
Table 2.2:
Table 3.1:
Table 4.1:
Table 6.1:
Table 6.2:
Table 6.3:
Table 7.1:
Table 7.2:
Table 7.3:
Table 7.4
Table 7.5:
Table 7.6:

The supported data rates of the IEEE 802.11b WLAN standardccooevviiiviecrnecieennnn
The supported data rates of the IEEE 802.11g WLAN standardccccooovvvrivviirvcnicninn o,
Comparison of BERs between wired networks and wireless channels [Source: [117]]..........
HTTP web-page request settings for 802.11 end-deviceccoovviiiiicciiiivccicreeees
Currently available TCP congestion control algorithms in Linux v2.6.19 kernel................
802.11g modulation schemes and supported WLAN data rates.............cccocoooinvciicniicnnne.
Indoor home-office WLAN signal quality measurements with varying distance..................
WLAN end-device names and specificationscocooeviviiiinneniieni e
Sub-Scenarios A 10 E ...t
802.11g parameters and duration Valuesoceeciiiiiinieereceiee e
Calculated theoretical average back-off timer values for 802.11g MAC transmissions.......
Theoretical (downlink) transmission delays for TCP data segments at the AP

Theoretical (uplink) transmission delays for TCP ACKs at the end-devicec......

11

227
227
229
230
232
233
234
234
237
237
238
240
241
242
244

54
55
60
119
160
174
175
203
207
215
217
218
219

Chapter 1

Introduction

The Internet has evolved into a global phenomenon allowing users across the world to
share information in a fast, convenient, and reliable manner. It was the transformation
of a small collaborative computer network belonging to researchers at the US defense
advanced research projects agency (DARPA) into a distributed packet-switching
communication system that offered fast end-to-end transmissions of data between end-
hosts, which set the foundations for the modern-day Internet and accompanying

protocols.

Deep within these foundations were the beginnings of a protocol that would dominate
and govern the end-to-end transportation of Internet traffic in a reliable manner for
many years to come; the transmission control protocol (TCP) was formally born in
1981 [1]. Today the Internet is still an evolving network, and many of the services that
we now take for granted, such as e-mail, web-browsing, and file downloads/transfers,
still depend on TCP to provide the pervasive Internet services modern society has
come to expect [2]. It is TCP’s pioneering congestion control mechanisms that have
heavily contributed to and still govern the movement of over 90% of data across the

Internet today [3] [4] [S] [6].

As the Internet has grown, there were developments of application level protocols to
support the ways in which information was handled and presented to end-users. It is
with no surprise then that the majority of implementations of such protocols have been
based on TCP and still depend on it to provide a guaranteed and reliable transmission
service between sending hosts and receiving hosts over the Internet [7] [8], which is

very much still the case today.
Today’s global Internet has the major characteristics of one that continues to grow

rapidly, evolving into a huge mesh of interconnected sub-networks, and one that is

increasingly becoming heterogeneous in a way that was never predicted in the

12

Internet’s early days [9]. It is this heterogeneity that has become a cause for concern
for the legacy TCP [10]. When referring to the term heterogeneous we are referring to
a characteristic that is difficult to describe with absolute precision. However, certain
things are clear; traditionally, it was always certain that the transmission paths (links)
between communicating hosts were of the wired form. Nowadays, however, the links
which make up the Internet are an intertwining of copper wires to state-of-the-art
optical fibres, from infrared-based to radio-based (wireless) links, each with its own
transmission properties and path-loss characteristics [11] [12] [13]. As a direct result,
today there exists a new class of connected end-hosts; the class of wireless end-users
who can remain connected to the Internet without the need for a physical medium
(wire) between them and their nearest gateway. This is the mobile and wireless

networking revolution [14] [15].

The mobile and wireless networking field has attracted a great deal of interest in recent
years [16] [17] [18] [19]. As a result, the field has expanded rapidly in the last decade,
particularly with the recent introduction and rapid uptake of the IEEE 802.11 standards
for indoor wireless local area networks (802.11 WLANs) [20], coupled with a
booming penetration of broadband Internet access into everyday lives of homes and
businesses around the world [21]. IEEE 802.11 WLANs are typically found at the
edges of the Internet within the homes and offices of end-users; the technology allows
end-users to remain connected to the Internet via a local gateway, as in a traditional
LAN, but without the cables, i.e. the radio medium is used [22] [23]. Hence, the last-
hop portion of the journey for TCP data traffic arriving from a server in the Internet
often now traverses a wireless link before it reaches the end-user, i.e. TCP receivers
can now be wirelessly connected [24]. However, it is a well known fact that wireless
transmission channels are notoriously unreliable for the transmission of data due to the
general characteristics and complexities associated with the use of the radio medium as
a communications link [25]. It has been shown and proven many times over the years
that there are diminishing effects of wireless channels on TCP performance, causing it
to under-perform due to the highly variable and unpredictable conditions which they
exhibit [11] [13] [26] [27] [28] [29] [30] [31]. For these reasons, the interaction
between TCP and its usage over IEEE 802.11 WLANS specifically has been the focus
of much research in recent years [32] [33] [34] [35] [36] [37] [38] [39] [40] [41].

Unfortunately, the majority of such studies do not properly address the impacts of this

13

changing wireless last-hop scenario on TCP’s performance and its consequent
behaviour at the sending side in the Internet (i.e. at the servers), which is mainly due to
the difficulties associated with gaining access to server machines in the Internet [42]
[43]. Figure 1.1 illustrates the changing end-to-end scenario for TCP connections over

wired-to-wireless paths.

END-to-END TCP CONNECTIONS

z N
< 7
Wired Wireless
e I L 1CP
Host Host
¢ > ?
Wired Medium Wireless Medium
(e.g. Ethernet/Copper) (e.g. 802.11)

Figure 1.1: The changing end-to-end scenario for TCP connections in the heterogeneous Internet

Since TCP still stands as the dominant transport protocol responsible for over 90% of
today’s Internet traffic, an understanding of the protocol’s sender-side dynamics is
crucial for the future dimensioning of a heterogeneous Internet [2] [44]. To briefly
clarify, sender-side TCP implementations typically maintain the end-to-end semantics
stated in TCP’s original design [45] [46], an important feature which has helped it to
work seamlessly with other protocols for years. It basically implies that TCP must
operate transparently between communicating hosts without any knowledge of the
transmission path being used to transfer the data. Due to this lack of discrimination by
TCP, it is unable to distinguish between a wired path and a wireless path, and is
therefore unable to differentiate between data losses in the wired path and data losses
in the wireless path. It reacts to both incidents in an identical manner. This matters
because TCP has been designed to deal with wired losses by throttling back its sending
rate as it assumes congestion has occurred. For wireless losses, this response from TCP
would unnecessarily reduce its sending rate as there is no congestion in the path, and
wireless losses can normally be recovered locally using a variety of error recovery

techniques.

14

In summary then, this thesis explores the end-to-end performance issues and behaviour
of sender-side TCP implementations when it is transmitting data towards a requesting
wireless end-user. The focus throughout is on those end-users that are located
specifically within IEEE 802.11 WLANSs, where the last-hop path for all TCP data
traffic must traverse a radio link at the edges of the Internet, a relatively untapped area
of work. The thesis also makes an attempt to explore the transmission characteristics of
IEEE 802.11 WLANSs, with the hope of gaining a better understanding of its

interactions with TCP’s sending behaviour.

1.1 The Challenges and Motivations
1.1.1 Evolution of 802.11 WLANSs and the Impacts on TCP Senders

The end-user experience for accessing services from the Internet is changing; WLANs
based on the IEEE 802.11 standard have seen an explosive growth in recent years.
WLANSs have enabled end-users to become mobile whilst remaining connected to a
wired backbone, without the need for any wires. The license-free usage of radio
spectra in the 2.4 GHz ISM band has aggressively encouraged WLAN technologies to
be adopted into homes and offices around the world [32] [47]. More and more
manufacturers are incorporating 802.11 WLAN capabilities into an ever-increasing
array of electronic consumer devices. As a result, the Internet has become increasingly

heterogeneous, and is set to continue with this trend for the foreseeable future [10].

Typically, a WLAN is situated at the last-hop portion of the end-to-end journey for
data arriving from Internet servers [47]. It implies that a communication path for the
transfer of data from the Internet to an end-user may traverse a wired (or fixed) path
for majority of the journey, and then a wireless path in the final stage of the journey.

Researchers often refer to such scenarios as ‘wired-cum-wireless’ environments [27].

It is well known that indoor 802.11 WLAN transmission channels exhibit higher bit
error rates (BERs) due to the degradation of radio signals from fading, attenuation,
reflections, refractions, diffractions, and the addition of interference noise [25]. Hence
the performance of a WLAN is highly dependent on the characteristics of the radio

channels which it uses. To counter these effects and provide a reliable service the IEEE

15

802.11 standard implements its own error detection and recovery mechanisms at the

802.11 MAC-layer (MAC) over the WLAN [23].

It is clear that Internet access technologies have become diverse; however, certain
factors remain unchanged. End-users still need and expect fast and reliable downloads
of data from servers in the Internet, and TCP still dominates on servers as the transport
protocol of choice for supporting these activities [48]. Unfortunately, TCP was
primarily designed with only the fixed Internet in mind, and has been fine-tuned over
the years to deal with congestion-related losses and the very low BERs typical of wired

paths via its congestion control algorithms [49].

The key issue then for TCP sender over last-hop 802.11 WLANS is the higher random
loss rates that TCP traffic is subjected to whilst in transit over air. Simply put, a TCP
sender in the Internet is unable to discriminate between a loss in the fixed network, and
a loss occurring in the WLAN [13]. It detects and reacts to both types of losses in the
same manner, activating its congestion control procedures to alleviate the assumed
congestion in the fixed network, by bringing down its sending rate [11]. Of course, this
is the correct action if the loss was indeed over the wired path, as congestion may be
imminent. However, and more likely than not, if the loss was over the WLAN then a
reduced sending rate by TCP is inappropriate because 802.11 WLANSs typically
continue to send data to its wireless clients at the same data rate. All that is required of
TCP in this situation would be to simply retransmit the lost segment. In summary then,
constant losses over the WLAN caused by high BERs can lead to sub-optimal average

data throughputs for end-users due to a TCP sender’s inherent inefficiencies.

Another issue for TCP senders over last-hop 802.11 WLANSs is the highly variable
delays experienced by TCP segments due to a) the 802.11 error recovery mechanisms
in place, and b) the medium access control (MAC) mechanism governing client access
to the radio channel for transmissions. Firstly, as a direct consequence of the
aforementioned higher error rates, the 802.11 MAC utilises a persistent retransmission
technique to deliver lost data locally, which can cause unexpected and considerable
transmission delays for queued data [S0] [S1] [52]. Secondly, when there are many
wireless 802.11 devices in the WLAN then access to the radio medium for

transmissions becomes an issue; the 802.11 MAC allows only one device at a time to

16

transmit/receive data at any one time. When there are multiple 802.11 devices in the
WLAN, gaining access to the radio medium is controlled by an exponentially
increasing random waiting period [S3]. Consequently, depending on which device in
the WLAN a fixed TCP sender is communicating with, there could be unpredictable

waiting times between transmissions of individual packets of data from the Internet.

It can be argued that each of these factors can have a direct impact on the end-to-end
delays experienced by a TCP sender. In the traditional fixed Internet of the 1980’s,
end-to-end round trip times (R1Ts) for TCP segments remained fairly constant with
only small deviations from the mean [3]. This relatively stable behaviour allowed TCP
to always remain in a steady state, constantly adjusting its sending rate and its loss
detection sensitivity based on measured RTTs, where the imminence of network
congestion is always on TCP’s agenda. Now, however, when TCP experiences highly
variable RTTs associated with WLANS, it loses its steady-state behaviour because its
congestion control mechanisms are insensitive to any other form of delay than
congestion related delays [31]. As a result, TCP senders are often forced to make
unnecessary retransmissions due to mixed signals about delay conditions in the

network, thereby reducing its average sending rate over the course of a connection.

To date, many reports have been published highlighting the performance implications
of using the legacy TCP over wireless paths [11] [13] [26] [27] [28] [29] [30] [31].
However, the majority of these studies are limited because they do not look at the
IEEE 802.11 wireless technology in particular, which is a core focus of the work in
this thesis [54] [55] [56] [S7]. Those that do study its behaviour over [EEE 802.11
WLANs provide only basic insights into the perfomi'ance of TCP senders, and
focussing mainly on TCP versions and settings that are deprecated, and not providing
enough insights into the sending behaviour of TCP servers separated by an Internet (or
by a large wired backbone). Such studies also tend to overlook the characteristics of
the 802.11 WLAN that affect TCP’s performance in particular, skipping discussions
relating to the interactions between the two protocols. Therefore, due in no small part
to the fact that downloads by end-users (both wired and wireless) of TCP application
data account for the bulk of Internet traffic there is a paramount need for an up-to-date

study and performance evaluations of the behaviour of modern-day TCP senders from

17

the perspective of Internet servers, when the last-hop portion of connections includes

IEEE 802.11 WLAN:E.

1.1.2 Testing Wired-to-Wireless TCP in More Realistic Conditions

An area that has gathered more interest in recent years is that of performing real-world
and hence more accurate experiments with networking protocols as a supplement or as
an alternative to traditional methods of performing experiments. Currently the most
popular method of performing TCP experiments over wired-to-wireless paths is by
using network simulation software [58], followed by using the concept of network

emulation techniques [59].

Naturally, simulation has always been the platform of choice for conducting such
experiments, with popular simulators such as NS-2 [60] and OPNET Modeler™ [61]
dominating in the arena. These simulator suites offer excellent features and provide
accurate implementations and models of both TCP and the IEEE 802.11 WLAN
protocols. Such features make simulation an easy choice for new researchers wanting
to study and experiment with protocols in a controlled manner, allowing them to
rapidly create network topologies, generate customised traffic patterns, and seamlessly
collect and analyse data. Simulators also have the advantages of being relatively cheap,
providing highly reproducible results, and scaling very well and inexpensively [10].
However, simulators can be artificial and offer synthetic environments only [10] [62]

[63], although it is appreciated that these traits could be viewed upon as advantageous.

Network emulation is a technique for conducting experiments using real machines and
devices; the components are connected to form a system that basically mimics the
behaviour of an equivalent system in the real-world [58] [64] [65] [66]. For example, a
machine could be configured to emulate the effects of a wireless network by dropping
packets based on customised settings that seem appropriate for a radio channel.
Emulators are advantageous because researchers can observe real-world protocols in
action; they allow controlled experiments with a high degree of reproducibility.
Generally speaking, emulators sit between simulators and real-world live systems. On

the downside, emulators tend to be quite specialised systems, built by researchers for a

18

particular study at hand [67] [68]. Hence, emulators generally are not easily

transferrable between researchers.

In light of many of the advantages of network simulation and emulation, modelling the
true behaviour of TCP running over wireless networks should be a precise procedure,
and one that simply cannot be carried out using simulation models or emulation alone.
From the vantage point of TCP research over wired-to-wireless paths, the greatest
challenge has always been the ability to experiment with real-world protocol
implementations using a real-world operational wireless network and over conditions
that most accurately reflect the real-world, i.e. the Internet. The challenge is in the
acquisition of equipment/devices that are readily available to researchers, as well as

having support for the usage of easily obtainable software measurement tools.

A further challenge is being able to observe and measure the behaviour of a sending
TCP whilst downloading data from a server in the Internet. As can be appreciated, this
is a complex task in the real-world because of the vastness of the Internet, as well as
not knowing precise physical locations of the servers. Coupled with this challenge, it
would be very beneficial if protocols used over the wireless portion whilst making the
download requests could be observed/studied simultaneously to TCP senders. Such a
setup would allow researchers to cross-compare performance between the two
protocols for the same transfer (or experiment), investigating any relationships on the
interactions between the two protocols. A thorough literature review of previous
experimental work on TCP over wired-to-wireless paths suggests that an accurate
testing technique for evaluating both wired and wireless protocols in unison does not

readily exist.

The challenges presented above would require the use of real-world protocols and live
networks in order to supersede simulation or emulation techniques. However, if
possible, such an experimental platform would provide researchers with innovative
ways of experimenting with TCP over wired-to-wireless paths, which is important for

the future of TCP’s robustness in the heterogeneous Internet.

19

1.1.3 Transmission Characteristics of Indoor IEEE 802.11 WLANSs

The adoption of IEEE 802.11 WLANS into homes and offices has led to a changing
scenario for higher layer protocols, specifically for TCP. Such in-building WLANSs in
this context utilise indoor radiowave channels that are available in the 2.4 GHz ISM

band [47].

Indoor radio channels differ from traditional outdoor radio channels in two key aspects
[25]; 1) the distances travelled by radiowaves are much smaller, and i1) the variability
of the radio environment is much greater for a smaller range of transmitter-receiver
distances. Although indoor radiowave propagation is subjected to many of the same
mechanisms as outdoor channels, such as reflection, diffraction, and scattering, the
added variability factor is that radiowave propagation within buildings is strongly
influenced by specific factors such as the layout of internal walls/partitions, the
construction materials used, and the overall layout of the building. For example, indoor
wireless signal levels can vary greatly depending on whether interior doors are open or
closed. In fact, virtually every component within a building can have an affect on
propagating radiowaves, by either reducing their propagating transmission power
(known as path loss) or by interfering with them and altering transmission properties

(known as interference noise).

Another feature that is unique to homes and offices today is that they are often loaded
with electronic devices that act as additional sources of noise interference to radiowave
transmissions belonging to an 802.11 WLAN [69] [70]. In particular, the license-free
nature of the 2.4 GHz spectrum has led to the development of many consumer devices
that can also take advantage of wireless communications [47]. Typical devices
operating in the 2.4 GHz frequency band that can be found in the majority of homes
and offices today include digital cordless telephones, wireless printers, wireless audio-
visual equipment, and microwave ovens [71]. It should also be mentioned that due to
the high popularity and penetration of IEEE 802.11 WLANS, they too can act as
sources of interference. For example, in a large multi-floor office building there may
be several WLANSs installed throughout the building. Due to restrictions in certain
countries on the maximum number of channels that can be used in the 2.4 GHz band

by IEEE 802.11 equipment, it is easy to understand why an overlap on the same

20

wireless channel between two neighbouring WLANSs is easily possible [72]. This
situation also applies to residential sites that are heavily built-up with many houses
clustered within small areas. For example, an 802.11 WLAN operating in one house

can easily interfere with the radiowaves of an 802.11 WLAN in a house next door.

The unique characteristics of indoor radio channels mentioned above lead to very
specific behaviour with the transmission of data over 802.11 WLANs. The ultimate
measure of the impacts of channel characteristics is the error rate experienced by data
frames over the WLAN, known as the 802.11 frame error rate (FER). It is well known
that wireless channels generally possess higher error rates than fixed networks [16],
but there has always been interest from researchers wanting to gain more accurate and
comprehensive insights into the characteristics and FERs of real-world indoor 802.11
WLANSs specifically. Such insights can be very useful to researchers, for example
when developing and enhancing existing wireless channel models that are commonly

implemented in network simulators or emulators.

To illustrate, when TCP traffic traverses over an 802.11 WLAN, each data unit is
encapsulated within at least one 802.11 frame before being transmitted over the air.
Hence, any errors occurring with an 802.11 frame will always affect the TCP data

contained within it, potentially leading to a presumed data loss by the TCP sender.

Several studies have been undertaken to understand a) the transmission characteristics
of frames over 802.11 WLANSs [73] [74] [75] [76], and b) their subsequent impacts on
higher-layer protocols [33] [34] [77] [78] [79] [80]. However, in the case of a), most of
the studies have not been comprehensive enough, and therefore have only produced
very basic insights regarding typical conditions of indoor WLAN channels; the
common trends by researchers are to focus only on one-way traffic directions over the
WLAN, either the downlink (towards the end-devices) or uplink (away from end-
devices) traffic flows. Assumptions are also made about the channel conditions being
used, with some researchers still using older 802.11 standards that have been
superseded in the marketplace, as well as using basic techniques for the analysis of
captured data leading to inaccurate insights. In the case of b), there appears to be a lack
of parallelism with the real-world with how higher-layer protocols such as TCP are

actually used over WLANs. The majority of studies in this area also tend to use

21

network simulation studies to evaluate and highlight the impacts of 802.11 WLANs on
higher-layer protocols, with some resorting to the formation of mathematical models to
predict higher-layer protocol performance. Thus, insights into the error and
transmission characteristics of indoor IEEE 802.11 WLANs remain of considerable

research interest, as well as interest into the techniques used.

1.1.4 Screening Linux TCP Implementations for Wired-to-Wireless Paths

Linux has evolved into a powerful operating system, and its popularity as a license-free
and open-source operating system has gathered momentum in recent years. The current
major release of Linux is version 2.6, and it comes armed with many potent features
aimed at improving the performance of enterprise web-servers. One of these features is
the leading edge implementation of a powerful networking stack, in particular its
support for a flexible TCP [81]. Secondly, because the Linux framework is
customisable it has encouraged researchers of networking protocols to take advantage
of this flexibility by contributing different implementations of TCP’s congestion
control algorithms over the years [82] [83]. Hence, recent sub-releases of the Linux
v2.6 kernel now come with an array of ready-to-use TCP congestion control variants,
which can be activated with relative ease at runtime. Some of these implementations
are aimed at achieving high-speeds and bandwidths across the Internet, whilst others

have been developed for use over wireless paths [84].

The main motivations for studying TCP in Linux v2.6 arise from the fact that Linux
offers a very robust and a freely available native web-server, by the name of Apache
HTTP [85]. Apache is the most widely used web-server in the world today, and has
been since the year 2000 according to Nefcrafi Limiled, an Internet research agency.
Netcraft’s research on the total number of active web-servers seen across all Internet
domain names globally suggests that in terms of popularity Apache surpasses all other
competitors in the market. For this reason, it could be said that end-users accessing and
downloading content from the Internet are more likely to be served by TCP on web-
servers running Linux. In today’s heterogeneous Internet, increasingly these end-users

will also be those connected to the Internet wirelessly via last-hop 802.11 WLAN:S.

22

Thus, there is a real need to study and constructively evaluate how the various TCP
sender-side implementations in Linux v2.6 perform in the real-world when a Linux
server is subjected to TCP connections that include a wireless link in the last-hop
portion of the path. Currently there are only a handful of previous studies investigating
Linux TCP implementations in the real-world [84] [86]; however many of these
studies are focussed only on performance over fixed/wired networks. In contrast,
studies using the recent v2.6 Linux kernel involving a last-hop 802.11 WLAN could
not be easily found. Such insights can help researchers to re-evaluate their TCP
implementations, encouraging the Linux community to hold onto the fittest
implementations, and eliminate those under-performers from future releases of the
Linux kernel. In the long run, this can only lead to a better quality of service for

wireless users of the Internet.

1.2 Objectives of the Thesis

The core objectives and focus of the thesis are:

1. To exploit the general popularity of TCP, which still remains as the dominant
transporter of application data across today’s heterogeneous Internet. This leads
onto a need for investigating the sending behaviour of fixed TCP senders when the
end-users it serves are positioned in 802.11 WLANS at the last-hop portion of end-
to-end connections, constantly demanding increasing amounts of data with

expectations of performance that resemble a typical wired client.

2. To exploit the recent interest amongst researchers wanting to study the true
behaviour and performance of TCP over such heterogeneous conditions; this thesis
aims to highlight and propose a platform and a systematic methodology for more

accurate testing with TCP under conditions that better reflect the real-world.

3. To exploit the transparent functionalities between TCP senders in the wired domain
(i.e. on a server somewhere in the Internet) and the IEEE 802.11 MAC protocol,
usually operating in WLANSs locally within homes or office environments; this
thesis aims to explore the transmission and error characteristics of real-world indoor

802.11 WLAN:S, and aims to correlate any findings with the functionality of TCP.

23

4. To exploit the popularity of Linux as a popular operating system for many of the
world’s Internet servers; this thesis aims to study the implementations of TCP
sender-side congestion control variants within the most recent Linux kernel release
(v2.6). It aims to look at the various TCP enhanced implementations (aimed at both
wired and wireless paths) that have made their way into an increasingly popular
operating system. A selection of these real-world TCP implementations will be put
under test in real-world wired-to-wireless conditions in order to screen and present a
viable candidate for further development and use in the modern-day heterogeneous

Internet.

1.3 Thesis Structure

This thesis presents a comprehensive study and experimental investigations into the
behaviour and performance of TCP when it is sending data to requesting wireless end-
users located in last-hop IEEE 802.11 WLANSs. The focus throughout the thesis is on

the download action of TCP application data, and the resulting impact on the TCP

sender due to the radio link in the end-to-end journey of TCP traffic. A common theme
throughout is the idea of TCP connections traversing a ‘wired-to-wireless’ path, a
modern concept that builds on the traditional ideology of TCP connections being

completely “wired’.

Chapter 2 gives a brief introduction to the TCP protocol, starting from the very
fundamentals, and building up to its essential features that will form the focus in the
rest of the thesis. Due to the fact that this thesis spans across two very different
networking fields, Chapter 2 also presents an overview of the IEEE 802.11 WLAN
technology; again only brief insights into its key features and functionalities relevant to

the thesis are given.

Chapter 3 introduces the problems associated with TCP and its usage over wired-to-
wireless environments, forming a strong rationale for continued research into the
performance issues associated with its non-standard behaviour. The specific
characteristics of IEEE 802.11 WLANs that make things challenging for TCP are

reviewed and succinctly stated. The various approaches taken by researchers to

24

enhance the performance of the legacy TCP over wired-to-wireless paths are reviewed.

Finally, an up-to-date literature survey of the studies on the performance of TCP

specifically over IEEE 802.11 WLAN:S is provided.

Chapter 4 introduces the increasingly popular OPNET Modeler™, an alternative
network simulation suite, with its own implementations of TCP and the IEEE 802.11
protocols. The aim of this chapter is to confirm TCP’s performance suffering in wired-
to-wireless paths, but more importantly to probe how resistant TCP is to radio channel
bit errors over a last-hop 802.11 WLAN. A custom wireless channel error model is
developed, replacing the simulator’s standard error model, which is then used to test
TCP’s resilience under varying error rates. Simulation results using a typical WLAN
topology are presented with discussions highlighting the impact of channel conditions
on the performance of a TCP sender, as well as the impact on popular end-user

applications which utilise TCP.

Chapter 5 builds on the conclusions from the previous chapter by investigating the
impacts on TCP sending performance by subjecting end-to-end connections to
bidirectional path errors, as opposed to unidirectional errors which many researchers
tend to use in their experiments. Due to the fact that wireless channels affect TCP
traffic flowing in both directions, it was necessary to highlight the significance of
excluding a feedback channel loss model for TCP experiments. An end-to-end TCP
emulation platform is used to conduct comprehensive experiments to fully investigate
and confirm the theory. Experimental results of TCP sender performance is presented,
followed by discussions of comparisons between unidirectional and bidirectional loss

models.

Chapter 6 relates to the exploitation of researchers increasingly wanting to study and
experiment with TCP in realistic conditions over a wired-to-wireless environment.
Initially, a review of the most popular techniques currently being used by researchers
is presented, ending with a clear rationale for the need for more advanced experimental
platforms. A wired-to-wireless experimental testbed for TCP studies is consequently
proposed, with full descriptions of its key components and features. Further specific
knowledge in the area of IEEE 802.11 WLAN functionality is then presented, building

on the information given in Chapter 2 and Chapter 3. Using the proposed testbed, a

235

further focus in Chapter 6 is on the transmission and error characteristics of 802.11
frames in real-world WLAN conditions, and how they correlate with the behaviour of
a TCP sender that could be located in a geographically different location. A unique
methodology for calculating downlink and uplink channel frame error rates over the
WLAN is proposed. Further to this, a technique for extracting the distribution of
retransmission probabilities for a transmitting 802.11 MAC is also proposed. Such
information is useful because it allows researchers of higher-layer protocols, such as
TCP, to get a better understanding of conditions that TCP needs to withstand. A wide
range of results and analyses of many experimental runs are presented, highlighting the
capabilities of the proposed testbed. A comparison of frame error rates calculations
against theoretical transmission delay values is presented, as well as insights into the

retransmission behaviour of TCP in correlation with the frame error rates.

Chapter 7 presents a comprehensive evaluation of real-world TCP congestion control
implementations that have made their way into the most recent Linux v2.6 operating
system. Due to the popularity of Linux on web-servers across the Internet, it seemed
logical to conduct a study into the various TCP implementations it currently hosts.
TCP Reno and TCP CUBIC were chosen as they are the most popular algorithms for
wired data transfers, so were TCP Hybla, TCP Veno, and TCP Westwood+ because of
their respective authors claim of enhanced performance over wired-to-wireless paths.
The setup procedures for the experimental testbed consisting of a real-world Linux
server and a last-hop IEEE 802.11 WLAN are described, alongside preliminary results
from experiments evaluating error conditions in the WLAN prior to running the TCP
experiments. Finally, two real-world testing scenarios are chosen that best reflect a
modern-day home-office WLAN; 1) multiple end-users in the WLAN, and ii) varying
the location within the home-office of a WLAN end-user. The performance results,
including detailed evaluations of how the TCP implementations perform in each of the

scenarios alongside discussions then follow.

Chapter 8 finally concludes the studies of TCP sender behaviour over wired-to-
wireless paths, clarifying the key findings and contributions relating to the four key
exploitations that form the focus of the thesis. Some recommendations for future work

resulting from the works in the thesis are then provided, encouraging researchers to

26

take their studies and understanding of TCP over heterogeneous environments, and

hence its performance, to the next stage.

27

Chapter 2

Background Information

The objective of this thesis is to investigate and evaluate the behaviour and robustness
of TCP when wired connections originating from a server in the Internet traverse a
wireless link in the last-hop path, specifically over an IEEE 802.11 WLAN. Figure 2.1
illustrates the typical scenario TCP servers in the Internet have to deal with when

sending data to end-users located in a WLAN at the last-hop.

IEEE 802.11

< g WLAN T

Access Point

Web-Server
(running TCP)

Figure 2.1: A typical last-hop WLAN path scenario for TCP servers in the Internet

To fully understand the work and terminologies used throughout the thesis, one must
understand several important concepts that make up TCP and IEEE 802.11 WLANS.
Due to the fact that this thesis spans across two traditional fields, this chapter will
provide a brief review of the building blocks and mechanisms of TCP, as well as an

overview of the functionality of IEEE 802.11 WLAN:Ss.
This chapter is organised as follows: an introduction to the significance of TCP is

presented, alongside details of its evolution and insights into the importance of

congestion control in the Internet. Next, the workings of TCP’s AIMD congestion

28

control algorithm are broken down and summarised, ending with a brief look at the
state of TCP in the Internet today. Finally, the chapter presents an overview of the
IEEE 802.11 standard, concentrating specifically on infrastructure-mode WLANs. An
introduction to the functionality of the 802.11 MAC is then followed by brief insights
into the 802.11 PHY-layer (PHY) internals. The section ends with some details and

terminologies associated with 802.11 WLAN radio channels.

2.1 TCP — An Overview

Transmission Control Protocol (TCP) remains as the dominant end-fo-end transport
protocol used in the Internet today [46], and its most basic working principles have not
changed significantly since the draft of its original specification in 1974 [87] and its
official birth in 1981 [1].

In essence, TCP provides a reliable, full-duplex in-sequence delivery of data [88]. Its
popularity arises from the fact that from the beginning it has been used by an array of
applications requiring a reliable data transmission service between communicating
end-hosts, including e-mail (SMTP), file transfers (FTP), virtual terminal service

(Telnet), and for web-page transfers from the Internet (HTTP).

TCP’s reliability comes from the fact that for every segment of information that is sent,
the sending host expects to receive an acknowledgement segment from the receiving

host upon successful reception of the information [49].

Without a transport layer such as TCP the Internet would be based on a connectionless
communication model of the Internet Protocol (IP) [89]. The IP protocol does not itself
provide mechanisms to guarantee the delivery of data, and hence through the
encapsulation of TCP segments it is able to transfer packets across a network reliably

via TCP’s end-to-end error detection and recovery mechanisms [49].

29

2.1.1 Evolution of TCP and Internet Congestion Control

Since the dawn of the Internet, TCP has been phenomenally successful. Today it
controls the transmission of most traffic on the Internet [3] [4], everything from the
downloading of web pages to the transfers of bulk data, and even peer-to-peer file

sharing applications.

As already stated, TCP’s origins go back several decades, but it wasn’t until the
congestion collapse of the Internet in the mid-1980’s [90] that TCP first went through
a major revision. It was between the years 1987 and 1988 when TCP end-hosts began
to adopt new algorithms in order to cope with the pressures of an Internet reaching
over-capacity caused by fast TCP senders and unnecessary retransmissions. The new
mechanisms were known as the congestion control and avoidance algorithms and were
proposed by Jacobson [91]. The key algorithms in concern were labelled with the
titles of slow start, congestion avoidance, and fast retransmit, and the versions of TCP
implementations which adopted them were named TCP Tahoe. This major event for
TCP led to many performance studies being undertaken by a curious Internet
community on the congestion control algorithms [88] [92], and shortly afterwards in
1990, Jacobson suggested further modifications to TCP implementations with the
addition of the fast recovery algorithm [93]. From here onwards, versions of TCP

which also adopted the fast recovery algorithm were named TCP Reno.

Throughout the 1990s, performance studies on TCP and the behaviour of its
congestion control algorithms in the Internet continued [94] [95] [96]. Eventually, in
1997, a request for comments (RFC) document was submitted to the Internet
community by Stevens in an attempt to bring some form of cohesion amongst TCP
implementations in the Internet [97]. The aim of the RFC was to clear up confusions
relating to the workings and requirements of the legacy congestion control algorithms.
Based on a comprehensive study of TCP issues [98], Steven’s RFC document was later
made obsolete by an updated and more concise RFC document in 1999 [99], clearly
describing the workings of Jacobson’s original TCP algorithms and their significance
in maintaining a stable Internet. The document became one of the most important TCP
related RFCs in recent years, and is still adhered to in the modern-day Internet by

developers of new TCP features.

30

Today, TCP Tahoe and TCP Reno are referred to as the legacy TCP versions, with
TCP Reno still being widely used in legacy systems due to its popular uptake
throughout the 1990s [8] [100]. Arguably, Jacobson’s congestion control algorithms
have been the reasons for making the Internet succeed, by coming to its rescue.
However, there is sentiment amongst the Internet community that Jacobson’s
algorithms are beginning to show their age [48], and that perhaps it is time for another
major upgrade if TCP is to continue to support a future Internet which is becoming

increasingly heterogeneous.
gly g

To understand why the legacy TCP has been so successful, and to justify why an
upgrade may be necessary, it might be useful to know that today TCP code is
embedded into every machine and device connected to the Internet. TCP has been
implemented into dominant operating systems including MS Windows and Linux, as
well as into mobile phones and portable devices. So everybody sending or receiving
data to or from the Internet today, in some way or another, is dependent on TCP to

provide them with a quick and reliable service.

2.1.2 Key Features of TCP

In this sub-section the key operating features of the legacy TCP Reno as a reliable

transport protocol are briefly summarised for the reader.

2.1.2.1 End-to-End Semantics

One of the reasons for the success and growth of the Internet is due to the end-to-end
aspects of TCP’s congestion control mechanisms [45] [101]. This rule (or argument)
states that any complexities should be moved ‘out of the network’ where possible, i.e.
towards end-points, and as high as possible in network protocol stacks [3]. Thus, with
TCP, it implies that all communicating end-hosts of a network are allowed to send data
to any other host without requiring intermediate knowledge of network conditions or

of its elements [102].

31

2.1.2.2 Ordered Data Transfers

TCP maintains an ordering system when it transmits data segments by using a system
of incremental sequence numbers to identify each byte of data that is sent [1]. This
helps TCP keep track of the order in which data was sent so that it can provide a
reliable and in-order transmission service, regardless of any problems that may occur
along the communication path. TCP is therefore able to deal with issues such as

disordering, fragmentations, and complete losses of segments.
2.1.2.3 Cumulative Acknowledgements

TCP uses a cumulative acknowledgement scheme, where the receiver must always
send an acknowledgement (ACK) segment indicating that it has received all data bytes
preceding the sequence number it is acknowledging [49]. EsSentially, the first data
byte in a segment is assigned a sequence number, which is inserted in the sequence
number field of a segment’s header. The receiver then sends an ACK segment
specifying the sequence number of the data byte it expects to receive next, inherently

indicating all bytes up to this sequence number have been successfully received.
2.1.2.4 Round Trip Timing

A TCP sender works towards providing a reliable data delivery service by measuring
the round trip time (RTT) of sent data segments. The RTT of a data segment is the
time interval between sending the segment and receiving an acknowledgement for it
[49]. Experience has shown that accurate and current RTT estimates are necessary for
a TCP sender to adapt to changing traffic conditions and, without them, a busy
network is prone to instability [103]. The RTT is therefore considered a deterministic

characteristic of the communication path in the underlying network.
2.1.2.5 End-to-End Flow Control

TCP uses an end-to-end window-based flow control mechanism to avoid situations
where fast sender machines transmit too much data too quickly to slower TCP
receivers, allowing receivers to reliably receive and process the incoming data [99]. A

window-based protocol implies that the current size of a window defines a strict upper-

32

bound on the amount of unacknowledged data that can be in transit between a pair of
communicating TCP hosts [49]. Having such a mechanism is essential for TCP in
environments where fast sending machines dominate in the sending of data towards

end-hosts, such as in the Internet.

As documented in [99], the congestive collapse of the Internet gave rise to two
important sender-side variables to be used in conjunction with the congestion control
algorithms; i) the congestion window (cwnd), and ii) the slow start threshold
(ssthresh). The cwnd at a TCP sender is adaptively increased or decreased based on the
sender’s view of current network load conditions in the communication path [49].

These variables implement a sending window, ¥, whose size is defined by:

W = minimum(cwnd, rwnd) (Eq. 1.1)

where rwnd is the receiver’s advertised window size. In essence, the size of W prevents
a sender from injecting more data into a communication path than the network or

receiver can accommodate. The ssthresh variable will be discussed in the next section.

2.1.2.6 AIMD Congestion Control

A final key feature of TCP is its congestion control algorithms, whose purpose
ultimately is to achieve high performance in the transfer of data across the Internet by
keeping network path conditions in a state of equilibrium [49]. As already stated,
modern implementations of TCP should contain four intertwined congestion control
algorithms [99]: 1) slow start, ii) congestion avoidance, iii) fast retransmit, and iv) fast
recovery. When the four algorithms are combined and used in union they are
frequently referred to as the additive-increase multiplicative-decrease (AIMD)
algorithm. The AIMD algorithm represents a linear growth of a TCP sender’s cwnd,
combined with its exponential reduction when segment losses due to congestion events
occur. A segment loss event is generally described to be cither a retransmission
timeout (RTO) or the event of receiving three duplicate-ACKs (DUPACKSs) [49]. The
RTO event and DUPACKSs will be discussed in the next section.

33

2.2 TCP Congestion Control in the Internet Today

In this section the workings of the congestion control algorithms used by the popular

TCP Reno in today’s Internet, as defined in [99], will be briefly described.

2.2.1 Slow Start

Slow start was designed as a fix for the original TCP’s [1] aggressive start-up
behaviour, in which fast senders were quickly flooding the communication path to
over-capacity, leading to segment losses due to buffer overflows at overwhelmed

intermediate routers and very poor throughput performance for TCP applications [3].

In short, the algorithm allows a TCP sender to quickly, yet reassuringly increase the
rate of injection of data into the network [49]. It allows a connection to probe for free
bandwidth along a path, whilst paying close attention to any possible incidences of

congestion.

The slow start algorithm works hand-in-hand with the sender’s cwmnd variable
introduced earlier, whose size is typically maintained in bytes. Upon a new TCP
connection being initiated, the algorithm sets the value of cwnd to one segment size,
allowing the sender to send a maximum of one data segment into the network. When
the sender receives an ACK signalling a positive transmission, it increments the size of
its cwnd by one segment size, i.e. the cwnd size is now equal to two. The sender can
now send out a maximum of two data segments in succession into the network, for
which it will receive two further concurrent ACKs. Again, for each ACK the sender
receives it increments the size of the cwnd by one segment size, i.e. the cwnd size is
now equal to four. This process continues, resulting in an exponential growth of the

size of the cwnd.
It should be noted that in each instance during the connection, a sender is only

permilted to send a number of data segments up to the minimum of its cwnd and the

receiving host’s advertised receive window, rwnd, as dictated by Eq. 1.1.

34

The slow start algorithm can still be quite aggressive if allowed to continue without
limits. Essentially it is only used to get the cwnd size up to a point where network
tolerance has been reached, a point where any further aggressive injections of data
could cause congestion in the network path. Hence, the ssthresh threshold variable is
maintained by the TCP sender, whose value determines the point at which the slow
start algorithm should terminate based on the size of the cwnd. When the size of the
cwnd exceeds the value of ssthresh the sender then switches to the congestion
avoidance algorithm in order to continue the sending of data, albeit in a less aggressive

manner to maintain network stability.

The ssthresh is continuously and dynamically updated throughout the life of a TCP
connection, as it is an important indicator of conditions in the network. Typically, its
initial value is set to 65535 bytes. Details of how the value of ssthresh is varied will be

discussed in the sections to follow.

2.2.2 Congestion Avoidance

Congestion avoidance is the algorithm used by TCP senders once network tolerance
has been reached. Its duty is to maintain a steady state and stable share of the available
resources [93]. In the stable state a TCP connection is in a state of equilibrium, where
the sender is injecting new data segments into the network at the same rate at which it
is receiving ACKs [49]. The algorithm operates on the premise that the network may
allow a little more data to be injected into it; the objective being to utilise any
additional bandwidth along the path, if available, whilst remaining fair to other TCP
connections that may be sharing the same network path. Since it is operating at
equilibrium, the sender should be able to dynamically adapt to sudden changes in the

condition of the network path.

Whilst in the congestion avoidance phase a TCP sender makes use of free network
resources by controlling the size of the same cwnd variable used in the slow start
phase, whose value is now greater than ssthresh. The sender now increases the size of
the ewnd by 1/cwnd on receiving every new ACK for sent data. This technique ensures

a slow linear growth of the cwnd, allowing the sender to gently probe for any

35

additional bandwidth that can be utilised. Again, the sender is only permitted to send a

number of data segments as dictated by Eq. 1.1.

The sender remains in the congestion avoidance phase until it detects the loss of a
segment between the two communicating end-hosts, signalling to TCP that congestion
has occurred somewhere in the network path. TCP should now react accordingly to

alleviate the imminence of congestion, preventing further segment losses.

2.2.3 Loss Detection in TCP

As documented in [99], a TCP sender is able to detect the loss of a segment in one of
two ways; 1) through the reception of three duplicate ACKs, or ii) the expiration of a

retransmission timer.

2.2.3.1 Duplicate Acknowledgements (DUPACK5s)

A duplicate acknowledgement (DUPACK) is the name given to ACKs that have
already arrived at the sender, thereby providing no new insights. A DUPACK is
identical to a regular ACK in the sense that they both acknowledge the same sequence

of data bytes received by indicating the same next expected sequence number,

DUPACKSs are generated in response to new data segments arriving out-of-order at the
receiver, because TCP aims to guarantee an in-order delivery of data to receiving

applications. Therefore it also expects to receive data segments in-order from a sender.

If then a data segment is dropped (or lost) somewhere in the network path on its way to
receiver, then the next data segment in sequence will arrive at the receiver. However,
because the receiver was not expecting this particular segment, it generates another
ACK for the expected segment. This is called a DUPACK. The receiver will continue
to generate DUPACKSs for each unexpected data segment it receives, until eventually
the expected in-sequence segment arrives, which will generate a new ACK. Note that
DUPACKSs are also generated when data segments arrive out-of-order at the receiver
due to taking different paths through the network, which is a different situation to a
completely lost segment. The sender should therefore be able to detect the loss of a

segment from the DUPACKSs it receives.

36

Using the arrival of DUPACKSs, a TCP sender assumes that a sent data segment has
been lost when three DUPACKSs arrive in succession. Upon receiving three DUPACKSs
the sender no longer assumes that the expected segment may have been delayed in the
network due to re-routing. It therefore takes immediate action by invoking the fast
retransmit algorithm to handle the retransmission of data to resolve the missing
segment (or sequence of bytes). Figure 2.2 illustrates the exchange of data segments
and ACKs between a sender and a receiver pair, illustrating the growth of the ewnd
size as well as the idea of segment retransmissions due to triple DUPACKSs arriving at

the sender.

cwnd = 1 Datal\‘
4//{@?5//

cwnd = 2 Data\ZX

%B\H

DUPACK

/——/Aﬁ’.{’z/
cwnd = 3 Data 4

ey T

Da Al

DUPACK

DUPACK
A

RETRANSMISSION Dataz\.

ACK T

Figure 2.2: The concept of ACKs, DUPACKS, cwnd size evolution, and retransmissions

2.2.3.2 Retransmission Timeout (RTO)

A TCP sender initiates and maintains a retransmission timer linked with the

transmission of every data segment. The timer is reset when all outstanding sent data

37

segments have been successfully acknowledged. However, if the ACKs do not arrive
within a certain time frame then the timer will expire. This event is known as a
retransmission timeout (RTO) at the sender [49]. A RTO event leads TCP to infer that
the segment in concern has been completely lost somewhere in the network path
because the receiver did not generate a single ACK for it within an appropriate time-
frame. The TCP sender reacts by immediately retransmitting the earliest segment that
has not been acknowledged. At the moment prior to the retransmission, the sender sets
the value of the ssthresh variable to cwnd/2, and then sets the size of the cwnd to one
segment size. It then reverts to the slow start algorithm with the cwnd size equal to
one, because a RTO event is regarded as a case of serious network congestion by TCP
[49]. Eventually, when the cwnd size reaches the value of ssthresh, the congestion
avoidance algorithm takes over. Note here that the ssthresh value acts much like a
pointer, remembering the last cwnd size which caused the congestion, thus preventing

it from occurring again.

There have been many studies relating to the appropriate computation of the RTO
timer [104] [105] [106]. The idea is to manage the retransmission timer in such a way
that a data segment is never retransmitted too early. However, the suggested technique
that all TCP implementations must adhere to has been well documented in [107],
which still stands (or holds) today. In a nutshell, the timer’s value is a derivation of the
currently measured and smoothed estimate of the RTT and its mean deviance, as

originally proposed by Jacobson [91].

In summary then, when the RTO timer expires and after the earliest unacknowledged
segment has been retransmitted, TCP senders must immediately double the value of
the current RTO timer, and restart it with the new value for any further segment

transmissions.

2.2.4 Fast Retransmit

As specified in [99], a TCP sender should retransmit data segments upon the detection
of a loss. The fast retransmit algorithm was developed to provide a speedy mechanism

for the retransmission of segments.

38

A sender invokes the fast retransmit algorithm upon the successive arrival of three
DUPACKS, as discussed previously, leading to the immediate retransmission of what
appears to be the missing segment without any further delays. The objective is to speed
up the transfer without waiting for the RTO timer to expire. Each invocation of the fast
retransmit algorithm leads to the retransmission of only a single data segment at a
time. Immediately after the algorithm has performed the retransmission due to the
reception of three DUPACKSs it hands over responsibility of the cwnd and further

transmissions to the fast recovery algorithm.

2.2.5 Fast Recovery

Fast recovery is an important algorithm that allows a TCP sender to maintain high
sending rates in the presence of retransmissions due to segment losses, and where the
network path may be only moderately congested. Because of the arrival of three
DUPACKSs that lead to the retransmission, there is some evidence that data segments
must still be arriving at the receiver, therefore generating the DUPACKs. From this
information the TCP sender can infer that data is still flowing along the network path,

and hence the levels of congestion are not extreme [49].

At this point the sender reverts to the congestion avoidance algorithm, as opposed to
slow start which would drastically reduce the flow of data and cause a significant drop
in the sending rate. Also, because the cwnd may have grown to a large size, and if
segment losses are an infrequent event, it would be wiser to resume the TCP
connection from the congestion avoidance phase. The sender therefore sets the value
of the ssthresh variable to cwnd/2, and then sets the size of the cwnd to ssthresh + 3
segment sizes, ensuring the connection resumes in the congestion avoidance phase
[99]. The addition of three segment sizes to the cwnd is to account for the three
DUPACKSs that have just left the network, which tells the sender that there is

immediate capacity in the network for three segments [49].

Then each time another DUPACK arrives at the sender, it accounts for its departure
from the network by incrementing the cwnd by one segment size. If it is allowed by the
new size of the cwnd, a data segment is sent into the network by the sender. The idea is

to keep data flowing between the two end-points, whilst waiting for lost segments to

39

be recovered. Finally, upon the arrival at the sender of a new ACK acknowledging new
data, the sender deflates the size of the cwnd to the current ssthresh value, which

reinitiates the congestion avoidance algorithm.

Figures 2.3 to 2.5 provide theoretical illustrations of the behaviour of the sender’s
cwnd in the event of no segment losses (Figure 2.3), upon the arrival of triple
DUPACKs (Figure 2.4), and upon expiry of the RTO timer (Figure 2.5). All

illustrations are based on TCP Reno, as documented in [99].

Figure 2.3 shows a perfect display of the slow start phase, followed immediately by the
congestion avoidance phase when the cwnd is equal to 65 Kbytes. Figure 2.4 shows
how the cwnd is affected when three DUPACKSs arrive back-to-back between the 12"
and 14" RTT of the plot. At this point the cwnd size is halved as per the fast retransmit
algorithm, and then the fast recovery algorithm takes over at the 15" RTT. Eventually

th

a new ACK arrives in the 18" RTT, which hands over control back to the congestion

avoidance algorithm.

Sender Congestion Window Size (Kb)

1 2 3 4 5 [7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of RTTs

Figure 2.3: Evolution of TCP Reno sender’s ewnd size under no losses (ssthiresh = 65 Kb)

40

80 ——— e e e e e e et e et 8 R 1 P e e

Sender Congestion Window Size (Kb)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Number of RTTs

Figure 2.4: Evolution of TCP Reno sender’s ewnd size under the reception of three DUPACKSs

1 S —

Sender Congestion Window Size (Kb)

- : J
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Number of RTTs

Figure 2.5: Evolution of TCP Reno sender’s cwnd size under a retransmission timeout event

Figure 2.5 shows how the sender’s cwnd is affected when there is an RTO event,
which starts at the 11" RTT in the plot, whilst in the congestion avoidance phase.
Shortly after the 12" RTT the sender’s RTO timer expires due to the non-arrival of an

ACK. The sender therefore retransmits the presumed lost data segment and reduces the

41

cwnd size to one segment before reinitiating the slow start algorithm, albeit with a

lower ssthresh value.

2.2.6 Common TCP Features in the Modern-Day Internet

The first twenty-five years of the Internet consisted of TCP running over slower and
smaller networks, supporting simple applications. In contrast, the last decade of the
Internet has seen interconnected networks become faster and more heterogeneous, with
applications becoming diverse and more demanding. Thus, as the Internet has evolved
into a complex cloud, so has TCP [8]. Today, TCP supports a host of options and
features (supplementary to its congestion control algorithms) that have been bolted-on
by researchers over the years. These features should be used by TCP implementations

in the Internet today [108].

This section therefore provides the reader with a brief overview of the most common
TCP options and extensions that should be used by implementations today, many of

which are documented in [109].

2.2.6.1 Selective Acknowledgements (SACK)

The first official enhancements to the original TCP [1] led to the release of TCP
Tahoe, proposed in 1988, which incorporated the slow start, congestion avoidance, and

fast retransmit algorithms [91].

Further modifications were made in 1990 to the congestion avoidance algorithm, as
proposed in [93]. An additional fast recovery [99] algorithm was also introduced,

which led to the release of another enhanced version of TCP, TCP Reno.

It was in 1995 when user-communities realised that further enhancements were needed
to TCP Reno in order to cater for the fact that multiple segment losses from the same
cwnd of transmissions were causing poor TCP throughputs. It was discovered that a
TCP sender often had to wait for the expiration of the RTO timer in order to recover
from multiple segment losses per cwnd of segments in flight [110]. This was due to the

fact that TCP uses a system of cumulative acknowledgements, which forces the sender

42

to either wait for an entire RTT to find out about each lost packet, or to unnecessarily

retransmit segments which have been correctly received [111].

Hence, the selective acknowledgement (SACK) option was proposed as a technique to
correct this behaviour in the face of multiple segment losses per cwnd [112]. With the
SACK option, the TCP receiver is able to ‘selectively’ inform the sender about all
segments that have arrived successfully, so the sender only needs to retransmit those

segments that have actually been lost.

The use of the SACK option for TCP connections requires support and participation
from both senders and receivers. When used, the receiver utilises space in the header
of ACK segments to convey information back to the sender about each contiguous
block of data that has arrived. From this information, the sender is able to infer all

missing data segments in a single RTT, without having to wait for a RTO.

2.2.6.2 Reno vs. NewReno

To overcome the fact that many TCP hosts at the time in the Internet did not support
the use of the SACK option, or that certain hosts did not have a willingness to support
such a feature, the problems caused by multiple segment losses from a single cwnd
were still present. It was assumed that TCP Reno was the most widely used variant at
the time, and hence any further modifications should be based on this. In 2004, slight,
yet significant modifications were made to the fast recovery algorithm of TCP Reno to
handle multiple losses per cwnd, which led to the release of TCP NewReno [113]. Its
proposal was initially aimed at those TCP implementations that were unable to use the
TCP SACK option at the time. Also, it is shown in [113] that TCP NewReno can
improve the performance of the TCP Reno’s fast recovery algorithm in a wide variety
of scenarios. As a final note, according to [100], in 2003 some of the most widely
deployed variants of TCP in the Internet were Reno, NewReno, and where feasible,

Reno with the SACK option.

In summary, both TCP NewReno and TCP Reno with SACK are solutions for tackling

the same problem.

43

2.2.6.3 Maximum Segment Size

The TCP maximum segment size (MSS) is an important consideration in connections
that traverse the Internet. It is the largest amount of data, specified in bytes, which a
host machine or communications device can process as a single unfragmented unit

[114].

Generally, the number of bytes of data in a TCP segment plus the number of bytes
making up the segment’s header fields should not be greater than the maximum
transmission unit (MTU) size of the lower layers in the TCP/IP network protocol
stack. This is to prevent fragmentation of TCP segments by intermediate protocols and
devices whilst in transit through the network path. Fragmentation can drastically slow

down the speed of TCP connections due to increased overheads.

Typically, the MTU size in the Internet is 1500 bytes [49]. The TCP header size per
segment requires 20 bytes, and the attached IP header per segment requires an
additional 20 bytes. Today, this leaves TCP with a MSS of 1460 bytes per segment for

actual data.

2.2.6.4 Window Scaling

The window scale extension expands the definition of the TCP window field from the
legacy 16 bits to 32 bits using a scale factor [109]. It is applied to the windows of both
the sender (cwnd) and the receiver (rwnd), as they both limit the throughput of a TCP
connection (Eq. 1.1). A 16 bit window ficld allows a maximum window size of just
65,536 bytes, which is rather small in today’s high-bandwidth, high-delay paths across
the Internet [115]. A 32 bit window field increases the maximum possible window size

significantly, for both the sender and the receiver.

The crucial scale factor is communicated by a sender in a new 3 byte TCP window
scale option in the header of the first segment exchanged between a sender and
receiver. This option is an offer, but not a guarantee. The receiver must also send back
a window scale option in its first segment to the sender to enable window scaling up to

32 bits in both directions.

44

2.2.6.5 Timestamps

The timestamps option was suggested for providing greater precision in TCP’s round
trip time measurement (RTTM) mechanism, which provides more accurate estimates

of the RTT experienced by data segments [109].

As stated in [90], accurate and current estimates of the RTT are necessary for TCP to
be able to dynamically adapt to changing traffic conditions in network paths, a
common characteristic of today’s heterogeneous Internet [8]. This includes being able
to maintain a conservative RTO timer value throughout the lifetime of TCP

connections.

Legacy TCP senders based their RTT measurements upon a sample of only one
segment per cwnd, resulting in poor RTT estimates when the cwnd size became larger
with many segments being sent in succession, as is commonly the case in today’s high-

bandwidth, high-delay paths across the Internet [115].

Hence a solution to the problem is to use the TCP timestamps option field in segment
headers. In a nutshell, a sender places a timestamp in each data segment, and the
receiver reflects these timestamps back in its ACKs. Upon receiving the ACK, the
sender performs a simple subtract operation giving the sender an accurate RTT

measurement for every ACK received. This is the RTTM mechanism [109].

2.2.6.6 Delayed ACKs

The delayed ACKs option provides a TCP receiver with the option of increasing
network efficiency by acknowledging every arriving data segment within a short time
interval [88]. This leads to fewer ACKs being generated in the reverse path in relation

to the number of data segments travelling in the forward path [116].
In accordance with the usage of delayed ACKs, a TCP sender must measure the

effective RTT including the additional time due to ACKs being delayed, thereby

preventing unnecessary retransmissions due to RTO events.

45

When using the delayed ACK option, a receiver cannot delay the generation of an
ACK for more than 500 milliseconds, and when receiving full-sized TCP data

segments it should generate an ACK for at least every second incoming segment [91].

2.3 IEEE 802.11 WLANs — An Overview

Wireless technologies are infringing on the traditional territory of ‘fixed’ or “wired’
networks. The world is becoming more mobile, and as a result, traditional methods of
networking are proving inadequate to meet the challenges imposed by the networking

world’s collective lifestyle [23].

Any new wireless technologies targeted at computer networking must promise to do
what traditional methods have always been capable of doing, and one such technology
that promises this is the 802.11 Wireless LAN (WLAN) standard from IEEE Working
Group 11 [20]. This is the protocol that has been designed to provide an experience as

much like that of wired Ethernet as possible.

The IEEE 802.11 WLAN standard offers one key advantage to its users, mobility.
Wireless end-users can connect to existing backbone networks, such as the Internet,
and can roam around freely away from the tethers of an Ethernet cable. 802.11
WLANS also possess the feature of being extremely flexible, which explains their rapid
deployment capabilities and huge take-up trends in recent times [117]. Coupled with
the unlicensed nature of the 2.4GHz industrial, scientific, and medical (ISM) band in
which they operate [23], 802.11 WLANSs have scaled very well, especially at the edges
of the Internet. In fact, one of the biggest growth areas for the take-up of 802.11
WLANS has been the home/residential market by wireless broadband users [47].

In short, the 802.11 WLAN specifies an enhanced medium access control (MAC) and
a new physical layer (PHY) specification for all devices wanting to adopt the
technology [20]. The 802.11 MAC and PHY layers have been designed to operate in
unison to provide seamless and wireless connectivity to higher-layer applications and

protocols [23].

46

2.3.1 Typical WLAN Topology

IEEE 802.11 WLANSs use the idea of a centralised access point (AP) to connect a
group of wireless users to an existing wired backbone infrastructure, as illustrated in
Figure 2.1. Wireless end-users connect and communicate with at least one central AP;
one wired Internet connection to an AP can therefore accommodate many wireless
hosts [23]. This type of scenario is typically described as an infrastructure mode
WLAN, and is typical of most 802.11 WLANs deployments today within home and

office environments [47].

In more detail, the basic service set (BSS) is the fundamental building block of the
IEEE 802.11 architecture. Hence an infrastructure BSS is defined as a group of
wireless devices that are under the direct control of a single coordination function,
which is defined in Section 2.3.2.1. However, while all users in an infrastructure BSS
can communicate directly with each other via the AP in theory, degradations of the
transmission medium due to multipath fading effects, or interferences from nearby
BSSs using the same radio medium, can cause some wireless users to appear ‘hidden’

from others [22], which will be explained in Section 3.3.3.

2.3.2 802.11 MAC

The primary function of the 802.11 MAC is to provide the core access control
functions, supporting the usage of shared-medium PHY's for wireless connectivity. The
802.11 MAC layer is actually a sub-layer within the data link layer of the OSI
reference model, and is designed to support the original 802.2 logical link control
(LLC) sub-layer. This layout enables traditional 802.3 wired Ethernet networks to
communicate with 802.11 wireless networks using a common language of LLC
encapsulation [23]. In general terms, the 802.11 MAC sub-layer defines a set of rules
to determine how the radio medium is accessed in order to send data, whilst leaving
the actual details of transmission and reception to the lower PHY, i.e. it characterises
access to the radio medium in a way common to the various wired 802.x standards.
Figure 2.6 illustrates where the 802.11 MAC sub-layer sits within the data link layer of
the five-layer TCP/IP protocol stack. It also shows where the 802.11 PHY falls.

47

 B022LogecelLinkLayer LLG)

802.3 802.5 802.11 DATA LINK
. LAYER

. PHYSICAL
LAYER

Figure 2.6: The IEEE 802 family

Of particular interest in the IEEE 802.11 specification is the support for two
fundamentally different MAC schemes to transport asynchronous and time bounded
services [22]. The first scheme, distributed coordination function (DCF), is similar to
traditional legacy packet networks supporting best-effort delivery of data. The DCF 1is
designed for asynchronous data transport, where all devices with data to transmit have
an equally fair chance of accessing the transmission medium. The point coordination
Sfunction (PCF) is the second MAC scheme, whose penetration did not really take-off
in the marketplace [23]. The PCF is based on polling that is controlled by an access

point (AP), and is primarily designed for the transmission of delay-sensitive traffic.

2.3.2.1 DCF Operating Mode (CSMA/CA)

In today’s 802.11 WLAN deployments, the DCF operating mode remains as the most
popular and successful MAC coordination function [118]. DCF is based on the carrier
sense multiple access with collision avoidance (CSMA/CA) protocol, as opposed to
the carrier sense multiple access with collision detection (CSMA/CD) protocol used in
standard Ethernet systems [23]. Carrier sensing is performed by 802.11 devices at the
air interface, referred to as physical carrier sensing, and at the MAC sub-layer,
referred to as virtual carrier sensing [47). The main difference between CSMA/CA
and CSMA/CD is that with the former i.e. over wire media, transceivers have the
ability to listen while transmitting and so can detect collisions. But, even if a radio
transceiver could listen on the channel while transmitting, the strength of its own

transmissions would mask all other signals on the air. So, the 802.11 DCF cannot

48

directly detect collisions as with wired media, and therefore takes great measures to

avoid collisions.

Focussing on the CSMA/CA protocol, DCF uses a random back-off timer mechanism
for preventing access to the radio medium by multiple wireless devices when the
medium is in use by one of the devices [20]. Collisions are most likely to occur
immediately after the medium becomes available for transmissions because multiple
devices would have been waiting for just a single medium to become free. To prevent
this all 802.11 devices randomly compute and initiate a back-off timer in the range 0 to
7 when the medium is sensed as busy. Upon sensing the medium as being idle, all
devices begin to decrement their back-off timer. If the medium becomes busy again,
the devices freeze their timer. Only when the time reaches zero a device gains
exclusive access to the radio medium for transmissions. The random back-off
arrangement is therefore used to resolve medium contention conflicts by promoting
fairness amongst devices [47]. Fairness is maintained in the WLAN because all
wireless users have an equal probability of gaining access to the transmission medium

[53].

2.3.2.2 Transmission of Frames

There are three different types of frames supported by 802.11: management, control,
and data frames. Management frames are used for functions such as managing
associations and disassociations with the AP, as well as timing and synchronisations.
Control frames are used for acknowledging successful transmissions. Data frames are

used for the transmission of actual data [23].

All 802.11 frames consist of a control field that states the 802.11 protocol version, the
frame type, and various other indicators, such as whether or not power management is
being used, and so forth. In addition, all frames contain MAC addresses of the source
and destination devices (including the AP), as well as an identifying frame sequence
number (in the range 0 to 4095), a frame check sequence (FCS) (for error detection),
and finally the frame body itself. In data frames the frame body encapsulates data from
higher-layer protocols such as TCP [23]. Figure 2.7 illustrates the basic structure of an

802.11 frame.

49

802.11 Frame Header

F S
v

Duration/ID

Frame Address | Address | Address | Sequence | Address Frame
Control 1 2 3 Control 4 Body

v O

Figure 2.7: The structure of 802.11 data frames

The transmission of a data frame by the 802.11 MAC is initiated by the sensing of the
transmission medium as idle. Upon successfully acquiring a transmission slot, it
transmits the data frame. Upon successful arrival of the data frame, the receiving
device transmits a DCF positive acknowledgement (802.11 ACK) frame back to the
sender to indicate a successful transmission. The sender then progresses to the next
data frame to be transmitted in sequence, and the process continues [47]. Frame
sequence numbers are incremented by one for each new whole data frame

transmission. Upon reaching 4095, they wrap around to zero and continue.

2.3.2.3 Error Detection and Recovery with DCF

Error detection and recovery of data frames is the responsibility of sending devices in
802.11 DCF WLANSs [23]. Upon the transmission of a data frame, a sending MAC
uses a 32 bit cyelic redundancy check (CRC) over the entire contents of each frame,
generating a FCS value unique to that frame. The value is then placed in the FCS field
of the frame prior to its transmission. The receiving device then performs an identical
CRC calculation over the entire contents of the received frame (excluding the FCS
field). It then compares its own FCS value with the received FCS to verify whether or
not any errors occurred in the frame during its transmission. A successful FCS check
by the MAC implies the received frame is intact and is therefore accepted and passed
up to the higher-layers. An 802.11 ACK is then transmitted back to the sending device.
Note that 802.11 ACKs do not contain any information regarding sequence numbers of
data frames being positively acknowledged. It is the responsibility of a sending device

to infer whether or not the transmission was a success [20].

With regards to error detection in DCF, a sending MAC relies on the arrival of 802.11
ACKs to confirm successful deliveries of data frames. It expects an 802.11 ACK for

each and every data frame transmitted [23]. A sending MAC does not progress to the

50

next in-sequence data frame transmission until the current frame is positively
acknowledged by the receiving MAC. The lack of reception of an expected ACK
indicates to the sender that a transmission error has occurred; either the data frame did
not arrive at the receiver, or it failed its FCS check at the receiver [20]. Note, however,
that the receiving MAC may have received the data frame successfully, and that the
error may have occurred in the transmission of the ACK on its way to the sender.
Either way, to the sending MAC this situation is indistinguishable from an error

occurring in the initial data frame transmission.

With regards to error recovery in DCF, a sending MAC utilises a stop-and-wait
automatic repeat request (ARQ) mechanism to recover from transmission errors of
data frames, i.e. it performs MAC level frame retransmissions locally over the WLAN
[20].

FRAME 294
RETRANSMISSION

:
293 4 | . ACK Timeout_,

Figure 2.8: 802.11 frame exchange sequence diagram under a data frame loss

Upon detection of transmission errors, a sending MAC must retransmit data frames
using the same frame sequence number, until positively ACKed. Note that each data
frame has associated with it a refry bif in its header control field, which is set to 1 by
the MAC when the frame is being retransmitted. A retransmission timer is used by the

MAC to set a maximum amount of time to wait for the arrival of an 802.11 ACK [20].

51

FRAME 294
RETRANSMISSION

ACK Timeout, [294]

Figure 2.9: 802.11 frame exchange sequence diagram under an 802.11 ACK loss

Associated with data frame retransmissions is the refry limit that is maintained by the
sending MAC for each individual incident. The retry limit of the MAC puts a limit on
the maximum number of retransmission attempts it can make to recover a data frame.
A counter beginning at zero is incremented for each retransmission attempt, and when
the counter value reaches the retry limit the MAC discards the current data frame and
makes no further attempts at retransmitting. It immediately moves onto the next in-
sequence data frame from its send queue, resefting the counter’s value to zero [23].
Figure 2.8 illustrates the sequence of exchanges between a sending MAC and
receiving MAC under the loss of a data frame. As can be seen, a lost data frame is
detected via an ACK timeout at the sending side, which results in a retransmission of
the same data frame (with sequence number 294). The sending MAC continues with
data frame 295 only after data frame 294 has been positively ACKed. Figure 2.9
illustrates the exchange sequence when an 802.11 ACK is lost in transmission. Again,
the sending MAC relies on an ACK timeout to detect any errors, regardless of whether

the loss occurred in the forward channel or reverse channel.

2.3.3 802.11 PHY

Like all networks, the transmission of data is always over a certain physical medium.
In the case of wireless networks the medium is a form of electromagnetic radiation

[25]. To be more precise, the medium used as the physical transmission layer (PHY) in

52

IEEE 802.11 WLANSs are radiowaves allocated in the 2.4GHz ISM band [32]. IEEE
802.11 wireless devices can operate in this unlicensed band providing they adhere to
certain requirements such as using a transmission power that is below a certain level,

which varies from continent to continent [25].

The IEEE 802.11 standard specifies four different PHY channel modulation
implementations for usage in the 2.4GHz spectra: direct sequence spread spectrum
(DSSS), orthogonal frequency division multiplexing (OFDM), frequency hopping
spread spectrum (FHSS), and infrared (IR), each of which are well documented in
[119].

2.4 Multiple Standards

There are now in fact multiple standards under the IEEE 802.11 heading, since its
original ratification in 1997 [22]. Whilst the all use the same enhanced MAC for DCF
functionality, the standards differ in their implementations of the PHY technology

used.

The original 802.11 standard of 1997 provided wireless users with data rates of up to 2
Mbps over the WLAN using a basic DSSS modulation system over the PHY, while the
current and more successful IEEE 802.11b [120] (ratified in 1999) and 1EEE 802.11¢g
[121] (ratified in 2003) standards can offer data rates of up to 11 Mbps and 54 Mbps
respectively. The 802.11b and 802.11g standards have experienced the most
widespread deployment in today’s WLANSs due to their promising data rates [47].

The 802.11b standard achieves up to 11 Mbps by using an extension of the legacy
DSSS modulation system, by using complementary code keying (CCK) over the PHY.
The 802.11g standard is a further amendment to the 802.11 PHY, using the OFDM
modulation system to provide higher data rates up to 54 Mbps over the WLAN. In
addition, the 802.11g also supports the DSSS-CCK modulation system, allowing it to
revert to the lower data rates of 802.11b, thus making 802.11g devices backward
compatible with 802.11b devices [20]. Figure 2.10 illustrates the multiple PHY
variants that make up the multiple IEEE 802.11 standards using a common MAC

protocol.

53

802.2 LLC

802.11 MAC (CSMA/CA)

802.11 802.11b 802.11a 802.11g

s 2 Mbps 11 Mbps 54 Mbps 54 Mbps
a:_, S-Band ISM || S-Band ISM || C-Band ISM || S-Band ISM

| FHSS DSSS OFDM OFDM

Figure 2.10: The 802.11 PHY family with a common MAC

2.4.1 IEEE 802.11b

The 802.11b standard supports the four different data rates over the WLAN using a
combination of channel coding schemes derived from DSSS and CCK, as shown in

Table 2.1.

Maximum
Modulation Scheme Supported Data
Rate (Mbps)
Differential Binary Phase Shift Keying (DBPSK) _ 1
Differential Quadrature Phase Shift Keying (DQPSK) 2
Differential Quadrature Phase Shift Keying (DQPSK) 5.5
Differential Quadrature Phase Shift Keying (DQPSK) 11

Table 2.1: The supported data rates of the IEEE 802.11b WLAN standard

2.4.2 1EEE 802.11¢g

Due to the early maturity of the 802.11b standard, and the continued demand for
higher data rates by end-users, the 802.11g standard supports a range of higher data
rates using various OFDM modulations and coding schemes over the PHY, as shown

in Table 2.2.

54

Modulation Scheme Maximum Supported
' Data Rate (Mbps)

Binary Phase Shift Keying (BPSK) 6
Binary Phase Shift Keying (BPSK) 9
Quadrature Phase Shift Keying (QPSK) 12
Quadrature Phase Shift Keying (QPSK) 18

16 Quadrature Amplitude Modulation (16-QAM) 24
16 Quadrature Amplitude Modulation (16-QAM) 36
64 Quadrature Amplitude Modulation (64-QAM) 48
64 Quadrature Amplitude Modulation (64-QAM) 54

Table 2.2: The supported data rates of the IEEE 802.11g WLAN standard

2.5 Radio Channels in 802.11 WLANs

Unlike wired channels that are stationary and predictable, radiowave channels used by
WLANS are extremely random and do not offer predictability. The mechanics behind
radiowave propagation is diverse, but can be generally attributed to reflection,
diffraction, multipath fading, and path loss, which all degrade the quality of wireless
signals and transmissions [25]. Diffractions occur when there is no direct line-of-sight
in the signal path between a transmitter and receiver. Reflections occur when there are
multiple obstacles in the signal path between a transmitter and a receiver. Multipath
fading occurs due to radiowaves taking different paths between a transmitter and
receiver, causing signal degradations due to destructive interference at the receiver.
Path loss occurs when the strength of the radiowaves decrease as the distance between

a transmitter and a receiver increases, lowering the quality of a received signal [16].

With regards to radio channels for 802.11 WLANSs, the 802.11 working group has
documented the use of the 2.4 GHz band for WLAN devices. It specifies that the 2.4
GHz band should be divided into 14 separate radio channels, each of which can be
used independently for transmissions. Unfortunately, because the 802.11 PHY requires

a 25 MHz separation between channels, adjacent channels overlap and will interfere

55

with each other. For 802.11b and 802.11g devices, the UK allows unlicensed usage of
the non-overlapping channels 1, 6, and 11 in the 2.4 GHz band [47].

2.5.1 Interference and Noise in Indoor Environments

There are various sources of interference and noise that are of concern to the quality of
WLAN signals and performance. Noise is defined as an undesired disturbance within
the frequency band of interest from third-party sources [119]. The disturbance can
affect a radio signal by distorting the information being carried, and even block the
signal completely. Interference is defined as the interaction between radiowaves from
separate sources, leading to undesired effects to the original radiowave signal.
Typically 802.11 WLANSs are deployed inside buildings, and are therefore subjected to
degradation from interference and noise due to the intrinsic characteristics of indoor

radiowave propagation [47].

The basic sources include adjacent channel and co-channel interferences from nearby
WLANSs in densely populated deployments, and from other devices operating in the
2.4 GHz ISM band [47]. Bluetooth devices have also been shown to interfere when
they coexist with 802.11 WLANs [122]. Microwave ovens operate in the ISM band
also, and produce high levels of noise when in use. In certain scenarios, a microwave
oven can completely block out the signal between a WLAN device and the AP.
Overall, the popularity of the ISM band for unlicensed wireless communications has
led to an overcrowding of consumer devices transmitting on nearby frequencies and
radio channels, especially within home/office environments [47]. Hence, the effects of
interference and noise in 802.11 WLANS are a common expectation amongst wireless
end-users today.

Finally, radiowave propagation inside buildings (indoors) differ from traditional radio
channels; a) the distances covered are much smaller, and b) the variability of the
environment is much greater in relation to shorter transmitter-receiver separations. It
has been observed that radiowave propagation within buildings is strongly influenced
by the layout of the building, the construction materials used, and the type of building
[25].

56

2.5.2 Measuring Signal Quality

The strength of the transmitted signals in radiowaves is often measured in the unit of
power, Watts (W), or, in the case of 802.11 WLANSs, milliWatts (mW). Because the
power detected at the receiving end of transmissions can be several orders of
magnitude smaller than the transmission power, a simple solution was to measure the
received signal strength with the decibel-mW (dBm) unit. The dBm value can be easily

derived from the mW measurement [119].

Researchers commonly use the term signal-to-noise ratio (SNR) to describe the quality
of a received signal in WLANSs. The SNR is simply the ratio between the measured
signal power (in dBm) and the corrupting noise power (in dBm) [119]. It is usually
quoted in decibel (dB) units. Today a receiver’s SNR (dB) measurement of channel
conditions in a WLAN has become the common standard for describing the quality of

the radio channel path between itself and the AP.

57

Chapter 3

Related Work

Introduction

The optimisation of TCP for wired-to-wireless paths has been an area of extensive
research in recent years, mainly due to the popularity of wireless communications
today and the demand for becoming ‘mobile’ whilst remaining connected to TCP
servers in the wired Internet. Secondly, TCP code has made its way into the
networking stack of virtually every mobile and wireless device manufactured to date,

reaffirming its dominance as the de-facto transport protocol in the wireless arena.

Unfortunately, it has all happened too quickly for TCP, because it was never designed
to be used over networks that use radiowaves as a transmission medium. Today, TCP
is subjected to a diverse spectrum of wired-to-wireless environments, ranging from
satellite links, to cellular networks, and last-hop WLANSs. Each type of scenario brings
with it a set of challenges for TCP. In this chapter, the common set of challenges for
TCP over wired-to-wireless paths are reviewed, based on findings from previous

related studies.

The chapter then moves onto the problems faced by TCP when used in conjunction
with IEEE 802.11 WLANSs. Initially the key characteristics of 802.11 WLAN indoor
radio channels are reviewed, leading to a discussion of the performance implications
this has on a fixed TCP sender, which have been previously highlighted. Again, all this
is based on a synthesis and findings from previous studies, which have been analysed

and logically presented for the reader.

To conclude the chapter, the thesis presents an up-to-date review of some of the most
prominent work and sender-side enhancement proposals in the arena of TCP
optimisations for wired-to-wireless environments, broken down by the type of

approach taken and then the solution.

58

3.1 End-to-End TCP in Wired-to-Wireless Environments

This section aims to summarise what are believed to be the fundamental and key issues
for TCP when used in a traditional end-to-end manner over wired-to-wireless

environments.

3.1.1 Wired-to-Wireless Paths for TCP

Using wireless links as a transmission path for TCP poses several fundamental
challenges for it, since TCP was never designed for usage over unreliable links [13].
Radiowaves suffer from a number of propagation characteristics that make them
unpredictable and unsuited for wired protocols like TCP, which rely on path stability,
relatively lower error rates, and where losses occur mainly due to network congestion
[16]. This is where TCP’s congestion control algorithms come into the equation,

designed entirely for dealing with such issues relating to network congestion [3].

Recall that TCP is a reliable end-to-end protocol, implying that it operates
transparently over a communication path between a wired sender and a wireless
receiver. This means that a wired sender in the Internet has no knowledge or awareness
of conditions along the path, and is therefore solely dependent on the inter-arrival of
cumulative ACKs and the sampling of RTTs to estimate path conditions. In traditional
wired networks the end-to-end RTTs for TCP segments remained relatively stable,
with low variability [15]. Secondly, segment losses were mainly due to buffer
overflows at intermediate routers, which the TCP congestion control algorithms could
quickly and efficiently recover from. Hence, TCP has been designed to be reactive in

the presence of congestion related issues.

Today, there exists a wireless path alongside the traditional wired path for TCP senders
to deal with. This means that segments are now subjected to the characteristics of
radiowaves too, which include a higher rate of non-congestion related losses [11],
higher variability in the propagation delay (again non-congestion related) [27], and
greater variability in the available bandwidth over the wireless portion of the

communication path.

59

3.1.2 Inappropriate Reductions of the Sender Congestion Window

It is well known that loss rates in wireless networks are generally higher than in wired
networks [123] (refer to Table 3.1). This is because radio channels possess higher bit
error rates (BERs), which corrupt the individual bits of packets travelling through the
medium [124]. A single bit error in a wireless packet is enough to deem the entire
packet as unacceptable upon arrival when forward error correction (FEC) is not used
[124]. BERs also occur randomly and in bursts, potentially affecting an entire

sequence of wireless packets [13] [70].

Typical Bit Error Rate (BER)
WIRED NETWORKS <10
WIRELESS CHANNELS ~10°

Table 3.1: Comparison of BERs between wired networks and wireless channels [Source: [117]]

Unfortunately, TCP was not originally designed with such heterogeneity in mind, and
instead has been tuned well to treat all segment losses as a sign of network congestion
somewhere in the communication path. Because segment losses in traditional wired
networks are quite infrequent [15], it was acceptable for legacy TCP senders to
retransmit the segment and reduce their sending rate each time losses occurred. The
idea is to alleviate congestion at intermediate routers by backing-off the injection rate
of new data. TCP senders reduce their sending rate by drastically reducing the size of

the cwnd upon the detection of each loss via the congestion control algorithms.

A TCP sender is therefore unable to discriminate between segment losses occurring in
the wireless link and segment losses occurring in the wired link. In both cases, it reacts
by invoking anti-congestion procedures, causing end-to-end throughput to drop.
Although retransmitting the lost segment is the correct action to take by TCP, the issue
lies with the fact that after each retransmission TCP also activates the congestion
avoidance algorithm. Constant losses over the wireless link due to higher BERs lead to
constant and inappropriate reductions of the sender’s cwnd, ultimately leading to sub-
optimal overall throughputs for wireless end-users of TCP applications [125]. Losses

over the wireless link do not necessarily require a reduction in the sending rate of new

60

data by TCP senders, as wireless networks often continue transmitting data at the same
rate in the presence of errors and losses, usually relying on local error recovery

mechanisms to conceal the errors from higher-layer protocols such as TCP [15].

3.1.3 Non-Congestion Related Delays

In general, wireless links impose longer latency delays than purely wired links [126],
which in turn increases the end-to-end RTT of TCP data segments in wired-to-wireless
paths [27]. This affects a TCP sender’s transmission rate because it relies on the
measured RTT to advance the size of its cwnd. It has been shown that connections with
longer RTTs have lower throughput levels because incoming ACKs take longer to
arrive. Since the cwnd evolution is ACK-clocked, differences in the RTT can lead to
different growth rates of the cwnd [127]. Figure 3.1 clearly illustrates the impacts on

the growth rate of a sender’s cwnd size when the end-to-end RTT is larger.

80 T — -
Small RTT - -

——— Large RTT -7

Sender Congestion Window Size (Kb)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Time

Figure 3.1: Differences in the evolution of a sender’s cwnd size for different paths RTTs

Wireless networks also suffer from frequent temporal disconnections of mobile
devices from the underlying network. Such disconnections are due to mobility of end-
users within a wireless network, where a device is moved completely of the signal

coverage range of the wireless gateway/controller, or due to ‘black-outs’ that often

61

occur in radio channels due to effects of shadowing from urban obstacles [11]. During
a temporal disconnection, all wireless packets are dropped, affecting both TCP
segments and ACKs. This can cause a TCP sender’s RTO timer to expire, causing it to
retransmit the dropped segments, and reduce its cwnd size to activate the slow start
algorithm. If the connection is still in state of disconnection, retransmitted segments
are also dropped, which leads to further RTO incidences and retransmissions at the
sender. Such consecutive attempts at retransmissions due to timeouts will
exponentially increase the RTO timer value according to Karn’s back-off algorithm for
each unsuccessful attempt [49]. This could potentially stall a TCP connection for many
hundreds of milliseconds, even after a reconnection of the wireless device, as shown in
Figure 3.2. Figure 3.2 illustrates the effects on a sender’s cwnd growth when a TCP
connection is stalled for several seconds (between time = 7 to time = 11) due to an

inflated RTO timer,

80 — — o —— -

Uninterrupted Connection

‘= — — Interrupted Connection

Sender Congestion Window Size (Kb)

Figure 3.2: Highlighting the impacts of a large RTO timer on a sender’s cwnd size evolution

Wireless networks often use local error recovery techniques such as ARQ and FEC to
recover lost packets over the air, which often have high latencies associated with their
usage. Whereas FEC introduces a relatively constant coding delay, ARQ techniques
are more persistent with their retransmission attempts, which can translate into higher

end-to-end RTTs for a TCP sender in the wired domain [15]. RTO events are a

62

common problem at TCP senders, brought on by sudden increases in the end-to-end
delay when an ARQ mechanism is attempting to recover a lost packet locally. If an
ARQ function is too persistent, a TCP sender will retransmit the unacknowledged
segment after a timeout of the RTO timer. It is clear from this that whilst the
retransmitted segment is on its way to the wireless domain, the wireless ARQ may
have been successful with its recovery. Unfortunately TCP will have already
unnecessarily reduced its cwnd size and sending rate due to a wasted retransmission
effort, also wasting network resources and reducing throughputs for end-users in the

wireless network.

3.1.4 Link Asymmetry Issues

A network communication path exhibits asymmetry with regards to TCP performance
if the bandwidth in one direction is greater than the bandwidth in the reverse direction
[128]. In wireless networks where a single gateway/controller typically services
multiple wireless devices, the downlink (forward) channel and uplink (reverse)
channel usually have differing capacities. Typically, the downlink radio channel

capacity is configured to be greater than that of the uplink [11].

The key issue with such link asymmetries for TCP performance is that it results in a
poor utilisation of downlink bandwidth because of the slower arrival of ACKs due to
the limited uplink bandwidth [129]. This is because the TCP sender’s cwnd is ACK-

clocked, relying on the arrival of ACKs to advance the sending rate.

A further issue related to limited uplink bandwidths in wireless networks is where TCP
ACKs are generated by end-devices at a rate faster than what can be actually sent back
to the sender. This leads to the queuing of ACKs behind one another at a bottleneck,
which can overflow. If ACKs get dropped then a TCP sender will timeout, thereby
retransmitting the presumed lost segment and cutting back its sending rate. Hence a
TCP sender can mistakenly interpret weak reverse channel conditions as simply

congestion on the forward channel [11].

Another problem for TCP senders in the wired domain associated with wireless link

asymmetry is caused by the ACK-compression effect [11]. Although the arrival of

63

ACKs at the sender will trigger an increase in the size of its cwnd and further
transmission of new data segments, a sudden influx of successive ACKs from a reverse
channel queue can break the sender’s self-clocking behaviour. When this happens it
can cause the sender to inflate its cwnd significantly, sending out a large burst of data
segments into the network. This could burden the forward channel with an instant load,

leading to congestion related issues.

3.2 Characteristics of Indoor 802.11 WLAN Channels

This section of the chapter reviews what is believed to be the typical characteristics of

IEEE 802.11 WLANSs when deployed indoors and in the infrastructure mode.

3.3.1 Frame Transmission Errors and Losses

Indoor 802.11 radio channels operating in the 2.4 GHz ISM band are prone to the
effects of interference and noise from other in-building radio sources, as well as to the
effects of path-loss and multipath fading due to mobility of end-user devices and from
human-related obstacles [71]. This has a direct impact on the SNR measured by
devices, which decreases when a receiving device is unable to distinguish the
transmitted signal from the interference and noise levels [130] [131]. Consequently,
the BER over the channel increases and can lead to random corruptions of 802.11 data
frames and 802.11 ACKs, both of which translate into multiple retransmissions by the

MAC, and even complete losses of data [76].

Hence an understanding of the behaviour of frame transmission errors in 802.11
WLANSs has been an active area of great interest by researchers in recent years [70]
[73] [74] [132] [133]. The aim of such studies is to be able to capture and model the
transmission error probabilities of the wireless link, providing detailed insights into the
workings of the ARQ mechanism in the DCF MAC. Although frame errors in 802.11
WLANs can be recovered locally by the transmitting MAC using ARQ
retransmissions [50] [134], complete frame losses do still occur when the ARQ reaches

its retry limit, as has been shown in [130] [135].

64

It has also been shown that frame errors in 802.11 WLANS can be caused by either
random bit corruptions due to poor channel quality, or they can be caused due to
colliding transmissions of frames, which are a normal operating feature of 802.11
WLANS according to [75]. Frame collisions occur only when more than one 802.11
device sends a data frame in the same medium access slot, as governed by the back-off

timer of CSMA/CA protocol of the DCF at the MAC sub-layer [136].

3.3.2 Variable Frame Transmission Delays

The time taken for an 802.11 data frame to be transmitted through successful
acquisition of the wireless medium and for it to be positively acknowledged by the
receiving device is referred to as the end-to-end transmission delay of a data frame
over the WLAN. The total delay of a data frame consists of the time spent in the
transmission queue plus the time taken by the MAC to successfully transmit the frame,
referred to as the MAC delay. The MAC delay consists of the channel access delay,
which is the time spent by a device contending for access to the wireless channel, and
the transmission delay, which is the time taken for a successful delivery including the

acknowledgement [137].

The issues for higher-layer protocols that operate over 802.11 WLANSs are related to
the unpredictability of radio channel conditions, where frame errors and losses occur
randomly, which therefore brings some form of uncertainty to the time taken to
successfully deliver higher-layer data to an 802.11 end-user device. The uncertainty in
end-to-end delays of data frame transmissions is because of the way in which the
CSMA/CA mechanism is implemented in the MAC DCF, in conjunction with the
ARQ mechanism. Initially, a device experiences a random back-off counter delay in
the range 0 to CW before gaining access to the medium, where CW is the contention
window size used by the MAC. Unfortunately, if a data frame is not delivered
successfully (either due to a collision or poor channel conditions), then the sending
MAC detects an error via an 802.11 ACK-timeout. Upon an ACK-timeout it
reschedules a retransmission of the same data frame by contending for the medium
once again using a new back-off counter interval, whose value is now chosen
randomly from an increased range that is doubled, i.e. CW is doubled. After another

unsuccessful transmission, the MAC reschedules another retransmission, again

65

doubling the range from which the back-off counter value is chosen at random. The
sending device will keep retransmitting in this way until it reaches the retry limit of the
MAC. To prevent excessively large contention delays per retransmission, the value of
the back-off counter is limited by placing a cap on the maximum size of the CW,

regardless of the number of attempts [138].

It is clear from the above procedures that the end-to-end transmission delay of any
particular data frame over an 802.11 WLAN is potentially variable and unpredictable.
It is a challenging task to accurately predict exactly how many retransmission attempts
a data frame may experience, or the magnitude of the contention delays due to the
randomness of the back-off timer. Fluctuating channel conditions can also influence
the number of retransmissions that take place per data fram;, which can considerably
hike end-to-end transmission delays over the WLAN, and ultimately on global delays
for higher-layer protocols. It has also been shown and proven that increasing the
number of devices in an 802.11 WLAN using DCF CSMA/CA has a negative impact

on the delay experience by any particular device contending for the wireless medium

[53] [133][139].

Many further studies have been undertaken to analyse and better understand the

variability of frame transmission delays over 802.11 WLANSs [52] [76] [134].

In [135] the authors highlight through experimentation and raise awareness of variable
transmission delays associated with transmission queues building-up at the MAC sub-
layer. In situations where higher-layer protocols have large streams of data to send
over the WLAN, the 802.11 MAC will experience large queues of data frames. If the
MAC is unable to service the queue quickly enough (due to continual frame errors
occurring over the WLAN and retransmissions) then overall global delays for higher-
layer protocols will increase due to the exacerbated effect of incoming data growing

the queue size.
In [140] the authors also discovered via experimental work that there are additional

transmission latencies associated with speed-switching of 802.11 hardware devices and

software implementations, alongside those related to frame retransmissions.

66

3.3.3 Frame Collisions

An inherent problem in 802.11 WLANS is that of collisions amongst frames over-the-
air, regardless of the CSMA/CA protocol used by the DCF. A collision immediately
leads to the loss of all frames involved, and because there is no direct way to detect
frame collisions, it can become a performance related issue [141]. In fact studies have
shown that frame collisions in an infrastructure mode 802.11 WLAN can account for a

greater percentage of all frame errors that occur [142].

The most commonly known cause of frame collisions is due to the hidden node
problem. It occurs when a node (or 802.11 device) is visible by the AP, but not by the

other nodes who are also in the range of the AP.

- > K >

Range of Node A Range of Node B

Figure 3.3: The hidden node problem in 802.11 WLANSs

As illustrated by Figure 3.3, the hidden node problem occurs when an AP can
communicate with both node A and node B, yet neither node A nor node B are in the
range of each other due to limitations on transmission power with 802.11 devices. This

creates a situation in which the AP could be receiving a transmission from node A

67

without node B sensing that node A is transmitting on the same channel. Node B,
sensing no activity on the channel, might then also initiate a transmission on the
channel. This leads to a ‘jamming’ of the AP’s reception of node A's transmission,
which is already taking place. The jamming is caused by frame collisions from both

nodes, which will all be lost. This is known as the hidden node problem [143].

Another cause of frame collisions in 802.11 WLANs using the DCF CSMA/CA is if
two or more devices that are randomly contending for access to the radio channel
decrement their back-off timer to zero at the same time [144]. The simultaneous
medium access and transmissions will lead to missing frames due to collisions. Each
device must then generate a new value for their back-off timer from a range, which is
increased each time when there is a failed attempt at acquiring access to the channel

[23].

3.3 TCP Performance Issues over IEEE 802.11 WLANSs

This section of the chapter presents a review of the recurring issues with TCP

performance when it is used specifically over IEEE 802.11 WLANS,

3.3.1 Unnecessary TCP Retransmissions

One of the strengths of a reliable transport protocol like TCP is that it uses error
detection coupled with a retransmission mechanism for recovering lost segments.
Whilst these mechanisms work seamlessly in traditional wired networks, they have
been shown to work inefficiently in wired-to-wireless environments [13]. TCP relies
on network congestion signals to activate its various AIMD algorithms, which take

responsibility for retransmitting missing segments and easing congestion in the path.

When TCP is used in conjunction with 802.11 WLANs many issues relating to its

retransmission mechanisms have been reported [145] [146] [147].
Based on literature reviews in the area, and broadly categorising them, there are two

key problems inherent to the characteristics of 802.11 WLANs which lead to

unnecessary retransmissions of segments by TCP senders in the wired domain.

68

Firstly, the higher error rates of 802.11 WLAN channels lead to a greater number of
TCP segment errors over the air. When an 802.11 frame containing a TCP segment is
in error, the sending MAC uses its stop-and-wait ARQ in an attempt to recover the
frame. While this is taking place, the TCP sender is still waiting for the arrival of an
ACK to confirm a successful delivery. Unfortunately, the TCP sender’s RTO timer
expires due to a sudden increase in delay, and it is forced to retransmit the
unacknowledged segment in concern. This situation is commonly referred to as a
spurious timeout by a TCP sender [148], which has become a topic of much research
in recent years [149]. Spurious timeouts at TCP senders are a common problem in
wireless networks with high delay variability, and occur whenever there is a sudden
and unexpected inflation of the RTT experienced by TCP, such that it exceeds the
value of the RTO timer that has been calculated [150].

Meanwhile, the 802.11 MAC may have actually delivered the TCP segment
successfully on one of its retransmission attempts, and has moved on to service the
next TCP segment in its transmit queue. However, the MAC will now receive the
retransmitted TCP segment it its transmit queue, which it will eventually service. Once
delivered to the TCP receiver, it will be regarded as duplicate or expired data which
the receiver has already received; hence the segment is simply discarded. Ultimately,
this becomes a wasted effort on the part of TCP because the retransmission was

unnecessary.

The spurious timeout problem described above can be further exacerbated if the
retransmitted TCP segment is still not acknowledged in a timely manner. This can
happen due to two reasons; 1) if the 802.11 MAC ARQ is making many retransmission
attempts of the retransmitted TCP segment due to persistent poor WLAN channel
conditions, and i1) the retransmitted TCP segment is waiting at the back of a large
transmit queue of the 802.11 MAC. Both of these situations will increase the delay
experienced by the TCP sender, leading to a second successive RTO event due to the
non-arrival of a TCP ACK in a timely manner. TCP doubles the value of its RTO timer
each time it performs a retransmission, up to a maximum time of 64 seconds [49]. So
for each successive RTO event, TCP waits for a longer period of time before

responding to unacknowledged segments. This is known as the exponential back-off

69

problem, which will stall a TCP sender in the presence of actual losses, and has been

reported in several studies [11] [106].

A second problem that can lead to unnecessary retransmissions by a TCP sender is
when TCP ACKs are lost over wireless channels on their way back to the sending TCP
in the wired domain. TCP ACKs are sent as 802.11 data frames by the MAC on
receiving devices, so they go through the same transmission (and retransmission)
procedures as any 802.11 data frame would do at the MAC of a sending device. The
only difference with TCP ACKs is that if they are completely lost over the wireless
channel due to the receiver’s 802.11 MAC reaching its retry limit, then they are not
retransmitted by the TCP layer on that receiving device. Hence they will not arrive at
the sending TCP at all. This will lead to an expiration of the sender’s RTO timer,
forcing it to retransmit the unacknowledged data which has already been successfully
received at the other end. The sending TCP therefore confuses an erroneous reverse
channel loss for losses occurring in the forward channel, unnecessarily retransmitting a
successful delivery. Note that DUPACKSs can also go missing over the reverse WLAN
channel as stated, and as such a TCP sender may not receive the three DUPACKSs
which are required to initiate a fast retransmission. Instead it incorrectly leads to an
expiration of the RTO timer, with the sender initiating the slow start algorithm after
the retransmission instead of the congestion avoidance algorithm [151]. Since
DUPACKSs imply that data is still arriving at the receiving end, initiating the slow start

algorithm is an unnecessary degradation to the end-to-end throughput.

3.3.2 Suffering Throughputs for End-Users

One of the most popular measures of TCP performance by end-users is the end-to-end
data throughput performance that is achieved at their end, and wireless end-users are
no exception here. To clarify, TCP throughput is a measure of the amount of TCP data
actually received by the TCP layer on the end-device per unit of time. It is a strong
indicator of overall end-to-end performance as it is calculated in abstraction to the

underlying wired-to-wireless conditions.

One of the key reasons for the success of 802.11 WLANSs is that they claim to provide

wireless end-users with high data transmission rates and bandwidths over the WLAN.

70

Consequently, 802.11 end-users over the years have become expectant of high
throughput performance in support of the Internet applications which they use.
However, TCP is the underlying dominant transport protocol that is used to meet such
expectations by delivering application data from a server across the Internet, over an

802.11 radio channel, and eventually to the end-device.

Unfortunately, TCP finds it challenging to maintain high throughput levels when used
over 802.11 WLANSs due to the inherent nature of the radio channels used, and the
problems discussed in the previous section. As a result it is unable to take full

advantage of available capacity and claimed bandwidths of 802.11 channels [41].

The sufferings for TCP throughput arise from a combination of two key factors: 1)
constant retransmissions of segments due to variable delays and losses over the WLAN
due to poor channel conditions, and ii) large delays over the WLAN associated with
increased contention and medium access delays when there are multiple end-users

being serviced by just one 802.11 AP ina WLAN BSS.

In the first situation, the limiting factor for TCP maximising its throughput is that of
constant reductions in the size of the sender’s cwnd each time a retransmission is
carried out. In the case of RTO led retransmissions, the cwnd is reduced significantly
to just one segment size because the slow start algorithm is initiated. In the case of
retransmissions due to the reception of three DUPACKSs, the cwnd is also reduced
because the fast retransmit and fast recovery algorithms are initiated. Recall that the
sender’s cwnd strictly governs the amount of data that can be injected at once into the
network per RTT. With continual reductions taking place during the transfer of data
throughout a connection, the average throughput achievable is greatly limited by the
sender’s deficiencies. Consequently a TCP sender is unable to take full advantage of
the high capacities available in 802.11 WLANS, i.e. a large c¢wnd size cannot be

sustained at the sender.

In the second situation, large increases in the end-to-end delay for TCP senders cause a
slow down in the rate of increase of the size of the cwnd, which translates into a less
aggressive sending of new data to an end-user. The problem stems from the slowdown

in the rate of arrival of ACKs at the sender from the receiver in the WLAN. This

71

happens when there are multiple 802.11 devices in a WLAN all contending for access
to the radio medium. As discussed in a previous section, unsuccessful attempts in
acquiring access to the wireless channel lead to an exponential increase in the random
back-off interval for each failed transmission attempt for a device. The more devices
there are, the more contention there is. This situation translates into an increase in the
average medium access delay experienced by 802.11 data frames (containing TCP
ACKSs) in the transmit queue of a receiver trying to send TCP ACKs back to a TCP
sender in the wired domain. Ultimately, the rate at which ACKs arrive at the TCP
sender will decrease, thereby starving its cwnd of significant growth and affecting the

optimal throughput on the forward channel.

3.3.3 Unfairness of TCP Flows in 802.11 WLANSs

The 802.11 DCF MAC has been designed to operate as a fair protocol in the sense that
all contending devices in a WLAN enjoy the same probability of gaining access to the
radio medium in order to transmit their load. In fact, if there are N competing devices
in the WLAN (including the AP), then each device has a 1/N probability of winning
access to the medium. However, although this mode of operation ensures fair access to
the medium at the MAC, it does not provide any provisions for ensuring fairness
amongst TCP connections. The key issue is due to the fact that TCP data segments and
ACKs are both transmitted as 802.11 data frames over the WLAN, which implies that
all devices (including the AP) using TCP services to/from the Internet have a need for

sole access to the radio medium to transmit data segments or ACKs.

There is no shortage of studies in this area, and generally, the consensus is that there
appears to be a form of asymmetry between TCP traffic competing forward (downlink)
and reverse (uplink) channels over 802.11 WLANs. A wide variety of issues relating
to the unfair sharing of wireless capacity have been reported [152] [153] [154]. The
issue is more prevalent when there are multiple devices all contending for channel

access in a WLAN.

72

B 2

LINK

up

Figure 3.4: Concept of downlink (forward channel) and uplink (reverse channel) 802.11 flows

In essence, TCP unfairness results in significant degradations of performance for
802.11 end-users who use TCP applications [155]. There are two situations in which
TCP unfairness can arise over an 802.11 WLAN operating in infrastructure mode: i)
interactions between forward channel and reverse channel traffic of TCP connections,
and ii) interactions occurring between only the uplink traffic flows of TCP
connections. Figure 3.4 illustrates the concept of downlink and uplink traffic flows

over an 802.11 WLAN.

In the primary case, downlink TCP connections are penalised by the presence of uplink
connections. When there are multiple 802.11 devices in a WLAN each downloading
TCP data from the Internet, it causes a buffering of incoming TCP data segments from
multiple downlink requests at the MAC transmit queue inside the AP. As stated above,
the AP does not have any privileges in terms of access to the radio channel in relation
to the other N-1 end-user devices in the WLAN, and has only a 1/N chance of being
able to transmit from its queue. In other words a single end-user device will have the
same priority as that of the AP. The difference is that the AP has data in its queue for
transmission to multiple end-users, whilst a single end-user device only needs to
transmit towards the AP, i.e. uplink traffic gets a (N-1)/N share of transmission

opportunities. As a result, the downlink TCP connections can suffer from segment

73

losses due to buffer overflows inside the AP, because it is unable to service the queue
at a quick enough rate. Such losses of TCP data segments will be fed back to the
sending TCP in the wired domain, causing it to activate its congestion control
procedures and retransmit lost segments. Note that this will also cause reductions in
the sender’s cwnd size, which will further starve throughput performance for 802.11
end-users performing download operations. Hence, unfairness exists for downlink TCP

flows in certain scenarios [156].

In the secondary case, some of the problems of TCP unfairness arise from the
interactions between multiple uplink TCP connections, i.e. from end-user devices to
the AP. In this situation, the AP’s transmit queue will be holding TCP ACKs which
will have arrived from TCP receivers in the Internet. The AP therefore needs to deliver
these TCP ACKs to the appropriate sender devices in the WLAN so that they can
advance the sending of new data, and so forth. Unfortunately, a bottleneck of TCP
ACKs can therefore occur at the AP when there are too many uplink connections
occurring. This is because the AP again has only an equal (1/N) chance of gaining
access to the medium, as explained above. As a result, buffer overflows can occur at
the AP, and TCP ACKs will be dropped. Consequently, uplink TCP connections will
be starved of sending performance due to a limited growth of the cwnd at each device,

which are all dependent on the cumulative nature of returning TCP ACKs [51] [157].

In [158] it has been shown that there is also some unfairness between short-lived and
long-lived TCP flows over an 802.11 WLAN. Here the short-lived TCP connections
are more susceptible to the lossy nature of the radio channel as well as to the
immediate unavailability of access to the medium that is needed in the initial stages of

a TCP sender’s cwnd growth phase, i.e. by the slow start algorithm.

3.3.4 Capture Effect on TCP Traffic

Although the 802.11 MAC is known to be a fair protocol, it has been discovered by
several studies that there exists some form of unfairness which favours 802.11 devices
with higher received signal strengths (i.e. that are closer to an AP). This phenomenon
is caused by the so-called capture effect within contention-based WILANs [40] [159]. It

arises when given two received signals arriving from different devices; a receiver will

74

consider the significantly stronger reception as the dominant signal, and weaker signal
as interference noise. The receiver will therefore decode the stronger signal from the
device that is closer, and the other device fails its transmission attempt due to detecting

a collision [160].

In [40], 1t was discovered that the channel capture effect can lead to degradations from
certain end-users when there are several TCP connections active over an 802.11
WLAN. In this study, the binary exponential back-off mechanism of the 802.11 DCF
has been shown to favour the most active TCP connection. Hence when there are
multiple end-users accessing TCP services from the Internet, those connections
starting early or the most heavily loaded may have a higher probability of capturing the
radio medium for transmissions due to the way in which the 802.11 DCF allocates

time slots to transceivers following a recent transmission over the radio channel.

In [161], the authors demonstrated through experimental work there are serious
unfairness issues related to the capture effect in the distribution of 802.11 WLAN
channel bandwidth amongst multiple TCP end-users. It was caused by the differing
received signal strengths of devices based on their physical location in proximity to the
AP. The study clearly shows that when two end-users are performing TCP downloads
simultaneously from a wired domain the performance of the device with the lower
signal quality was disproportionately affected by the device with the higher signal

quality.

3.3.5 Self-Collisions of TCP Traffic

Due to the bidirectional nature of TCP connections, a successful transmission of a
single TCP data segment over an 802.11 WLAN requires at least four separate
transmissions over the medium, i.e. the AP and an 802.11 device perform two
transmissions each, as illustrated in Figure 3.5. This can be explained by the simple
fact that both TCP and the 802.11 MAC offer a reliable transmission service using
acknowledgements. To illustrate, a TCP data segment is sent by the AP as an 802.11
data frame over the WLAN, which is acknowledged by an 802.11 ACK from the
receiving device. Once received, the TCP data segment is passed up to the TCP layer,

and the receiver too acknowledges the data by transmitting a TCP ACK back to the

75

sending TCP via the AP. This TCP ACK is transmitted as a standard 802.11 data
frame by the device, which the AP MAC must acknowledge using an 802.11 ACK
[141]. Hence there are two attempts at contention of the wireless medium per a single

TCP data transmission, once for the TCP data segment, and once for the TCP ACK

segment.

(1) 802.11 Data Frame containing TCP Data Segment

(2)802.11 ACK

(3) 802.11 Data Frame containing TCP ACK

(4)802.11 ACK

Figure 3.5: The four exchanges between the AP and end-device per TCP data segment

It is the two-way flows of TCP data segments and TCP ACKs described above
between a pair of 802.11 devices that lead to the problem of self-collisions of TCP
traffic over the air. TCP self-collisions occur when TCP data frames on the forward
channel collide with TCP ACK frames on the reverse channel, and the problem is
exacerbated when there are multiple TCP end-users in an 802.11 WLAN. The
contentions between transmissions of TCP data segments and TCP ACKs result in
collisions of TCP traffic, which lead to losses of data and ACKs for TCP connections.
In [38] and [160] it has been shown that the collision probability of two-way traffic

increases proportionally to the number of devices in an 802.11 WLAN.

3.4 TCP Enhancements for Wired-to-Wireless Paths

To clarify, the focus of this thesis is on the evaluation of sender-side TCP performance
over wired-to-wireless paths, where the wireless path of the journey is typically an
IEEE 802.11 WLAN. This thesis therefore favours those TCP enhancements that can
be applied easily to an existing infrastructure of the Internet, i.e. at TCP senders. Here
the TCP senders are typically servers in the Internet sending data to wireless end-users

within home and office environments.

76

Now that the performance issues from the wider research community relating to
sender-side TCP over wired-to-wireless paths (including over 802.11 WLANs) have
been reviewed and brought to the reader’s attention, this section aims to review some
of the key approaches taken by researchers in recent years to enhancing TCP’s end-to-

end performance over such environments.

Specifically, the section focuses on those proposals which adhere to TCP’s original
end-to-end semantics, keeping all modifications/enhancements at the TCP-layer on the
sender-side. Such solutions are the easiest to deploy in the Internet across servers, and
can give performance improvements to wireless end-users globally without the need
for modifications to end-devices. Such a technique therefore offers scope for excellent
scalability across the Internet, which is a mandatory design feature if any TCP

proposal is to be adopted by an increasingly heterogencous end-user base.

3.4.1 Approaches for Enhancing Wired-to-Wireless TCP Performance

Before focussing specifically on the target category of proposals, a brief review of the
different categories into which TCP solutions for wired-to-wireless environments

generally fall is presented.

3.4.1.1 End-to-End Solutions

A reliable transport protocol such as TCP must provide true end-to-end semantics to
applications, which implies that TCP ACKs must absolutely certify that the sent data
has reached the receiver successfully and with the integrity of the data maintained
throughout the journey to the receiver [3]. Figure 3.6 illustrates the concept of an end-

to-end solution in a wired-to-wireless environment.

A true end-to-end TCP scheme for wired-to-wireless paths does not require the
involvement of any intermediaries for managing its flow and congestion control.
Intermediaries include any devices in the path between the sender and receiver, such as

the AP acting as a gateway into the wireless path [45].

77

Furthermore, end-to-end schemes do not require modifications to intermediaries either;
all changes to the TCP code are restricted to the TCP layer at either the receiver side,

or the sender side. This allows for ease of integration into an existing infrastructure.

Generally speaking, TCP enhancements in this category can be regarded as ‘fixes’ to
its original intended behaviour, such as ACK-clocking, maintaining an RTO timer,
altering the cwnd size in light of congestion, and so forth. The idea of an end-to-end
solution is therefore to ensure that TCP (and its congestion control features) behaves as
it should under all circumstances, but at the same time making it more robust in new

heterogeneous environments that may not have been envisaged upon its original

appearance.

TCP
Data Segments

TCP ACKs

Internet

Wireless
TCP Receiver

Wired
TCP Sender

Figure 3.6: Concept of an end-to-end solution for TCP over wired-to-wireless paths

TCP NewReno, the SACK option implementation, and the delayed-ACKs mechanism
are all fine examples of end-to-end fixes that were made to the original TCP to
enhance performance in a changing Internet demanding consistently higher
throughputs; here the modifications were made to the TCP code at the end-points only,

and with relative success.

The advantages of end-to-end schemes are fairly obvious from the discussions above,
however they do also have some disadvantages [162]. Most end-to-end solutions do
not have any knowledge or sense of the conditions of the physical layer
communication path, and because of this end-to-end solutions are usually based on
mechanisms that can intelligently discriminate between the causes of TCP segment
loss in an end-to-end path; either a congestion related loss or a segment loss over the

wireless path. The same is also true for any unexpected delays that a TCP may

78

encounter; is the delay due to congestion in the fixed network or is it due to the
characteristics of the wireless path. A further disadvantage is that an end-to-end TCP
solution may not be precise or quick enough at dealing with problems over the wireless
path, as it based on assumptions and measurements. The additional processing

complexities can also increase overheads at TCP senders in the Internet.

3.4.1.2 Connection Splitting

It is possible to enhance TCP performance without making any changes to TCP
implementations at end-points. This can be carried out by placing an intermediary
device in between the end-to-end flow of a TCP connection that transparently alters
the flow of traffic, leading TCP to believe that conditions in the network are better than
what they may actually be [3]. The intermediary is technically referred to as a
performance enhancing proxy (PEP), and there are official guidelines on its proper
usage within networks for enhancing performance [163]. A PEP can also be
implemented at any layer within an intermediary device. The idea is to ‘fool’ a TCP
sender or receiver by forcing it to behave desirably in order to bring about more stable
behaviour and consequently better performance. Figure 3.7 illustrates the concept of

splitting a TCP connection between the wired and wireless domains.

In wired-to-wireless environments, a PEP is typically implemented at the interchange
between the wired domain and the wireless domain. Usually, this would be at the
gateway to a wireless network, such as at the AP for 802.11 WLANSs. Hence, solutions
that are based on this method are known as connection splitting schemes, because an
end-to-end TCP connection is split into two separate connections, one running over the

wired path and one running over the wireless path [13].

TCP

. TCP
Data Segments . "".; P A

Data Segments

Internet

Wireless
Y TCP Receiver
TCP Sender

Figure 3.7: Concept of splitting a TCP connection at the gateway to the wireless domain

79

The AP maintains a TCP connection with a server in the wired domain using a regular
version of TCP supported by the sender, while at the same time it maintains a TCP
connection with an end-user in the wireless domain using an enhanced transport
protocol that is optimised for wireless channels. Both end-points therefore
communicate directly with the AP without prior knowledge of the other end of the link
[30].

In the majority of implementations, the PEP has permission to acknowledge TCP
segments as soon as it receives them. Unfortunately, this can lead to a violation of
TCP’s end-to-end semantics because TCP ACKs can arrive at the sender before the
segments are actually delivered to the receiver [30]. Another feature of connection
splitting that can also violate TCP’s end-to-end semantics is when segments pass
through the AP, the PEP usually has to access and reveal certain information contained
within the passing segments before they reach their destination. The advantages of
connection splitting TCP schemes is that generally they can respond to wireless related
events very quickly, and no modifications are required to TCP data senders in the

wired domain.

Indirect-TCP (I-TCP)

A well known connection splitting solution for TCP over wired-to-wireless
environments is Indirect-TCP (I-TCP) [164], which has been the classical solution for
many years now for last-hop wireless networks. I-TCP utilises a PEP at the AP to
establish two separate TCP connections, as mentioned above. The AP therefore
manages a cwnd independently for each connection. In I-TCP, only the
implementation of TCP used over the wireless path is modified, with added support for
mobility and disconnections of wireless devices. With regards to performance, I-TCP
yields only small improvements over a llegular end-to-end TCP connection for wireless
channel BERs up to 2x10°, after which the throughput performance is on comparable
terms. A drawback of [-TCP is that it cannot deal with failures or rebooting of the AP,

which lead to TCP connections being terminated and data being lost.

80

Selective Repeat Protocol (SRP)

Selective Repeat Protocol (SRP) [26] is another example of connection splitting in
which a TCP connection is split at the AP. Connections between fixed wired hosts and
the AP use a regular TCP implementation; however an enhanced transport layer
protocol is used between the AP and the wireless devices it supports. The enhanced
transport protocol is able to selectively repeat transmissions of lost segments over the

wireless path.

Unlike using a standard end-to-end TCP connection, SRP has the rather significant
advantage of being able to recover more than one segment per single RTT. It uses the
SACK option at the AP to specify non-contiguous blocks of missing segments. The
AP, upon receiving SACK information, is able to locally retransmit a series of missing
segments, which could have been lost from a single ewnd due to errors on the wireless
channel. Another advantage of using SRP can be realised when data is sent upstream
from a wireless device to the wired TCP sender. The MTU of a wireless link is usually
much smaller than a wired network. Using regular TCP for the entire connection path
(i.e. over the wireless channel too) would mean the same MTU size must be used over
the wired path too. Using SRP on the other hand, smaller segments are reassembled at

the AP to take the advantage of larger MTU sizes from the wired network.

However, a significant drawback of the SRP solution is that the AP has to constantly
maintain hard-state information and then transfer the state to another AP when
handovers occurs. The TCP sender in the wired domain may also receive ACKs before
data segments are actually delivered to the wireless receiver, thus violating end-to-end

principles.

Overall, there are some significant disadvantages of using TCP connection splitting to
enhance performance over a wired-to-wireless path, which are mainly due to violation
of the end-to-end argument for TCP. Other issues also exist that are mainly to do with
the AP. APs would need to support a PEP implementation for which, in today’s market
dominated by IEEE 802.11 APs, there is yet to be any signs of progress with
connection splitting mechanisms in the mass market. Secondly, if an AP is to support a
PEP implementation, then it would also need advanced buffering capabilities, which

can prove costly. Thirdly, a TCP segment arriving from the fixed domain would need

81

to traverse two TCP stacks at an AP, as opposed to zero traversals when using a
standard approach. Many attempts have been made in recent years to enhance the
functionality of PEPs in an attempt to make them more desirable for connection
splitting approaches [165]. Generally speaking, connection splitting solutions often

suffer from high software overheads due to duplication of protocol stacks at the AP.

3.4.1.3 Link-Layer (LL) Schemes

The major problems for reliable transport protocols like TCP arise because of the
unpredictable nature of the wireless medium. Therefore, if the problem could be
tackled at its root cause, shielding TCP from the lossy link, then any such solutions
would appear ideal. Since the data-link layer protocol of an AP is running on top of
the PHY, it has immediate knowledge of error conditions over the medium. It therefore
has the potential to react faster than higher-layer protocols, with the hope of shielding
any problems from them too. Such solutions are referred to as link-layer (LL) schemes.
Although not strictly an enhancement to TCP directly, LL solutions do have their place
in the field of research for TCP performance over wired-to-wireless networks [26].
They hide the characteristics of the wireless link from the transport layer by attempting
to solve the problem at the link layer. In fact, the IEEE 802.11 MAC sub-layer is a LL

protocol that does precisely this.

A LL protocol at an AP also has more control over the PHY; hence it can alleviate
inefficiencies of the wireless medium, providing a TCP sender in the Internet with a
reliable end-to-end communication path similar to that of a purely wired path. Such a
technique does not require the need to make changes to existing TCP implementations
on end-hosts, which can be seen as advantageous because the end-to-end semantics of

TCP are preserved [13].

Unlike the transport layer, which has TCP as the defacto protocol, the link-layer has no
set protocol. Also, attempting to make the wireless channel appear as a wired channel
18 not as straight-forward as it may seem. An LL protocol’s main function is to ensure
reliable delivery of packets over a wireless network, much in the same way as TCP’s
core end-to-end functionality. Hence, LI schemes typically employ a variety of local

error control techniques to achieve this [166], including:

82

- stop-and-wait ARQ
- go-back-N ARQ
- selective-repeat (SR) ARQ

- forward error correction (FEC)

Consequently, LL solutions for enhancing TCP performance over wired-to-wireless

paths are more likely to be able to respond quickly to errors in the wireless path.

Past studies have shown that ARQ mechanisms of LL protocols can work well for
relatively low error rates; high error rates, however, can lead to a greater number of
local retransmissions, and can sometimes lead to a connection ‘black-out” for TCP
senders in the wired domain [167]. Alternatively, the use of FEC can detect and
reverse a specific number of erroneous bits per wireless packet, but the bandwidth
penalty can be quite significant in terms of the actual data throughput for end-users.
Hence, the use of FEC is not greatly suited to channels with limited bandwidth, which
is usually the case for wireless networks. FEC usage also increases the processing

delay per packet [167].

Moreover, it is a known fact that LL retransmission timers should expire earlier than
TCP’s RTO timer in order to avoid repeated retransmission efforts from TCP senders
in the Internet. In other words, LL protocols should try to avoid triggering TCP
retransmissions unless it is absolutely necessary, for example by not delivering
wireless packets out-of-order or by suppressing redundant TCP DUPACKSs, and so
forth. Such duplicated efforts can lead to worse overall performance over the wireless
channel due to wasted resources and triggering of TCP’s congestion control
mechanisms unnecessarily [26]. In summary, LL schemes need to consider two critical
factors: i) determining the LL retransmission timeout period and setting the maximum
number of retransmission attempts per loss, and ii) considering the interaction between
itself and the impacts it may have on TCP’s retransmission behaviour. Based on these
criteria, LL solutions generally fall into one of two categories respectively; 1) TCP-
unaware, and i1) TCP-aware.

Snoop Protocol

83

The most renowned LL proposal in the TCP-aware category is the Snoop protocol
[168] [169]. Snoop’s design requires no changes to the wired infrastructure of the
Internet, since it is implemented locally over the wireless path. Snoop employs an
agent that resides at the AP, and requires wireless end-devices to run the Snoop client
protocol. The Snoop agent runs as an additional sub-layer inside the AP above a LL
protocol. The agent’s function is to inspect each and every TCP segment and ACK that
passes through the AP, in either direction. Those that are destined for wireless end-
hosts are stored in a local cache of unacknowledged TCP data. If in case the Snoop
agent encounters a DUPACK on its way to a wired TCP sender, the agent suppresses
the DUPACK instead of forwarding it on to the sender. It then retransmits the missing

data segments immediately from its local cache.

As an additional feature, the Snoop agent also maintains its own retransmission timer,
so that it can perform local retransmissions without TCP having any awareness of it.
Of course, the agent’s timer must be less coarse than TCP’s own timer in order for a
local retransmission to take place (plus its associated LL acknowledgement) within the

time frame of TCP’s timer to avoid a RTO event at the sender.

Snoop’s strengths lie in the fact that it takes advantage of LL protocols’ ability to
respond quickly to wireless channel errors, while simultaneously it is able to use this
information to keep TCP in a stable state over the existing connection. It also

maintains TCP’s end-to-end semantics.

It has been shown that the use of Snoop can yield better performance than a regular
TCP connection running end-to-end over the same path [26]. One of the features of

Snoop that stands out is its ability to respond to segment losses faster than TCP.

A drawback of using Snoop is the fact that TCP retransmissions still do occur in
coexistence with local LL retransmissions, mainly due to timeouts at the sender [13].
Certain studies have also shown that Snoop is most profitable when nearly all data
flows are from the wired domain towards the wireless domain [30]; this is due to the
way in which the Snoop agent performs local error recovery. Another drawback is that
Snoop was designed for TCP connections with small RTTs; hence, studies have shown

that a Snoop protocol does not necessarily yield enhanced TCP performance in wired-

84

to-wireless last-hop scenarios that typically have larger RTTs due to the Internet path
[170]. This is a significant flaw since the majority of TCP connections today are
between a server in the Internet and a wireless receiver at the edges of the Internet,

where end-to-end RTTs are typically larger.

Delayed Duplicate Acknowledgements (DDA)

A LL proposal that falls clearly into the category of TCP-unaware solutions is the
delayed duplicate acknowledgements (DDA) scheme [171]. The term ‘TCP-unaware’
refers to the fact that DDA operates independently to TCP and is not aware of what is
happening at the TCP layer at either endpoint. In summary, DDA attempts to emulate
the workings of the Snoop protocol, and has two main goals; i) to retransmit TCP
segments using a LL protocol, and ii) to prevent the TCP sender from retransmitting

segments that have already been supplied by the LL protocol at the AP.

The DDA scheme requires that each TCP data segment is encapsulated within a LL
frame, and each TCP ACK is encapsulated within a LL-ACK frame. DDA also uses a
different numbering system for keeping track of locally transmitted frames. When an
AP receives a LL-DUPACK frame (containing a TCP DUPACK), it assumes there has
been a loss. The AP then delays the forwarding of the DUPACK to the TCP sender by
a fixed amount of time (using a local timer). At the same time it retransmits the lost
segment locally. In the meantime if more LL-DUPACKs arrive then they are also
delayed. If within the fixed time a LL-ACK arrives, indicating the successful reception
of a retransmitted frame, the delayed LL-DUPACKSs at the AP are discarded. If there is
an expiry of the local DDA timer, then all TCP DUPACKSs are released and forwarded
to the TCP sender in the wired domain, which will force it to activate the fast

retransmit algorithms (if there are three or more).

The main advantage of the DDA scheme is that the LL protocol at the AP does not
need to be aware of the workings of TCP. Consequently, TCP’s end-to-end semantics
are maintained, with no modifications necessary to wired hosts. The authors of [171]
suggest that their scheme works well in cases where the delay over the wireless path is
small in comparison to the RTT of the wired path, i.e. it does not perform well on slow
wireless links. This is mainly due to the expiry of TCP’s retransmission timer before

the DDA local timer expires, causing unnecessary duplicate retransmissions. Another

85

potential drawback is that the DDA scheme does not attempt to deliver segments in-

order to TCP because of the independent local numbering system it uses.

In contrary to some of the obvious benefits of deploying a LL scheme for enhancing
end-to-end TCP performance over wired-to-wireless paths, LL solutions do have their
disadvantages. Firstly, in very poor wireless channel conditions, L packets can suffer
from heavy losses and reordering that will cause large fluctuations of the RTT
measured by TCP in the wired domain. This can lead to spurious timeouts and many
redundant retransmissions by TCP, as well as significant reductions in its sending rate
because it still regards all problems as signals of network congestion. Secondly, LL
schemes are unable to deal with frequent disconnections of a wireless device that a

TCP sender in the Internet is communicating with.

3.4.2 Sender-Side End-to-End Approaches

To date, there have been many attempts and proposals in the quest for the perfect end-
to-end TCP implementation for wired-to-wireless paths. In essence, a perfect end-to-
end TCP should be able to accurately differentiate between congestion-related losses
and wireless-related losses (otherwise referred to as random losses), and then act
accordingly to sustain a stable behaviour within itself and providing adequate
throughputs for all parties concerned. Similarly, it should also be able to discriminate
between the causes of unexpected delays; whether they are due to network congestion,

or whether they are associated with the wireless path.

Although the focus of the thesis is on those enhancements that are implemented on the
sending (fixed) side of a TCP connection, many end-to-end solutions have also been
aimed at the receiving (wireless) side of connections, i.e. modifications made to the
TCP implementation on wireless devices. The most prominent receiver-side TCP
enhancement proposals in the area include Freeze-TCP [172], TCP-Peach [173],
WTCP [170], TCP-Casablanca [6], TCP-Real [174), Explicit Transport Error
Notification (ETEN) [175], E2E-ELN [129], and TCP Handoff (TCP-HO) [176].

Placing the focus now on the sender-side implementations of an enhanced TCP, there

is an array of techniques and approaches taken by researchers over the years to

86

differentiate between the causes of loss and delays in a wired-to-wireless path. The
basic idea is to avoid triggering a TCP sender’s congestion control algorithms when a
loss or delay is detected over the wireless path, i.e. random losses and delays, thereby

maintaining a high sending rate for wireless end-users.

A sending TCP-layer always has ready access to information such as its cwnd
evolution and size, the receiver’s rwnd size, the inter-arrival times between ACKs, the
current RTT and RTO values, and deviations in the RTT, to name the most commonly
used [177]. Therefore, sender-side enhancements typically resort to using a
combination of these metrics to intuitively gauge the most likely cause of losses or
delays at any one time, and then respond accordingly to maintain sending rates.
However, the greatest challenge with this approach is for TCP to use its congestion
control algorithms appropriately by being able to probe for available bandwidth in

such heterogeneous paths [11].

Based on a thorough review of literature in the area, sender-side end-to-end TCP

enhancements can be grouped into one of several categories of solutions.

3.4.2.1 Reactive Solutions

A reactive TCP AIMD algorithm deals with and attempts to resolve an incident of
network congestion when specific thresholds have been reached. It reacts by making
necessary adjustments in order to rectify the situation, by reducing its cwnd size and

sending rate for example.

TCP Reno

The legacy TCP Reno [99] is in fact a reactive AIMD algorithm; it adjusts its cwnd in
response to the timing and feedback of incoming ACKs and DUPACKSs. It also
continues to probe for more bandwidth in a communication path until the onset of
congestion is inevitable, at which point it reacts again by cutting back its cwnd, and so
forth. However, when the indicators of congestion (i.e. segment losses/delays) are
random and not due to real congestion, then a slower sending rate is unnecessary and

the incorrect response by TCP.

87

SACK Option

The TCP SACK option [112] is an early example of a reactive enhancement option to
TCP Reno, which was proposed as a means for a sender to detect and recover multiple
segment losses from a single ewnd of data in flight in a single RTT [110]. The SACK
option is now implemented widely in the Internet and enabled by default into the TCP
stacks of all major end-user operating systems [178]. Unfortunately, SACK still
remains a reactive mechanism, and therefore has its limitations [179] [180]. Each
SACK block needs 8 bytes of header space to convey its information to the sender;
hence the number of blocks that can be conveyed per TCP ACK is limited to just three
when the timestamps option [109] is also enabled. This restriction can lead to
unnecessary retransmissions of successfully received segments under certain loss
conditions, as illustrated in [179]. Hence many researchers argued if there was any
advantage in using the SACK option in lossy conditions, such as over wireless
channels. In [181] a more conservative loss recovery algorithm based on the usage of

the SACK option is proposed.

TCP NewReno and Variants

TCP NewReno is another early example of a reactive sender-side enhancement to the
legacy TCP, for use where the SACK option could not be supported [182]. The key
enhancement with NewReno is that (unlike Reno without SACK) it is able to
distinguish between a partial-ACK and a full-ACK. A full-ACK acknowledges all
segments that were outstanding at the start of the fast recovery phase, while a partial-
ACK acknowledges some but not all outstanding data. Unlike Reno, where a partial-
ACK will terminate fast recovery, a NewReno sender will retransmit the next in-
sequence segment based on the partial-ACK, reducing its cwnd by one less than the
number of segments acknowledged by the partial-ACK. This window reduction,
referred to as a partial window deflation, allows the sender to transmit new segments
in subsequent RTTs of the fast recovery phase. On receiving a full-ACK, the sender
sets cwnd to ssthresh, terminates fast recovery, and resumes congestion avoidance

[182].

A problem occurs with NewReno when there is a reordering of segments by more than
three sequence numbers [113]. When this happens, a NewReno sender mistakenly

invokes the fast recovery algorithm. When the reordered segment is eventually

88

delivered, segment sequence numbers will progress and from there until the end of fast

recovery, every new ACK produces a duplicate and unnecessary retransmission.

In [183] and [184] the authors conclude that NewReno works well when there are
multiple segment losses in a single cwnd and that retransmissions are usually
successful. But when the retransmissions are also lost due to an erroneous link in the
path, they cannot be recovered quickly enough by NewReno, and they also cannot be
fast-retransmitted because of the lack of DUPACKS. Therefore successive RTO events

are inevitable.

Today there are two variants of TCP NewReno implementations in circulation across
the Internet that can recover from multiple segment losses: the slow-but-steady variant
and the impatient variant [113]. However, both variants suffer from slow recovery
times when many segments are lost. In fact, the recovery time of the slow-but-steady
variant increases linearly in proportion to the number of lost segments, and the
impatient variant, although it performs better than the slow-but-steady variant in the
case of multiple losses, it wastes time waiting for a RTO timeout before entering the
slow start phase [185]. In [185] the authors therefore propose the instantaneous variant

of NewReno as an alternative sender-side enhancement.

DSACK Extension
The duplicate selective acknowledgment (DSACK) extension [186] to the TCP SACK

option has recently been proposed to make TCP more robust to segment reordering
problems that commonly occur in lossy conditions. It specifies the usage of the
existing SACK option header field to report which sequence numbers are generating
the ACKs. This allows a TCP sender to infer the actual order of segment arrivals at the
receiver, and when it has unnecessarily retransmitted a segment, i.e. due to a spurious
retransmission. The information contained in the DSACK field can assist TCP with

adjusting its sending behaviour to improve end-to-end performance.

The reception of DUPACKSs can be an indication to the sender of either segment
reordering or even losses. The ability to discriminate between these two cases impacts
TCP behaviour and performance considerably. If there is persistent reordering in a

heterogeneous network path, over a wireless path for example, then it will generate

89

many DUPACKSs. If the sender interprets the DUPACKSs as losses, then upon receiving
dupthresh number of DUPACKSs (where dupthresh is normally set to three as defined
in [99]), it will invoke the fast retransmit algorithm. If the fast retransmit algorithm is
activated frequently to resend segments that may not have been lost, it is very wasteful

of network bandwidth and keeps the average cwnd size unnecessarily small [90].

There have been several attempts in recent years by researchers capitalising the
DSACK extension to better gauge path conditions at the sender by detecting and
avoiding false invocations of the fast retransmit algorithm. The general approach taken
is to improve TCP performance by adaptively modifying the value of dupthresh
throughout a connection [146] [187] [188]. However, the proposal in [187] has been
criticised for not being able to adapt the value of dupthresh accurately enough in real-
world conditions leading to RTO events when multiple segments are lost from the
same cwnd, and with proof of concept coming only from simulation work. In [188] the
authors propose RR-TCP, an algorithm based on DSACKs allowing a sender to
recover from false retransmissions, and avoid future unnecessary retransmissions by
dynamically adjusting the dupthresh value. Although RR-TCP is able to improve TCP
performance in the presence of severe reordering (as shown by simulation work), it
suffers from being too computationally expensive due to storage overheads and

requirements at the TCP-layer.

The approach taken in [146] builds on previous work related to DSACK usage by
proposing a sender-side algorithm that uses an exponentially weighted moving average
(EWMA) coupled with the mean deviation of the length of the reordering event
reported by a TCP receiver in a DSACK to estimate the value of dupthresh. It also
uses an adaptive upper-bound on dupthresh to avoid RTO events. Although the
approach in [146] has been shown to slightly enhance TCP performance over paths
with lossy links, the authors verified their algorithm using simulation studies only. It is
therefore questionable whether or not the algorithm would be stable in real-world

conditions, where the RTT, segment reordering, and losses are unpredictable.

k-SACK

The k-SACK sender-side enhancement has been proposed in [189], which uses

information conveyed via the regular SACK option to improve TCP performance over

90

lossy links with random losses, with references made to wireless links. Its key
functionality is to not consider all segment losses as an indication of network
congestion. The k-SACK algorithm uses the notion of a loss window and the parameter
k, which is the threshold for determining whether losses are congestive or random.
Then for each cwnd of sent segments, if out of the loss window number of most
recently transmitted, k or more segments are lost, a k-SACK sender assumes network
congestion, otherwise the losses are assumed to be randomly occurring due to a lossy
link in the path. Note that the values of the parameters loss window and k are
predetermined in an appropriate manner. However, a large value of & increases the
time it takes a TCP sender to detect and respond to congestive losses. Secondly, the
authors state that high values of k are also likely to have an adverse effect on
competing TCP connections across the Internet, and hence the value of & is a subject

for future work.

The focus of k-SACK 1is to prevent drastic reductions of a sender’s cwnd size for
random losses, but only for congestive losses. The algorithm modifies the fast recovery
algorithm of the legacy TCP to operate in accordance with the value of k, where the
cwnd is frozen when the number of losses is less than k. Although simulation results
highlight the effectiveness of TCP with k-SACK over the regular SACK option over a
range of random loss rates, the authors used only a basic dumbbell topology. Errors are
artificially induced over the bottleneck wired link, following an independent and
identical distribution (i.i.d). Unfortunately, burst errors are not considered in the
experiments, and neither is a wireless hop that utilises a contention based channel
access mechanism, as well as a local error recovery mechanism. Therefore it is
difficult to predict how k-SACK would perform in real-world conditions across the
Internet with a last-hop 802.11 WLAN, where congestive losses along the wired path
and random errors in the wireless path can coexist, and where there could be interplay

between the TCP and 802.11 MAC error recovery mechanisms.

SACK+

A fairly recent reactive sender-side modification to TCP is SACK+ [190], which was
proposed as a supplement algorithm for those senders already using the popular SACK
option. The motivation behind SACK+ is that it aims to alleviate the deficiencies of

the standard SACK option, where lost retransmissions are undetectable until there is an

91

expiry of the RTO timer at the sender [191]. The SACK+ algorithm claims to be able
to detect retransmitted segments that are also lost. The authors use a stochastic
modelling approach to evaluate the performance of SACK+, supported by numerical
results from simulations to highlight its improvements over the regular SACK option.
However, many assumptions are made with the stochastic model, with the most
significant being the omission of an ACK loss model on the reverse path of TCP
connections. Finally, the authors go on to suggest that the improvements offered by
SACK+ in the real-world may be insignificant because segment retransmission losses
are infrequent events for TCP in the Internet. For those TCP implementations that are
unable to support the standard SACK option, the authors have proposed the duplicate
acknowledgment counting (DAC) algorithm as a sender-side TCP enhancement [192].
The DAC algorithm relies on the arrival of DUPACKSs instead of SACK information
to detect lost retransmissions, but as with SACK+, its merits are based only on

quantitative evaluations.

3.4.2.2 Proactive Solutions

A proactive TCP algorithm uses feedback mechanisms from within the network to
direct a sender towards making continual adjustments that can prevent the onset of
congestion, and any other related issues. It is the more preferred type of solution for

enhancing TCP performance over wired-to-wireless environments [11].

TCP Santa Cruz

One of the first proactive sender-side TCP enhancement proposals targeted at wired-
to-wireless (or heterogeneous) paths was T7CP Santa Cruz [167]. The implementation
of Santa Cruz introduced new congestion control and error recovery mechanisms to
deal specifically with lossy links and dynamically changing path delays. Its originality
is due to the fact that it did not use the RTT of segments in any way for congestion
control. Instead it uses the notion of the relative delay of segments. The relative delay
is the increase/decrease in delay that segments experience with respect to each other as
they propagate through the network. These measurements are the basis of the
congestion control algorithm in Santa Cruz. A TCP sender calculates the relative delay
from a timestamp contained in every ACK that specifies the arrival time of the packet

at the receiver. From the relative delay measurement the sender can determine whether

92

congestion is increasing or decreasing in either the forward or reverse path of the
connection; furthermore, the sender can make this determination for every ACK packet
it receives. This is impossible to accomplish using RTT measurements, which do not
allow a sender to differentiate between delay variations due to increases or decreases in
the forward or reverse paths of a connection. As a result, Santa Cruz climinates the
need for Karn’s algorithm [49] and does not require any RTO timer exponential back-

off mechanisms that cause long idle periods over lossy links.

The congestion control algorithm introduced in Santa Cruz therefore allows the
detection of the incipient stages of congestion, allowing a sender to increase/decrease
its cwnd size in response to early warning signs. Given that the congestion control
algorithm makes adjustments to the cwnd size based upon delays in the network and
not on the arrival of ACKs in general, the authors suggest that the algorithm is robust

to ACK losses.

The new error recovery mechanisms in Santa Cruz perform timely and efficient
retransmissions of lost segments, avoiding unnecessary retransmissions for correctly
received segments when multiple losses occur from a cwnd of data, and provide RTT
estimates during periods of congestion and retransmissions. In addition, when multiple
segments are lost per transmitted cwnd, it provides a mechanism to perform

retransmissions without waiting for a RTO timer to expire.

The authors’ simulation results show that Santa Cruz provides throughput
improvements over TCP Reno and 7CP Vegas [193] in two major areas, congestion
control and error recovery. However, the bottleneck link in their simulation topology is
not a true representation of a wireless link, where losses occur both in bursts and
randomly, and where delays are highly variable on both the forward and reverse paths,

especially when contention-based wireless networks are used.

The performance of Santa Cruz was later assessed for usage over wired-to-wireless
scenarios by the authors of [194], who were also the first to implement the Santa Cruz
code into the TCP stack of the Linux operating system. Some fundamental flaws were
discovered with Santa Cruz in their experiments. Its estimation accuracy of network

conditions was shown to be poor in the presence of multiple TCP connections along

93

the same path, and when there were additional delays over the wireless path due to
local retransmissions taking place, thereby jeopardising any performance gains from
its novel delay-based mechanisms. In addition, Santa Cruz was shown to be poor at
discriminating between congestive losses and random losses, causing its performance
to fall-back to the equivalent performance of TCP Reno under certain conditions. The
authors then propose an enhanced alternative algorithm to Santa Cruz, which at best

only solves the problems associated with multiple TCP connections in coexistence.

TCP Westwood+

Westwood+ [195] is a sender-side modification to TCP Reno’s congestion control
algorithms in an attempt to provide enhanced performance over heterogeneous paths.
A Westwood+ sender uses an end-to-end bandwidth estimator (BWE) to alter the size
of its cwnd and the ssthresh value, specifically after a segment loss event. Using a low-
pass filtering mechanism, it monitors the rate of returning ACKs from the receiver.
The measurement is used to adaptively decrease the cwnd size and ssthresh values
after a congestion episode. In this way, Westwood+ substitutes the classic
multiplicative decrease paradigm with an adaptive decrease paradigm. The idea
behind this is to continuously be aware of the end-to-end bandwidth along a
connection, so that at the point of a segment loss occurring Westwood+ sender is able
to adaptively govern its cwnd size to better reflect end-to-end network conditions. Its
authors state specifically that TCP Westwood+ can increase throughput over wireless

networks.

A BWE sample calculation is performed for every RTT in Westwood+ by counting
and filtering the flow of incoming ACKs. In summary then, Westwood+ leaves
unchanged the probing phase of the legacy TCP but it substitutes the multiplicative
decrease phase with an adaptive decrease phase, which sets the cwnd by taking into
account the BWE value. As a result of this it has the potential to work well over
wireless networks because it will reduce its sending rate severely only when a
significant number of segments are lost. A single loss event due to an erroneous radio

link therefore does not cause much harm [3].

In [196] the authors study the impact of uniformly distributed random segment losses

on the goodput performance of TCP Reno and Westwood+ using a lossy bottleneck

94

link. It is shown that Westwood+ improves data goodput with respect to Reno when
losses are non-congestive, with its cwnd size on average being four times larger than
Reno’s throughout a connection. Similarly, in [196] it is shown that Westwood+
improves on data goodput performance over TCP NewReno over channels with bursty

segment losses. However, all experiments have been limited to simulation studies only.

In [197], the behaviour of Westwood+ is studied, particularly its BWE mechanism
over varying random loss rates. The authors discovered that as the loss rate increased
in their simulated experiments, the BWE estimate became more oscillating, which had
a direct oscillating impact on the sender’s cwnd size. This was due to the local
retransmissions taking place over the wireless path, which consumes some of the

bandwidth perceived by a TCP sender.

In [198] TCP Westwood+ performance is evaluated in the presence of segment losses
caused by random BERs over a wireless link. The authors highlight that Westwood+ is
unable to discriminate the causes of losses in a path, and suggest that its bandwidth
estimation technique therefore incorrectly counts those segments that become
corrupted whilst in transit. To counter this they propose EW-TCP as a sender-side
enhancement to Westwood+, which has been designed to more accurately measure
end-to-end bandwidth by counting corrupted data and acknowledged data separately
per RTT. The authors use simulations to compare the performance of TCP Reno,
NewReno, Westwood+, and EW-TCP over uniformly distributed loss conditions. Their
simulation results revealed that a Westwood+ sender suffers from many RTO events
due to segment losses caused by the wireless link. Specifically, as the corruption rate
exceeded 0.5%, their EW-TCP outperforms Westwood+ by at least 8%, and up to 78%
in some cases. In fact, for loss rates between 0.5% and 7% over the wireless path,

Westwood+ performed on equal terms with the older NewReno.

However, the authors’ simulation of the wireless link does not make use of local error
recovery mechanisms; neither do they assess the impacts of contentions due to
multiple devices in the wireless network, which are all typical characteristics of last-
hop 802.11 WLANS. Real-world studies would provide more accurate insights into the

RTO issues with Westwood+, and whether or not EW-TCP is superior.

95

TCP Veno

TCP Veno [199] is a proactive sender-side TCP implementation aimed specifically at
data transmissions over lossy paths. It is a direct modification to the legacy TCP
congestion control algorithms, with the objective of trying to improve end-to-end
performance over wired-to-wireless paths by heuristically discriminating between
segment losses caused by congestion in the wired path and random losses due to the
wireless link in the path. Its functionality is designed to keep a TCP sender stable in
the presence of randomly distributed segment losses that are typical of wireless paths,

yet deal with traditional wired losses in a similar manner to the legacy TCP.

The key feature of Veno is that it monitors the network path for levels of congestion,
and then uses this information to determine the cause of loss. If a loss occurs whilst
Veno is in the congestive state, it assumes that the loss is due to network congestion;
otherwise it assumes that the loss is random. In each of these situations Veno adjusts
the cwnd size differently (i.e. the multiplicative decrease phase), taking into account
that random losses require a less aggressive reduction of the sender’s cwnd in order to
maintain a higher throughput over the wireless portion of the connection. Another
feature of Veno is its modified linear portion of the additive increase algorithm of the
legacy TCP, so that when Veno is in the congestive state the cwnd growth is less
aggressive. This effectively allows any self-induced network congestion to be relieved
without segments being dropped in the wired network, helping Veno connections to
maintain a higher overall throughput by remaining in an optimal operating region for

longer.

Veno is able to determine whether or not it is in the congestive state by using
calculations adopted from TCP Vegas [193] to determine the value of N, the number of
backlogged segments at a bottleneck queue somewhere along the connection path. The
value of N is continuously updated during a live connection, and is derived from: N =
(ExpectedRate — ActualRate) % RTT,;,, where RTT,,;, is the minimum of all the
measured RTT samples. Hence, if N </ when a segment loss occurs then quite simply
Veno assumes that the loss is more likely to be random (most likely occurring in the

wireless link), than due to congestion. In [199] a value of 3 is suggested for £.

96

In essence, a Veno sender monitors the network and uses that information to decide
whether losses are likely to be caused by congestion or by the random BERs of a

wireless link.

With regards to its performance, the authors of [200] and [201] revealed from their
experiments of running TCP Veno over WLANS that a performance improvement of

up to 30% can be achieved under high wireless transmission errors.

In [199] a potential drawback of Veno is raised; its authors have not addressed the
impacts of burst transmission errors that are typical of wireless channels. In a nutshell,
it implies that Veno does not have inherent mechanisms to deal with the problem of
multiple packet losses, but relies on previous techniques such as the SACK option. It is
also shown in [199] that for random losses, a Veno sender often misinterprets them for
congestive losses thereby reducing its cwnd drastically. In such situations the
performance of Veno drops back to that of TCP Reno. The authors claim that it occurs
due to false alarms when N is trapped in a congestive state, a possible weakness of the

algorithm.

In [202], another improvement that could be made to TCP Veno has been suggested;
the authors carried out experiments to investigate how competent Veno is at
classifying the actual cause of segment losses. Their findings reveal that a better model
can be applied to Veno in an attempt to minimise its misclassification percentage of up
to 34.5%. The authors of [203] and [204] also conclude with similar problems being
identified when there is heavy cross-traffic in coexistence with Veno connections
across the Internet. In [204], the use of Veno with different TCP error recovery
techniques is recommended to counter such problems. In [205] TCP Veno+ has been
proposed as an alternative algorithm in an attempt to improve on the accuracy of

Veno’s segment loss identification in light of heavy network congestion.

In [206], TCP Veno’s loss distinguishing accuracy is evaluated extensively under
different network parameters, and it is revealed that congestion loss accuracy and
random loss accuracy are indirectly related to each other. The authors propose 7TCP
NewVeno as a solution to these inefficiencies of Veno, and show via simulations that it

can provide significantly enhanced performance. However, there were no studies

97

comparing the performance of Veno and NewVeno over a wireless path with random
losses. Further to this, experiments using a real-world last-hop WLAN would provide

more useful insights into both algorithms.

In [206] it is also observed that Veno still misses much of the available bandwidth of a
last-hop wireless network when the network load is light and random losses are
pervasive. This is due to Veno’s indiscriminative reduction of the cwnd when random
loss occurs. The authors suggest the implementation of a new variable called
congestion loss rate, which can assist Veno in reacting more appropriately in response
to random losses and consequently take advantage of more available bandwidth of a
wireless link, without sacrificing TCP fairness or friendliness issues. However, the
performance improvements are only verified via simulation studies using predefined
random loss rates, which somewhat limits the amount of reliance that can be placed on

the newly introduced variable.

In [207] it is shown that TCP Veno did not perform well in the presence of long
disconnections of wireless devices from the AP in a WLAN., They also showed that
TCP NewReno performed better than Veno for very high loss rates over the WLAN.
However, all results are based on simulation studies only, and provide little insight into

real-world behaviours.

Finally, based on the original evaluation of TCP Veno in [199], the suggestion of 3 as
the optimal value for B could be an area of further investigation. It is also debatable
whether or not there is an optimal value for the reduction factor in the size of the cwnd
upon the detection of random losses, for which the authors recommend a factor of 4/5.
In summary, there may be optimal values for differing wireless channel conditions and

network types.

TCP Hybla

TCP Hybla [208] is a sender-side TCP proposal with the primary objective of
providing better performance in end-to-end paths that possess larger segment RTTs
due to wireless paths, for example a long-delay satellite radio link. Briefly, its core
enhancements include a modification of the legacy TCP congestion control algorithms

for higher latency paths, enforcing the use of the SACK option policy (to counter

98

multiple segment losses arising from larger cwnd sizes) and segment timestamps (to
counter RTO timer exponential back-off issues due to higher RTTs), and the use of a

segment pacing technique.

Hybla’s modifications to the sender-side cwnd evolution is a direct result of analytical
studies on its behaviour in such conditions, leading to the conclusion that altering the
cwnd’s sole dependence on the RTT for growth is a viable solution. In essence, the
higher the latency of a segment’s journey, the larger the cwnd size needs to be in order
to achieve a given throughput, generally calculated by cwnd/RTT. This leads to the
rationale that for higher latency TCP connections the cwnd growth should be more
accelerated to take advantage of end-to-end system bandwidth more effectively. In
more detail, Hybla uses the notion of a parameter p as an equalisation term for the
RTTy of a reference wired TCP connection and the actual RTT of a high latency
connection. It then equalises the rate of injection of new data (i.e. how the cwnd

grows) by using p to govern the cwnd evolution upon the arrival of ACKs.

In [209] and [210] it is shown via simulations and live testbed experiments that Hybla
provides performance improvements over TCP Reno with SACK and TCP NewReno
over a GEO-based satellite wired-to-wireless topology. However, although Hybla is
shown to be superior over radio links with long delays and high loss rates, it would be
insightful to determine its performance in a more generic heterogeneous environment.
There appears to be a lack of literature assessing Hybla’s extended usage over last-hop

WLAN scenarios.

JTCP

JICP [211] is a fairly recent jitter-based end-to-end TCP sender enhancement
designed to be robust over heterogcneousﬁwired-to—wireless.paths with higher random
loss rates. The key idea in JTCP is to apply a jitter ratio (Jr) to the conventional TCP
congestion control algorithms. The Jr is calculated according to the interarrival jitter
per segment, which is defined according to the real-time protocol (RTP) [212]. The
interarrival jitter is the time difference between two segments transmitted by a sender,
and the difference between the same two segments arriving at the receiver. If the
interarrival jitter is greater than zero then it implies that the second segment took

longer to travel through the network than the first segment, which in turn implies that

99

some time was lost through queuing delays along the path. The Jr is therefore an

important guide to determine whether TCP segments are being queued or not.

In JTCP a congestion event is defined as an event when triple DUPACKSs are received
by the sender and where the Jr is significant, which is calculated once per RTT. As a

result, JTCP is able to distinguish the congestion-related losses and random losses.

The performance improvements offered by JTCP over other sender-side TCP variants
has been shown via simulated experiments in [211] and [213]; JTCP offers
considerable throughput gains over other versions of TCP when there are random
losses along the path, and with varying delays over the lossy link. The limitations of
the authors’ simulations arise from the fact that they use a uniformly distributed error
model for their wireless link, which is not a true representation of real-world
conditions. The authors also provide little insights into the wireless protocol being
used, so it is difficult to validate how JTCP would perform over a WLAN that has its

own error recovery mechanisms.

In [213] a potential issue with JTCP was discovered over wireless paths with
significantly high error rates. The authors suggest that in such conditions JTCP may
not be able to distinguish wireless losses from congestive-losses via the Jr value.

Hence further efforts have been suggested to investigate the validity of this claim.

In [207] a quantitative evaluation of JTCP using simulations is carried out alongside
other sender-side wireless TCP proposals. The authors use both a wide area network
(WAN) and a LAN topology, where the end-to-end path in each configuration contains
two wireless links as opposed to just a single WLAN in the path. Again, the authors do
not specify the wireless protocol being used, and do not consider local error recovery
over the wireless link. The impacts on JTCP of random segment losses and device
disconnections in the wireless links are studied, as well as the impacts of varying
propagation delays over the wireless links. The simulation results revealed that JTCP
was one of the top performers under varying random loss rates and disconnections
over both topologies, highlighting its superiority in being able to discriminate between

random and congestive losses. However, JTCP fell short by showing a significant drop

100

in its average throughput performance when competing for bandwidth whilst running

alongside other TCP connections.

I'CP-DCR

TCP-DCR (Delayed Congestion Response) [147] is a recent sender-side TCP
modification for tolerating segment losses that occur over a last-hop wireless network
that also incorporates its own link-layer local error recovery mechanism. The simple
idea of TCP-DCR is to allow the wireless network to recover lost segments by itself,
thereby limiting a sender’s response to mostly congestive losses. This is achieved by
waiting a certain delay period, T, upon the reception of the first DUPACK before the
TCP fast retransmit and fast recovery algorithms are invoked. A sender assumes that
after waiting a period of t for the confirmation of a successful transmission, the loss

must be due to congestion.

Whilst waiting the t period for the arrival of a new ACK, a TCP-DCR sender does not
respond to incoming DUPACKSs. In other words, the wireless protocol (i.e. the AP) has
a T time period to locally recover the lost segment that is being requested by the
wireless TCP receiver, after which all losses are assumed to be occurring in the wired
domain. If within the bounded t time period the sender receives a new ACK, it
proceeds with the next set of transmissions as though the loss never occurred. The
delay in responding to actual congestion losses determines the overall performance of
TCP-DCR, and the choice of 1 is therefore a critical aspect in TCP-DCR
implementations. There is a trade-off between unnecessarily inferring congestion and
unnecessarily waiting a long time before retransmitting a lost segment. The authors

suggest that the value of 7 is set to the current RTT value.

The TCP-DCR delayed response mechanism only operates whilst in the congestion
avoidance phase. The slow start phase is unmodified and operates as usual. Therefore,
for short TCP flows where the majority of data sending is carried out during the slow
start phase, such as with short-lived web traffic [44] [158], the TCP-DCR algorithm

would not be active and provide any benefits.

The TCP-DCR implementation is sensitive to coarse timer granularities that exist

within different operating systems, which can affect the accuracy of 1. If T is not set

101

accurately enough, it can lead to RTO timer expirations before TCP-DCR gets the

chance to take action.

One of the key assumptions made in the design and successful operation of TCP-DCR
is that the wireless protocol uses a simple link-layer ARQ mechanism at the AP, which
does not attempt in-order deliveries of segments. Unfortunately, some of the most
popular last-hop wireless networks are based on the IEEE 802.11 MAC standard,
which uses a positively acknowledging ARQ mechanism to deliver frames in-order. Of
course this stop-and-wait approach by the 802.11 MAC would increase the RTT
experienced by a TCP-DCR sender, causing the T timer to expire. Since t is less than

the RTO timer value, the sender will reduce its cwnd size earlier than necessary.

In [147] and [214] the authors use simulation to study the performance improvements
of TCP-DCR, and it is shown that it does indeed provide enhanced performance over a
variety of error rates and delays over the wireless path. However, it would be more
useful to see how TCP-DCR functions over a last-hop 802.11 WLAN with multiple
devices contending for channel access, which is more representative of the real-world
today. Additional delays caused by channel access contentions may also have an effect

on the operation of TCP-DCR’s delayed response function.

3.4.2.3 RTO Approaches

Sometimes, wireless network effects such as device disconnections from the AP or
link-layer error recovery mechanisms can cause sudden delay spikes. Such an
unexpected and sudden increase in delay affects the measured RTT of a TCP sender in
the wired domain. A fixed TCP sender is not prepared for such an event, and is unable
to adapt quickly enough to changing conditions along the connection [107]. It is
usually the case that in such a scenario a TCP sender will be forced into a RTO timer
expiry event, causing it to retransmit the delayed segments and drastically reducing its
cwnd size to reinitiate the slow start algorithm. Since a RTO is reserved for cases of
serious network congestion, more often than not, the timeout is spurious and
unnecessary. Therefore, avoiding (though detection) or recovering from spurious RTO
events quickly remains an important challenge for sender-side TCP implementations

over wired-to-wireless paths [106] [148] [215].

102

Upon a spurious timeout a legacy TCP sender assumes that all outstanding segments
are lost and retransmits them unnecessarily. It has been shown in [216] that the go-
back-N retransmission behaviour of TCP triggered by spurious timeouts is due to the
retransmission ambiguity problem, i.e. a TCP sender’s inability to distinguish an ACK

for the original transmission of a segment from the ACK for the retransmitted segment.

Shortly after a spurious timeout at the sender, ACKs for the original transmissions will
arrive. On reception of the first ACK after the timeout, a sender must interpret this
ACK as acknowledging the retransmitted segment, and must assume that all other
outstanding segments have also been lost. Thus, the sender enters the slow start phase,
and retransmits all outstanding segments. The go-back-N approach triggers the next
problem, where the receiver will generate a DUPACK for every segment received
more than once. It has to do this because it must assume that its original ACKs may
have been lost. The reception of DUPACKSs at the sender may trigger a spurious fast

retransmit, another widely known problem [148].

Eifel Detection Algorithm
The Eifel Detection Algorithm (EDA) suggested in [217] and recommended by [218] is

a simple yet effective idea that allows a TCP sender to detect whether or not a RTO
event is necessary. EDA works in conjunction with the timestamps option [109] to
reliably detect spurious timeouts, with the aim of preventing unnecessary
retransmissions and activation of congestion control procedures. Timestamps allow a
TCP sender to determine which segment is being acknowledged by an incoming ACK,
the original transmission or the retransmission. EDA therefore solves the issues related

to the aforementioned retransmission ambiguity problem at the sender.

Including the TCP timestamp option field in every segment and ACK is not without
cost; the 12 bytes overhead per field can be seen as quite heavy. The advantage of

using the timestamp option is that it is already widely deployed in the Internet [44].

In [217] it is shown that in a lossless path, EDA improved the performance for all TCP
variants under a variety of delay spikes. However, wired-to-wireless paths are certainly
not lossless. In reality delay spikes over wireless paths are often accompanied with lost

data segments and ACKs, which can further exacerbate the situation at the sender. In

103

the extreme case, all but the oldest outstanding data segments can be lost. The EDA
proposal simply specifies that the transmission after detecting a spurious timeout
always resumes with the next unsent segment. This works fine when none of the
delayed segments are lost, but over wireless paths consecutive segments can be lost.
Simply transmitting new data in this case leads to a second genuine RTO event, as
discovered in [148]. A further limitation of EDA is that it is unable to deal with

spurious timeouts that occur during a fast retransmit and fast recovery procedure [105].

F-RTO

The forward RTO (F-RTO) [150] is a sender-side TCP modification for recovering
from spurious timeouts, without requiring the use of any TCP options to operate. F-
RTO uses a set of simple rules to avoid unnecessary retransmissions in the event of

spurious timeouts at the sender.

It works as follows: after retransmitting the first unacknowledged segment triggered by
a timeout, the F-RTO algorithm at a TCP sender monitors incoming ACKs to
determine whether the timeout was spurious and to decide whether to send new
segments or retransmit unacknowledged segments. The algorithm starts by
transmitting new segments after a timeout and reverts to standard go-back-N behaviour
only if a DUPACK is received. Otherwise, the timeout is considered spurious and the

sender continues transmitting new data.

In [150] F-RTO has been shown to improve TCP performance in comparison to other
TCP variants over a variety of delay and loss conditions. However, F-RTO is unable to
accurately classify timeouts caused by severe segment reordering that can occur over
wireless networks. In such cases it reverts to the behaviour of a regular TCP
implementation. F-RTO is also unable to revert to a previous congestion control state
if the RTO was indeed spurious [105]. In [105], [219], and [220] it is argued that the
nature of the spurious timeout problem calls for dynamic modifications to the RTO
timer itself during a connection, as opposed to simply responding after the RTO timer
has expired, and respectively PH-RTO, CA-RTO, and WB-RTO are proposed as

proactive alternatives to the more reactive F-RTO.

104

Finally, there appears to be a lack of literature relating to the experimental evaluation
and true effectiveness of F-RTO in realistic conditions, such as using a real-world last-

hop 802.11 WLAN over a TCP connection.

3.4.2.4 Loss Differentiation Algorithms

For many years now researchers in the field have attempted to design a TCP that is
able to determine the cause of errors over heterogencous paths by using heuristics
within TCP based on its perception of network conditions [221] [222] [223]. More
recently, the field has been introduced to the concept of loss differentiation algorithms
(LDA) that can be used by transport protocols such as TCP for improving end-to-end
performance in heterogeneous environments where segment losses also occur

randomly, as well as in traditional congestion-related ways [224] [225].

In a nutshell, a LDA implementation can assist a TCP sender with the Boolean
classification of the cause of problems in the network, which is based on a function of
the state of TCP variables and sender-side measurements of the network. LDAs
usually decide whether the network path is congested, or not congested, which can be
used to deduce the cause of a lost segment and/or unexpected delays. Hence, LDAs
can assist TCP in deciding which direction to move its congestion control mechanisms

after each transmission [226].

Non-Congestion Packet Loss Detection

One of the earliest LDA proposals to be used in conjunction with a sender-side TCP to
differentiate between the causes of segment loss in a wired-to-wireless environment is
the non-congestion packet loss detection (NCPLD) scheme [227]. NCPLD is an end-
to-end scheme designed for TCP connections that have a last-hop wireless link. The
simple idea in NCPLD is that it maintains the minimum RTT throughout a connection,
so that when a segment loss occurs, if the current RTT is close to the minimum RTT
then the loss is assumed to be due to the wireless link and appropriate error recovery
mechanisms are invoked whilst maintaining the cwnd size. However, NCPLD was
only ever evaluated in a simulation environment, so its applicability in the wider
Internet remains inconclusive. Recent simulation studies in [226] have revealed that

the original NCPLD scheme does not exhibit high accuracy either, mainly due to the

105

coarseness with which the TCP sender measures the RTT, and an enhanced NCPLD
algorithm is proposed. The original NCPLD causes a TCP sender to correctly detect
congestion losses, but tends to regard most of the segment losses to be congestion-

based losses [225].

Another LDA scheme that utilises the same idea as NCPLD is TCP-Probing [228],
where the detection of segment losses triggers the sending of probes into the network
to measure the current RTT. The TCP-Probing implementation however has high
processing overheads which can prove costly at high loss rates where segment losses

occur frequently.

Packet Loss Pairs and Hidden Markov Models

In [229] the authors combine two techniques, packet loss pairs (PLP) and hidden
markov modelling (HMM), to develop a LDA that can assist TCP senders in hybrid
wired-to-wireless environments. The LDA proposed is able to perform end-to-end
differentiation between wireless and congestion losses. A PLP is a pair of segments
sent back-to-back by the sender such that exactly one of them is lost along the journey.
Since the two segments travel closely enough together in the network up to the point
where one of them is lost, the segment that is not lost is then able to convey the RTT
observed at the point of segment loss back to the sender. HMMs are a powerful
modelling tool for applying a mathematical framework to a wide range of applications
in order to gain theoretical understandings of outcomes and behaviour. In this context,
HMMs are typically used to model network conditions accurately, being able to
encapsulate the effects of lossy and non-lossy links using probabilities associated with
being in each state. A TCP sender is then able to infer the type of segment loss by
referring to the HMM state that best fits the RTT observed at the point of loss.

Unfortunately, the concept of PLPs was originally intended for wired paths only [230],
and their usage of wireless networks may render them ineffective. To illustrate, in
IEEE 802.11 WLANS, the AP would not be able to send two segments back-to-back
and guarantee that they both will take the same journey over the radio link and both
experience the same delays. With the CSMA/CA mechanism at the MAC, there could
be a significant gap between the sending of each segment due to a host of reasons. In

addition, there can exist two bottleneck points in a wired-to-wireless path; one

106

occurring in the wired network at intermediate routers, and one occurring at the
gateway to the wireless network (i.e. at the AP). However, the effectiveness of PLPs
relies on there being only one most congested point in the path, where losses and
delays are most significant compared to other parts of the path [230]. Finally, using
HMMs to model the entire distribution of RTTs over a wired-to-wireless path in the
real-world is a challenging and complex task. When using 802.11 WLANSs for example
at the last-hop, many factors can determine the transmission delays experienced by
TCP segments traversing the wireless hop. The number of devices in the WLAN can
increase contention delays; the stop-and-wait ARQ mechanism can increase
instantaneous delays; and buffering of segments inside the AP can increase queuing
delays. Each of these can occur individually or concurrently, thereby complicating the
deterministic nature of using HMMs to model RTT outcomes. In [230] the authors
only use simulations to validate their hybrid LDA, without using a wireless link in

their topology. They only simulate the effects of a wireless link to test their algorithm.

ZBS Hybrid Scheme

In [224] the authors evaluate two previous LDA proposals, the biaz scheme [231] and
the spike scheme [232], and then go on to propose their own LDA, the zigzag scheme,
after discovering weaknesses in them both when used with TCP over wireless paths.
After evaluating their own zigzag scheme, they go one step further and develop a
hybrid LDA algorithm by the name of ZBS, which combines the strengths all three
schemes into one. Unfortunately, the ZBS algorithm was only ever tested using
simulation studies; and the authors state that they assumed an error-free reverse
channel for their wireless link, i.e. TCP ACKs are not lost, which is not a true
reflection of data transmissions over radio links. Although the ZBS algorithm may be a
strong contender in the LDA arena, its needs to be evaluated in a more realistic manner
using a real-world network testbed with an operational last-hop wireless network.
Finally, the computational complexity of the ZBS algorithm in differentiating the
cause of losses is also questionable in high delay/loss environments, as it involves
more addition and multiplication operations per segment arrival/loss than all the other
schemes individually. Again, in the real-world this would need to be evaluated by
measuring the responsiveness of a TCP sender using the ZBS algorithm. It has been
reported in [177] that ZBS still suffers from loss discrimination problems due to the

inherent weaknesses of each of the three LDAs that it consists of.

107

TCP Westwood with Bulk Repeat

A fairly recent attempt at combining existing LDA mechanisms with a popular TCP
sender-side implementation has been proposed in [233]. Here the authors take the
existing TCP Westwood [234] variant and combine it with a bulk repeat algorithm that
works hand-in-hand with the spike [232] and rate gap threshold (RGT) [227] LDAs to
tackle the problems associated with the original TCP Westwood in heavy loss wireless

environments. They name their proposal TCPW BR.

The BR algorithm requires three modifications to a sender-side TCP Westwood
implementation, although the authors do suggest that the enhancements could be
applied to any TCP variant in theory. BR includes the bulk refransmission mechanism,

a fixed retransmission timeout value, and an intelligent window adjustment system.

Bulk retransmission is used to retransmit all outstanding unacknowledged segments
from a cwnd whilst in the fast retransmit phase. This is done when an ACK arrives that
only partially acknowledges new segments from the cwnd, implying that more than
one segment may have been lost from the cwnd. To avoid recovering individual
segments once per RTT, a bulk retransmission efficiently recovers all segments in a
single RTT. Obviously the number of bulk retransmissions to perform is dependent on
whether the losses are congestion related or wireless related, as the former situation

would need a less aggressive approach in order to relieve the congestion.

The fixed retransmission timeout strategy used in BR on the notion that in high loss
wireless environments, the same segment may be retransmitted several times due to
constant RTO events before success. According to Karn’s exponential back-off
algorithm [216], it would severely stall a TCP sender for long periods between
retransmissions. Hence the authors propose a ‘freezing’ of the RTO timer for wireless
losses only, which prevents the timer from being doubled each time a segment

retransmission takes place due to non-arrival of an ACK.
The intelligent window adjustment mechanism of BR is a simple idea that basically

leaves the size of the cwnd unchanged when segment losses occur over the wireless

path of a connection, as opposed to reducing it and dropping back the sending rate.

108

This allows more segments to be transmitted per RTT by the sending TCP for wireless

losses.

The three concepts described in BR rely on the accurate discrimination of wireless
losses from congestion losses by the TCP sender. The authors achieve this by
combining the spike and RGT LDAs to form a hybrid that works well at both low and
high error rates. Spike keeps track of the minimum and maximum RTT of a
connection, and feeds the values into RGT which calculates the gap between the
expected rate and the actual rate. If the gap is larger than a predefined threshold then
all losses are assumed to be congestion related, otherwise all losses are assumed to be

occurring over the wireless path.

In [233] the authors use simulations to evaluate the throughput performance of TCPW
BR in comparison to TCP Westwood and TCP NewReno. They use a last-hop wireless
link in a wired-to-wireless topology, and experiment with varying uniform error rates
and bursty error conditions over the wireless link. Their results reveal that TCPW BR
performs significantly better than NewReno under all uniform loss conditions, and
improves on Westwood’s performance when error rates exceed 5% over the wireless
link. Under bursty loss conditions, TCPW BR significantly outperforms NewReno and
Westwood for all error rates up to 50%. However, the authors make one critical
assumption in the simulation of the wireless link: they do not use local link-layer
retransmissions over the wireless channel. In an 802.11 WLAN, this would be the
equivalent of ignoring the complex interplay between MAC layer retransmissions and
the error recovery mechanisms of the TCP sender. This is not a realistic method in
which to test a TCP proposal for usage in today’s heterogeneous climate, where 802.11
WLANSs are very popular at the last-hop path of TCP connections across the Internet.
The authors also do not comment on whether or not losses occur in both directions

over their simulated wireless link.

Recently, it has been shown [225] via simulation studies that the parameters a=0.4 and
b=0.05 used for the spike LDA in TCPW-BR yield a poor classification of wireless
losses in comparison to congestion losses. The authors of this work therefore

recommend using a=1/2 and b=1/3 as more suitable values.

109

I'CP-RoS

A recent attempt at combining a LDA with an existing TCP variant is proposed in
[177], in which the authors extend TCP-Casablanca [6] so that it is able to differentiate
between congestion losses and wireless losses. The authors name their extended
version as 7CP-RoS, and show that it improves performance over heterogeneous paths
in comparison to the original. Although the TCP-RoS scheme isn’t strictly a sender-
side TCP modification (it requires modifications at intermediate routers and to the TCP
implementation at the receiver), it has been mentioned here because it is one of the
most recent attempts at using an LDA in conjunction with TCP for improving wired-

to-wireless performance.

LD-LogWestwood+ TCP

Another recent attempt at combining a LDA with an existing TCP sender-side variant
is proposed in [235], to which the authors give the name LD-LogWestwood+ TCP. It
results from combining the spike LDA scheme [232] with the recently proposed T7CP
LogWestwood+ [236], which itself is a direct modification to the original TCP
Westwood+ [195] that implements a logarithmic evolution of the cwnd size in the
congestion avoidance phase to replace the linear function. The authors discovered
through simulation studies [237] that LogWestwood+ was not aggressive enough for
higher loss rates over the wireless path, and felt that it needed a way of discriminating
between congestion losses and wireless losses in order to alter the cwnd size
appropriately and achieve peak performance over wired-to-wireless paths. The spike
LDA is implemented and used to inform the sender of the most likely cause of
segment losses. Typical settings are used for the spike LDA in LD-LogWestwood+ (a
= 0.4 and b = 0.05). '

Segment losses in LD-LogWestwood+ are detected without any assistance from the
spike LDA. Upon detecting a congestion-related loss, LD-LogWestwood+ performs
the congestion avoidance phase in a similar fashion to LogWestwood+, albeit with a
slightly less aggressive cwnd evolution. Upon detecting a wireless loss, LD-
LogWestwood+ continues to increase the size of the cwnd in order to take advantage
of unused wireless bandwidth, assuming that the wireless path has its own error
recovery mechanism to recover the lost segments, although the authors do not

comment on this aspect.

110

Through simulation studies, the authors evaluate LD-LogWestwood+ alongside
previous wired-to-wireless TCP proposals and show that they perform very well over a
range wired-to-wireless scenarios and varying loss rates. However, there is a lack of
details as to whether the loss model for the wireless link affects reverse channel traffic,

or only traffic on the forward channel.

The authors also use a fixed delay for the wireless hop in their simulations, which is
somewhat misrepresentative of real-world wireless networks, i.e. 802.11 WLANs
possess highly variable delays. The authors use 16 TCP receivers in the wireless last-
hop, and maintain a static delay. In the real-world, a large number of wireless devices
in an 802.11 WLAN would be contending for medium access, which would increase
overall delays dynamically. Further, forward and reverse channel TCP traffic can
suffer from problems associated with 802.11 WLANSs (as mentioned in Chapter 2),
such as unfairness, self-collisions, and the capture-effect, which would all contribute to
higher segment loss rates and further impact on delays for a TCP sender in the wired

domain.

The key assumption in LD-LogWestwood+ is that there is no congestion in the
network upon a new TCP connection being initiated, so that the spike LDA’s initial
minimum RTT measurement isn’t distorted to an unnecessarily high value. Since spike
uses the minimum RTT to set the stop and start RTT thresholds for indicating
congestion in the network, initial high values of the RTT can distort the threshold
calculations in the short term. This could be significant for short TCP flows that
transfer only small amounts of web traffic; it means that a LD-LogWestwood+ sender
would see all segment losses as wireless losses if the RTT were to suddenly return to a
slightly lower value (with congestion still imminent) before the short TCP flows were
completed. For TCP segment losses over the wireless path, LD-LogWestwood+ does
not decrease the size of the cwnd, but rather keeps increasing it in size. Such
aggressiveness in the presence of congestion would further exacerbate the network
congestion, leading to further segment losses. Hence, the stability of the LD-

LogWestwood+ proposal relies on this potentially significant assumption.

111

3.5 Chapter Conclusions

This chapter has provided an up-to-date review of the knowledge and current state of
the art in the field of TCP performance issues and enhancements over wired-to-
wireless paths, including a review of some the most promising approaches and
proposals to date. There has been a particular focus on i) those TCP enhancements that
can be made ecasily at the sender-side on servers across the Internet, and ii) the issues
and impacts on TCP senders of using the IEEE 802.11 WLAN standard as the wireless

path for TCP connections, particularly over the last-hop portion of the journey.

The significance of these in combination will be assessed in the chapters to follow in
the form of comprehensive experimental work in an attempt to advance this vast
knowledgebase above and beyond what is already known. This thesis will attempt to
extend the current state-of-the-art by bringing together the two distinct protocols, TCP
and IEEE 802.11, and exploring any relationships between them in a wired-to-wireless
configuration with the hope of generating new findings and making performance

improvements.

112

Chapter 4

TCP Sender Resilience to BERs over 802.11 Channels
4.1 Introduction

One of the key characteristics of radio channels is that they possess significantly
higher bit error rates (BERs) than traditional copper transmission media; 802.11
WLAN channels are no exception here. The fundamental problem for TCP
connections that traverse such links is that a TCP sender in the wired domain is unable
to classify the cause of segment lasses. It cannot discriminate between losses occurring
in the WLAN or losses in the fixed network, and therefore regards them both as

network congestion by activating anti-congestion procedures.

Fortunately, the 802.11 WLAN MAC protocol implements its own error recovery
mechanism which can deal with the higher BERs locally by transparently
retransmitting erroneous TCP segments encapsulated by 802.11 frames. However, the
MAC cannot be too persistent with its stop-and-wait retransmission mechanism to
avoid unnecessary delays, so typically all 802.11 implementations will have a refry

limit on the maximum number of attempts that can be made.

In situations where channel conditions are very poor due to significantly higher BERs,
it is likely that all retransmission attempts by the 802.11 MAC will be unsuccessful,
and hence the consequences on a TCP connection are devastating. First of all, the
delays caused by retransmitting up to the retry limit will cause long delays for TCP
users, and secondly this will lead to either a RTO event at the sender, or it will lead to
a fast retransmission. Both events are severely degrading to end-to-end performance,
as a TCP sender will reduce its sending rate by cutting the size of its cwnd for each
occurrence of such an event. Therefore, understanding how resilient a TCP sender is to
BERSs over 802.11 WLAN channels is useful information, as it can help researchers to
assess whether or not TCP needs more advanced error recovery mechanisms, and in

which conditions they should be introduced [31]. To clarify, the BER is calculated by

113

dividing the number of erroneous bits received by the total number of bits transmitted

[119].

In this chapter a wired-to-wireless TCP simulation environment is presented using the
increasingly popular OPNET Modeler™ simulation suite, which incorporates full
implementations of TCP and the IEEE 802.11 WLAN protocol. A customised WLAN
independent channel bit error model is implemented to replace the standard uniform
model, which allows subjecting a TCP sender to varying BERs over the last-hop
802.11 WLAN to determine its resilience in wired-to-wireless path. A series of
experimental results are then presented evaluating the performance of popular

applications that run over TCP, such as FTP and HTTP.

4.2 Background Information

Since the BER i1s the most widely quoted and mentioned problem associated with
wireless radio channels, it is of paramount importance that researchers have accurate
knowledge of the BER values that are problematic for TCP over 802.11 WLANs
specifically. Many studies have been undertaken in recent year to assess the
transmission error characteristics of wireless channels [69] [73] [74] [75] [76] [130]
[238] [239] [240]; however each of these studies focus entirely on the error rates at the
wireless packet level, as opposed to at the bit level. Further, these studies do not focus
on the impacts of wireless error rates on wired protocols such as TCP, which are the

ones that suffer the most.

Operating at the bit level when studying wireless packet errors allows for greater
precision when assessing the impacts (or sensitivity) of multi-path fading effects due to
the radio medium on packets in flight. This includes capturing bit errors that are
correlated, and those that occur in bursts i.e. a contiguous sequence of bits are
corrupted within the packet. So, although packet level loss rates of radio channels can
be insightful to researchers, particularly for experiments that focus specifically on
higher-layer protocols, operating at the bit level can introduce greater realism into

experiments because it is how packet errors occur in the real-world [25].

114

A typical BER value often quoted for wireless channels in general is in the region of
107 [58] [241] [242], with some reports quoting values as high as 107 [140] [243] and
107 [27]. A BER of 10” implies that 1 in every 1000 bits received is corrupted within
a wireless packet. A TCP segment encapsulated by a wireless packet would have a size
of at least 1500 bytes including all added headers (actual TCP data size is 1460 bytes),
which equates to a minimum of 12000 bits per packet. Assuming a uniform
distribution of bit errors, a BER of 10™ would cause on average 12 bit corruptions per
received TCP segment (note that this does not apply to correlated bit errors that can
occur within a packet). Recall from Chapter 2 that the IEEE 802.11 MAC does not
utilise any FEC; hence a single bit corruption inside a frame can cause the frame to be
discarded completely by the receiver. Each discard will then need a local 802.11
retransmission up to the retry limit before the MAC can proceed with the next in-

sequence frame.

Through a survey of literature in the area, work focussing on the correlation between
the BER of 802.11 WLAN channels and its impacts on TCP performance could not be
located. One of the key difficulties arises from not being able to experiment in an
environment where the BER is controllable. This chapter therefore aims to introduce

some base-line results to the area.

4.3 OPNET Modeler™ Network Simulator

In this section the OPNET Modeler'™ v14.0 network simulator package is introduced,
alongside descriptions of the TCP and IEEE 802.11 WLAN implementations that it

uses.

4.3.1 OPNET Modeler™

The OPNET Modeler'™ commercial discrete event simulator was chosen as the
platform for all simulation in this chapter because it offers excellent models and full
support for the modelling and simulation of 802.11 WLANSs, as well as for studying
legacy protocols such as TCP [244]. Seen as a leading simulation package globally, the
use of OPNET Modeler™ for studying TCP over wired-to-wireless paths has gained
popularity by the research community in recent years [169] [245] [246] [247] [248].

115

Specifically, it has been shown in [249] that OPNET Modeler™ is more accurate at

simulating TCP networks than other freely available simulators such as NS-2.

4.3.2 TCP Implementation in Modeler'

The implementation of TCP in OPNET Modeler™ is very detailed and has been based
on all the latest publications and RFC documents relating to the requirements of a
modern-day TCP [250]. Its comprehensive nature allows the selection of various
‘flavours’ of TCP at the sending side, i.e. at the server, with the option to select many
extensions and options that are typical of TCP implementations in the real-world

today.

4.3.3 IEEE 802.11 Implementation in Modeler™

The implementation of the IEEE 802.11 WLAN standard in OPNET Modeler™ is
based on the original working specification published by the IEEE, offering full
support for MAC and PHY specifications, for both 802.11b and 802.11g [251]. The
OPNET Modeler™ WLAN suite uses the MAC DCF contention-based mechanism for
infrastructure-mode WLANS, using exponential back-off procedures according to the
CSMA/CA protocol, mimicking the real-world behaviour of the protocol as closely as

possible.

4.3.3.1 WLAN Channel Model

The radio transmission channel used by 802.11 WLANs in OPNET Modeler™ is
modelled by the radio transceiver pipeline (RTP), which is used to mimic wireless
transmissions of frames. The RTP consists of fourteen individual stages (0 to 13) that
feed into each other, where each frame transmission per device must traverse through

the stages in sequence, as illustrated in Figure 4.1.

116

N o I

Receiver
Group
- @ (2 (3] Qo O
Transmission . »] Channel »| Transmitter | ___,| Propagation
Delay Link Closure Match Antenna Gain Delay
. 0O (8) Q 0.
Signal-to-Noise | Background [, Interference |, Received |, Receiver
Ratio (SNR) Naise Noise Power Antenna Gain
QD © 13 I _—
Bit Error Rate N Error N Error |-mmmrmmmemoee- > Multtple_
(BER) Allocation Correction | ~"""""""""""» 802.11 Receivers

Figure 4.1: OPNET Modeler™ Radio Transceiver Pipeline (RTP) Stages

It can be seen from Figure 4.1 that each stage has a unique function that is associated
with radio channel transmissions. For example, stage 3 ensures that there is a channel
match between the transmitter and the receiver, sfage 5 is used to compute the wireless
propagation delay between the transmitter and the receiver, stage 8 introduces the

effects of interference noise to a frame transmission along the RTP, and so forth [251].

4.4 Simulation Environment

ﬁﬁf—ﬁ Access Point E02-11 Device

TCP Sarver

Figure 4.2: The wired-to-wireless topology used in OPNET Modeler™ v14.0

In this section the OPNET Modeler™ simulation environment and protocol settings

that were used are clearly outlined.

117

4.4.1 Scenarios and Settings

The simulation scenario used was a typical wired-to-wireless topology, as shown in
Figure 4.2, which consisted of a wired TCP server connected via an intermediate
router to an 802.11 device in the WLAN via the AP. The server is assumed to be in the

fixed Internet somewhere.

The TCP server was configured to support a host of applications, including both FTP
and HTTP services. Since HITP and FTP are both popular TCP applications used
across the Internet by wireless end-users, this was an ideal way of evaluating TCP
performance. The server was configured to use the popular Reno variant of TCP with a
ssthresh value of 64 Kb. Figure 4.3 provides details of the TCP settings and options
that were used, trying to be reflective of typical TCP Reno implementations in the

Internet today.

Atibute R - |value

Version/Havor Reno

Mapdmum Segment Size {ytes) 1460

Receive Buffer bytes) 65535
Receive Buffer Adjustment Windows Based
Receive Buffer Usage Threshold {of RCY BUFF) £.0

Delayed Ac_l{ Mec.ha.nis_:r.n . R Segmerzl;'tloﬁk fﬁa.seéi"
Maximum ACK Delay (sec) 0.200 '
Madmum ACK Segments 2 _
Slow-Start Initial Courtt (MSS) 2
Fast Retransmit Enabled

Duplicate ACK Threshold 3

Fost Recovery [Reno

Window Sealng {Enabled

Selective ACK{SACK) Enabled

ECN Capabilty Disabled
Segment Send Threshold MSS Boundary

Active Comnection Thrzshold lnlmted
Nagle Algorthm Dissbled
Kam's Algorthm Enabled _
Timestamp _Enabled
Inttial Sequence Mumber B
Retransmission Thresholds | Attempts Based
_Ir_éitia! RTO {é_éc:} .. 30 § Dased
Winimum RTO {sec) 10
Madmum RTO (sec) L
ﬂTTﬁain_ {”25 | ;
Daviation Gain 025

RTT Deviation Coefficirt. 40

Timer Granularity {sec) 05

Persistence Timeout sec) 1.0

Figure 4.3: OPNET Modeler™ TCP settings used by the server

The TCP settings at the wireless device were set to those of the MS Windows XP stack,
as offered by OPNET Modeler' ™. This is to reflect a typical end-user device running
popular operating systems such as Windows XP. The TCP buffer sizes at both ends
were set to their maximum possible values in order to allow the network to dictate

TCP behaviour, as opposed to being limited by end-hosts.

The wireless path for TCP connections was configured as an 802.11b WLAN
operating in infrastructure mode, offering a maximum data rate of 11 Mbps over the
WLAN. The WLAN consisted of only a single 802.11 device situated a distance of 20
metres from the AP, as the aim of the work is to concentrate solely on channel error
conditions as opposed to the effects on TCP of channel-access contention related
issues. For the purposes of our experiments, the wireless device remained stationary at

all times.

The 802.11 AP was configured to use a maximum size receive buffer of 128000 bytes
to avoid situations of buffer overflows, which would distort the results. The frame
retry limit on both the AP and the 802.11 device was set to the default value of 7, as
specified by the 802.11 MAC standard. All wired connections were made using
Ethernet 100BaseT links that were assumed to be error free. The one-way propagation
delay between the wired server and the AP was set to 50 ms, and the intermediate
router was configured to enforce a drop-tail queuing policy, with its buffer size set to

the bandwidth delay product of the wired path.

HTTP Specification Version 1.1
Web-page Interarrival Time (s) uniform(15,60)
End-user Repeat Probability Web Browsing Mode (Poisson)
Number of Web-pages per Request constant(10)

Number of HTTP Objects per Web-page Uniform(3,7)

Size of HTTP Objects (bytes) uniform(500,1000)

Table 4.1: HTTP web-page request settings for 802.11 end-device

To simulate the effects of a wireless end-user accessing Internet services, the 802.11
device was configured to make HTTP web-page requests from the wired server, as
well as perform FTP file download requests. The HTTP request settings were based on

the results of comprehensive studies carried out in [252]. Table 4.1 provides details of

119

the application-specific settings that were used by the end-user making web-page

requests via HT'TP.

For the FTP file download requests from the TCP server, only single-flow connections
were used between the sender and the receiver. The 802.11 end-user was configured to
make fixed-size 15 Mb file downloads from the TCP server in the wired domain to
simulate the effects of downloading a file from the Internet, and TCP segments having

to traverse a wireless link in the last-hop portion of the connection.

4.4.2 Implementation of Custom BER Generator

The standard BER stage uses the SNR value computed in the preceding stage to
perform a modulation table ‘look-up’ corresponding to the 802.11 PHY modulation
scheme and current data transmission rate being used. Each SNR table look-up returns
a BER value (set in the global variable OPC TDA RA BER) that is then passed onto
stage 12, which is responsible for applying the actual bit errors to frames using a

random process.

The standard 802.11 WLAN channel model in OPNET Modeler™ does not allow
users to inject custom bit errors over transmissions traversing the radio medium. After
some thorough investigations, it was established that OPNET Modeler'™ assumes an
error free radio channel at all times, unless a wireless device moves out of range of the
AP completely, which is 300 metres. Therefore, to capture the impacts on the TCP
server of varying BERs over the WLAN a custom BER generator (CBG) was
developed to replace the standard BER stage of the RTP, i.e. stage /1.

The custom CBG that was implemented overrides sfage 11 by manually setting the
OPC TDA RA BER variable before it is read by stage 12. This allows users to enter
BER values in the range 0 to 1 via extended attributes of the node model of 802.11
devices in the user-space of the OPNET Modeler™ project editor. These attribute
values are passed to the OPNET Modeler™ kernel space at runtime, and are used
directly by stage 12 to simulate the appropriate number of bit errors to be applied per
frame. Hence, the CBG allows random bit errors to be artificially induced into each

802.11 frame that passes over the wireless channel.

120

4.5 Simulation Results and Discussions

This section presents the results of simulations that were performed with TCP Reno
over a wired-to-wireless network. Each simulation per BER value was performed three
times, with the average results presented here. The only variable parameter in all
experiments was the BER value over the last-hop wireless path, where all bit errors
were randomly induced. The BER values chosen for the experiments ranged from 10
up to 107, representing good to bad channel conditions which are typical of wireless
networks based on a review of literature, as discussed in a previous section. This range
covers very good channel conditions to very poor conditions, and will give good

insights into how TCP applications perform over the range.

4.5.1 TCP Server Congestion Window Behaviour

Initially the behaviour of the TCP server’s cwnd is assessed, as it provides good
insights into its sending performance and overall stability. To make a direct
comparison of the cwnd evolution between a fully wired path and a wired-to-wireless
path, some preliminary simulations were carried out. In the fully wired topology the
802.11 AP was replaced with a network hub, to which a TCP receiver was connected
using Ethernet 100BaseT links. The wired TCP receiver had identical settings to the
802.11 device. For the wired-to-wireless path, the topology shown in Figure 4.2 was
used, and a BER value of 10™ was set as it represents good channel conditions over the
WLAN. The TCP receivers in both scenarios used FTP to download an arbitrarily
large file from the server, and simulations were run for 180 seconds each. The delay
over the wireless path was the default delay as governed by the 802.11b RTP within
the simulation environment, which was set to a data rate of 11 Mbps using the additive
white Gaussian noise (AWGN) model setting for the radio channel. Figure 4.4 presents
the results from OPNET Modeler™ that shows the evolution of the cwnd at the TCP

server for each scenario, which reflects sending performance.

As can be seen from Figure 4.4, there is a noticeable difference in the evolution of the
cwnd between the two types of paths for a TCP sender. The wired path cwnd advances
more aggressively and by the end of the simulation has reached a size of 350 Kb. The

cwnd in the wired-to-wireless path has a much less aggressive rate of growth, thereby

121

achieving a size of just 250 Kb by the end of the simulation, which is almost a 29%
drop than in the equivalent wired scenario. Recall from a previous chapter that the size
of the ewnd is directly proportional to the amount of data that can be sent per RTT, and

therefore translates into a high sending rate.

450000 + ._[- —\Wired-to-Wireless Palh ‘ e H— B R - - - - o

‘| e Wired Palh |

300000 {- - ---- mm e e—oos oo --

250000

200000 {- - -

150000 {- - - - - -

100000

TCP Server Congestion Window Size (bytes)

50000 - --

300

Simulation Time (s)

Figure 4.4: Comparison of cwnd evolutions for wired versus wired-to-wireless TCP paths

This simple simulation therefore highlights the effects of having a wireless path in the
journey of TCP connections. The 802.11 WLAN will cause additional delays to TCP
segments travelling over the radio channel. Further delays will be caused by local
retransmissions taking place by the MAC. In summary then, even in good channel
conditions, a last-hop 802.11 WLAN still cannot match the performance of a wired
equivalent path. The difference between the two plots in Figure 4.4 is caused by the

additional delays and retransmissions caused by the wireless path.

Moving onto the wired-to-wireless simulations, in Figure 4.5 the evolutions of the
cwnd for BER values ranging from 107 to 107 are plotted for arbitrarily sized FTP file
downloads (all plots are overlapping). As can be seen, all plots possess typical
characteristics of a TCP sender, i.e. the initial slow start phase followed by the
congestion avoidance phase, which takes over when the cwnd size exceeds 64 Kb. This

plot indicates that the TCP sender in the wired domain is unaffected by wireless

122

channel conditions over the WLAN for BERs as high as 107 inclusive. This can be
explained by the fact that the 802.11 MAC is able to perform its local error recovery of
erroneous TCP segments within an adequate time interval, shielding such conditions
from the sender. The sender is therefore able to perform the slow start and congestion

avoidance phases without interruptions being caused by losses or RTO events.

150000’__ BER=1E—03 | - P P S R B R B

! | ----BER=1E-07
" 440000 || — - BER=1E06 |
— -BER=1E-05 |

120000 |

{00000 - - - - - P - - - . o= -

80000 : - e e - - - - -

60000 - : - - - |l

40000 {f - - - -

TCP Server Cc_mgestion Window Size (bytes)

20000 - -

(1] P—— p—— —— ettt s o 4 e e e |

0 Simulation Time (s) 300

Figure 4.5: The cwnd evolution of a TCP sender for wired-to-wireless paths under varying BERs

Figure 4.6 is a plot of the cwnd behaviour for a BER value of 10™ over the WLAN. It
is plotted separately because it represented a turning point in the results. It can be seen
from Figure 4.6 that the cwnd possesses very erratic behaviour. Due to the severe
volatility and repetitiveness of the curve behaviour throughout the entire simulation,
only a subset of the full time sequence has been plotted for legibility purposes, as the
objective here is to purely highlight the behaviour of the cwnd to the reader. As is
clearly visible from Figure 4.6, the sender’s cwnd never enters the congestion
avoidance phase. It is able to initiate the slow start phase, but before it gets the chance
to grow to the ssthresh size it drops down to the size of a single segment. This is due to
the wireless channel possessing a BER that is significantly high, causing a greater
number of unrecoverable segment losses that cannot be retrieved even by local 802.11
MAC retransmissions. This causes many DUPACKSs to arrive at the TCP sender that is

forced to perform a fast retransmission of the missing segments, dropping its cwnd size

123

each time to one segment size due to the fact that it is still in the slow start phase.
Constant losses cause constant fast retransmits at the sender, and this is reflected in
Figure 4.6, showing that the cwnd never grows beyond 11 Kb (which was the
maximum for the entire simulation). In contrast, the cwnd in Figure 4.5 for the lower
BER conditions manages to grow to a size of 160 Kb, which is more than eleven times

the size.

When subjecting the network to BER conditions in the order of 10” simulations results
were unobtainable as the error conditions were simply too severe for TCP to function
appropriately. Hence, all remaining plots in this section do not include BER values of

this magnitude.

[I..__ - F
‘ 10000 - - - T o o o I ©T 7 —BER=1E04

TEF Server Clongestion. Window Si}.e (byi;s)

o . S — - - o Tin.;e o - _— S . 50

Figure 4.6: The cwnd evolution of a TCP sender for a wired-to-wireless path with a high BER

In Figure 4.7, the average end-to-end RTT and RTO timer values at the TCP sender
have been plotted for the entire range of BER values tested (note that this is not the
application-layer delay). An interesting observation from this plot is that the TCP RTO
timer value is more sensitive to increasing BERs over the WLAN than the actual RTT.
This significant increase can be explained by consecutive timeouts caused by
retransmitted segments that are also lost, which causes an exponential increase in the

value of the timer for each unsuccessful attempt. A high RTO timer value will cause

124

long delays between retransmissions at the server, potentially stalling the connection

for several seconds between attempts on average.

—— —— — ————

18 | =—~Average End-to-End RTT | . _ I L,
\ = = =Average RTO Timer Value

i 12 - e e el - - |

10 . - . - . - - - - - . e __"_. [_z

Time (s)

P e LS aaae———— _—

0.00E+00 2.00E-05 4.00E-05 6.00E-05 B8.00E-05 1.00E-04 1.20E-04 1.40E-04 1.60E-04
BER over WLAN

Figure 4.7: Average TCP RTT and RTO timer values per connection under varying BERs

In Figure 4.8, the retransmission behaviour of the ARQ mechanism of the 802.11
MAC at the AP has been plotted for the same simulations presented in Figure 4.7. It
presents the trend for the average number of retransmission attempts made for each
802.11 data frame transmission towards the end-device (where each frame
encapsulated a TCP data segment). Note that at very low BERs over the WLAN, the
average number of retransmissions made is zero, which is expected. As the BER value
increases, so does the average number of retransmissions. A higher number of
retransmission per frame leads to a TCP segment experiencing longer delays before it
successfully reaches the receiver. This will increase the end-to-end RTT perceived by
the TCP sender as it waits for an ACK to arrive. When the RTT increases, the sender’s
computation of the RTO timer will also increase. Unfortunately, such increases in the
timer value can stall a TCP sender whilst waiting for ACKs to arrive, which eventually
never will. The delay will only lead to a timeout event and retransmissions by the
sender, with a severe reduction in the size of cwnd. It can be seen from Figure 4.8 that

at a BER of 1.0E-04 the average number of ARQ attempts per frame at the AP was

125

2.5, which was significant enough to cause the cwnd behaviour seen in Figure 4.6.
Therefore, the results reveal that the 802.11 MAC ARQ function is only able to protect
a TCP sender from the lossy WLAN channel for BERs of less than 10™.

-
|
|

o= S— e

Average Retransmission Attempts per 802.11 Frame
[}

1.

0 e
0.0E+00 2.0E-05 40E-05 6.0E-05 B.OE-05 1.0E-04 1.2E-04 1.4E-04 1.6E-04 1.8BE-04 2.0E-04

BER over the WLAN

Figure 4.8: Average number of frame retransmission attempts made by 802.11 MAC at the AP

4.5.2 Throughput Performance over the WLAN

In Figure 4.9 the maximum achieved data throughput performance over the WLAN
under varying BERSs is presented, as perceived at the TCP layer on the 802.11 device.
The results in Figure 4.9 correlate to those shown in Figures 4.6 and 4.7 from the same
simulations. In Figure 4.9, it can be seen that the maximum achieved throughput was
slightly higher than 5 Mbps in very good channel conditions (~10®) over the WLAN,
which is significantly lower than the theoretical maximum of 11 Mbps as defined by
the 802.11b standard as would be expected. The lower than expected throughput here
is attributable to the processing overheads of the 802.11 MAC and PHY layers, rather
than transmission errors, and is an entirely separate area of study for 802.11b/g
performance [139]. The turning point in the results for the maximum throughput
occurred at a BER of 3.0E-05 (~10), where there was a sharp drop in the achievable
throughput to less than 1 Mbps that occurred within a BER reduction of a single order

of magnitude to 10™. From looking at Figure 4.9 it is fair to say that although the

126

turning point appears to be at a BER of ~107, the true cut off point for 802.11 end-user
performance is more likely to be at a BER of ~10. Further increases in the BER
caused the throughput to diminish to values that would otherwise render useless to

end-users of TCP applications.

5000000

4000000 -

3000000 -

2000000 -

802.11 End-User Throughput {bits/s)

1000000 + -

1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.50E-04 1.60E-04
BER over the WLAN

Figure 4.9;: Maximum throughput performance over the 802.11 WLAN

4.5.3 Transfer Time Performance for FTP Downloads

In this section the focus is specifically on FTP performance of the 15 Mb file
downloads by the 802.11 end-device. Figure 4.10 plots the total time taken to complete
the entire transfer (from the TCP server) over varying BER conditions over the
WLAN, as perceived by the FTP client on the receiving device (which sits above the
TCP layer). It can be seen that for BERs of less than around 10" the download times
were quite acceptable, with the transfer completing in less than 60 seconds. Even at a
slightly higher BER of 2E-05 the file transfer time increased six-fold significantly to
360 seconds (6 minutes), which could still be tolerated by certain end-users. For BERs
between 3E-05 and 1E-04 the increases in download times continue at the same rate;
however, for 802.11 end-users the download times would now be considered

unacceptable, taking almost 47 minutes to complete at the latter BER value. The

127

critical point within the results was from BERs of 2x107 and higher, where a dramatic
increase in the download times to complete the transfers is seen. It was established
carlier that 10 was the turning point for the behaviour of the TCP sender’s cwnd
(Figure 4.6), and this is the most likely cause for the sharp drop in throughput due to a
starved sending rate, leading to a sharp rise in transfer times. In fact, Figures 4.9 and

4.10 complement each other at BERs of ~107.

3000

2500

2000

1500 -

Time Taken to Download a 15 Mb File (s)

1000

500 + - - -

0.0E+00 2.0E-05 4.0E-05 6.0E-05 8.0E05 1.0E-04 1.2E-04:

BER over the WLAN

Figure 4.10: Time to download 15 Mb files by the 802.11 device using FTP under varying BERs

4.5.4 Web-page Response Times for HTTP Requests

Since HTTP web-page requests make up for a high proportion of TCP traffic in
today’s Internet [252], it was chosen as an interesting statistic to measure. In this
section the focus is on end-users in the WLAN accessing web-pages from HTTP web-
servers in the Internet, where TCP is used to reliably transport the data to the
requesting end-users. All measurements were made on the receiver-side application
layer at the HT'TP client. Figure 4.11 plots the response times for HTTP 1.1 [253] web-
page downloads, i.e. the time taken to completely download and display the contents
of an entire web-page including all of its image objects. The results revealed some

interesting characteristics. Up to BERs of around 1.5E-04 over the WLAN the web-

128

page download performance was still at acceptable levels for end-users, taking no
more than 10 seconds per completed request. It took a BER of 2E-04 and higher to
really degrade the download performance significantly as to render web-page browsing
useless to the end-user device. The results indicate that HTTP traffic can sustain
acceptable performance for higher BERs than FTP traffic. This could be explained by
the fact that HTTP 1.1 clients normally make pipelined requests over single TCP
connections, which means that a server is able to pack different HT TP objects into the
least number of TCP segments to be transmitted. Since web-pages contain only small
amounts of total data to start with, then there will be fewer TCP segments to send over
the wireless path, which are also less likely to experience bit corruptions over the

entire range of segments for a particular web-page.

40

36

32

28

24 + -

20 4

12 -

Web-Page Download Response Time (s)

o0 e S

|
i 0.00E+00 5.00E-05 1.00E-04 1.50E-04 2.00E-04 2 50E-04 |
i BER over the WLAN i

Figure 4.11: Web-page download times for 802.11 device using HTTP under varying BERs

4.6 Chapter Conclusions

In this chapter the performance of the widely used TCP Reno, a true end-to-end

transport protocol, has been investigated when used over wired-to-wireless

129

environments. The focus has been on TCP connections running over 802.11 WLANs

at the last-hop, under varying BERs over the radio link.

Simulation results using the comprehensive OPNET Modeler™ v14.0 have
highlighted the ineffectiveness of TCP Reno in conditions where the channel BER 1is in
excess of ~107, affecting both end-users of popular Internet application-layer protocols
such as HTTP and FTP. The results have also revealed that HTTP web-page traffic
performance can sustain higher BERs over the wireless link than larger sized file

downloads from the Internet using FTP.

130

Chapter 5

Unidirectional vs. Bidirectional Losses

5.1 Introduction

The continued popularity of mobile and wireless networking has diverted the attention
of many to the maximisation of performance of such technologies using legacy
protocols that still govern the Internet. Hence much research is still being carried out
with evaluating the performance of TCP over wireless channels with varying
conditions, with many resorting to analytical models in recent years to predict sender-
side behaviour [31] [55] [254] [255]. As discovered in the preceding chapter, the key
issue for wired TCP senders over wireless paths is that of higher packet loss rates of a
random nature due to higher BERs over the transmission channels, which were not

accounted for in TCP's original design.

One of the challenges in gauging the accurate behaviour of TCP senders over wireless
channels is the difficulty in setting up a testing platform for performing realistic
experiments, as well as gathering accurate statistics on TCP's true behaviour at the
sender side, which is usually a server machine located somewhere in the Internet.
Another challenge is in the acquisition of correct equipment and tools in order to set up
a real-world wireless testbed that allows detailed measurements of TCP traffic to be
made. Hence, researchers often resort to simulation, emulation, and analytical
modelling as ways of experimenting with TCP, using best-fit wireless channel models

to replicate the real-world conditions as much as possible.

After much literature review in the area [140] [169] [154] [245] [256] [257] [258], it
was discovered that researchers often make many assumptions about the conditions in
which they are testing TCP. The key observation is that researchers were only very
rarely making references to the error model being used on the wireless feedback
(reverse) channel of experiments. In other words, all experiments were being

conducted with emphasis on TCP segment losses occuring only on the forward path of

131

TCP connections. It is fair to say that this is not how it occurs in the real-world, where
the reverse path is equally as erroneous as the forward path. In other words, a wireless
channel possesses a particular BER, and all TCP connections that traverse this channel
in either direction will experience losses in both the forward data path and the reverse
ACK path, at the same BER [130]. It can therefore be inferred that researchers are

potentially overestimating the performance of TCP from their results and evaluations.

The problem with TCP and the feedback channel is relatively simple. TCP is a reliable
transport protocol and uses the concept of acknowledging all data that is transmitted
(or received) successfully [49]. When a TCP sender transmits a data segment in the
forward direction to a wireless receiver, upon its successful arrival at the TCP layer the
receiver transmits an ACK back to the sender over the reverse wireless channel to
inform of its arrival, i.e. providing feedback. Since the behaviour (and hence
performance) of TCP is heavily based on this feedback arriving back at the sender in a
regular manner, it becomes an issue for TCP when ACKs are lost over wireless
channels on the reverse path. In other words a TCP sender relies on returning ACKs in
order to advance its cwnd so that the amount of data transmitted in a single flight is
always increasing up to a maximum capacity, which directly affects throughput
performance. However, by completely ignoring ACK losses on the feedback channel

researchers are potentially assuming and experimenting in unrealistic conditions.

The motivation behind the work in this chapter is therefore to clearly highlight the
differences in performance that are produced when experiments are performed with
and without ACK losses on the feedback channel of a TCP connection. It is hoped that
the results will encourage researchers of TCP over wireless networks to re-assess their
channel models before conducting performance experiments, which can only lead to

more robust TCP implementations that can survive in the real-world too.

5.2 Related Work and Motivations

There are only a few publications discovered that boldly highlight the differences
between unidirectional and bidirectional error conditions for TCP connections in
simulation and emulation environments, something which will be emphasised in this

chapter.

132

In [128], the authors devote much of their time to investigating the significance of
asymmetry between the forward and reverse channels on TCP performance, however
the emphasis of their work is mainly on the asymmetry related to network bandwidth

and latencies introduced as a result.

In [259], the authors have devoted much effort to studying the impacts of the reverse
channel on TCP ACKSs, in particular to the idea of ACK filtering to overcome the
effects of slower reverse paths for TCP connections. Again, their work does not deal
directly with losses associated with wireless error conditions, and little reference has

been made to performance differences as a result of this.

In [260] and [261], the authors also experiment with asymmetrical channels, but the
emphasis of the work is on the bottleneck link that usually occurs on the reverse path
for TCP connections, delaying ACKs as opposed to causing losses. The authors in both
papers do however acknowledge the heavy reliance of TCP on returning ACKs, and
also highlight the significant impacts on TCP senders when ACKs are delayed or do

not arrive at all.

In [262] the authors have undertaken a comparison and performance evaluation of
various sender-side TCP algorithms with the focus specifically on reverse channel
traffic characteristics. The authors highlight their motivations by also pointing out
several previous studies where the reverse TCP channel traffic has been neglected,
arguing that feedback traffic (i.e. ACKs) has a significant influence on the end-to-end
performance of TCP. However the focus of their work is on the asymmetry between
upstream and downstream TCP traffic due to heavy congestion, where ACKs are lost
and/or delayed due to excessive queuing along routers. They go on to perform
simulations to highlight the impacts of such effects on several TCP implementations to
support their claims. Although the work in this paper is indicative of TCP’s
dependence on reverse channel conditions, the authors do not consider ACK losses
that occur randomly due to a wireless link. Their simulation studies do not use a
controlled loss rate variable for the reverse path; rather this is done through initiating

several TCP connections over a bottleneck link.

133

3.3 Experimental Setup and Procedures

In this section the emulation environment for studying and comparing the impacts of
unidirectional versus bidirectional packet losses on end-to-end TCP performance is

presented, followed by the measurement tools and techniques that were used.

5.3.1 End-to-End TCP Emulation Platform

All experiments were conducted over an emulation platform using the popular netem
[263] tool. Netem provides network emulation functionalities for testing higher-layer
protocols by reproducing the characteristics of real networks on traffic, such as
variable delays, packet losses, duplications, and reordering. Essentially netem operates

as a queuing discipline within the Linux kernel network stack.

A simple server-client topology was built using real high-end Pentium 4 machines,
each with 1024 Mbytes of system memory. The platform was configured to emulate
conditions that would occur in end-to-end TCP connections between a server (sender)
located in the Internet and a last-hop wireless client (receiver). Figure 5.1 illustrates

the end-to-end emulation topology that was used.

Forward Channel (TCP Data Segments)

Layer-2
Netem
Bridge

Reverse Channel (TCP ACKs)

Figure 5.1: The TCP emulation platform topology

134

The sender and receiver machines were both based on the Linux operating system,
each running version 2.6.18 of the kernel. The sending machine's kernel was also
‘instrumented’ in order to extract live TCP variables during experiments, such as the

cwnd values, and so forth.

To emulate the effects of a lossy wireless channel with a range of adequate random
packet loss rates, netem was installed on a separate Linux machine configured as a
network Linux bridge [264] between the sender and receiver machines via cross-over
10/100 Mbps Ethernet cables to eliminate the need for using additional components. A
Linux bridge allows two physical Ethernet network interface cards (NICs) to be
‘bridged’ at Layer-2 of the OSI stack (i.e. at the Ethernet layer). The bridging of two
NICs allows the forwarding of all higher-layer traffic from one NIC to the other, in
both directions. A bridge therefore transparently relays traffic between two NICs. The
bridge has no awareness of the protocols it forwards, it only sees Ethernet frames. As
such, the bridging functionality is protocol independent. The use of netem on a
separate bridge machine with two NICs is the ideal method of performing experiments

using the random packet loss rate variable [263].

The Linux bridge machine was a high-end Pentium machine with 1024 Mb of system
memory, hence the traffic forwarding delays over the bridge interface were negligible

[265].

Using this particular setup (as shown in Figure 5.1), Ethernet frames can pass through
the bridge in both directions transparently to the TCP sender and receiver on either
side, be it data segments or ACKs. Netem was used to induce a random packet loss
rate (as a percentage of frames to drop) to all traffic flowing through the bridge's

network interfaces in both directions independently.

In order to highlight purely the differences in TCP performance in the presence of
unidirectional packet losses versus bidirectional packet losses over the forward and
reverse channels, to emulate a wireless channel, congestion-related packet losses were
not introduced. It is also appreciated the fact that although random packet losses are
artificially induced within the experiments, the use of real machines and protocols in

the emulation platform still has credibility because it factors in the effects of media

135

access contention, protocol processing delays, hardware delays, and media propagation

delays, which are all difficult to model realistically through simulations.

5.3.2 Traffic Generation and Chosen Variables

To minimise the effects of queueing delays and interactions between multiple TCP
connections, only single TCP flows were generated using the popular iperf bandwidth
measurement tool [266]. The focus was on the sender's TCP layer, and the overall
performance statistics reported by iperf. Each TCP experiment consisted of sending
100 Mbytes of data from the sender machine to the client machine, and measuring the
time taken to perform the transfer, the maximum achieved channel bandwidth, and a

snapshot of the cwnd behaviour on the sending machine.

In the Linux 2.6.18 kernel there are a range of pluggable TCP congestion algorithms
that can be selected at runtime [267]. Based on research findings, three different TCP
algorithms were selected for testing against unidirectional and bidirectional packet loss
conditions; TCP BIC |268], TCP Reno, and TCP Veno, the latter two of which have

been discussed in a previous chapter.

TCP BIC is an optimised sender-side congestion control algorithm for high-speed
networks with high latencies. It has been designed to meet the demands of today’s fast
long distance networks, with the core objective being to take advantage of unused end-
to-end bandwidth, a problem that is exhibited by the legacy TCP algorithms due to
their poor AIMD response times. The main feature of BIC is its unique cwnd growth

function.

BIC was chosen for testing because it is currently the default TCP algorithm that is
enabled upon compilation of the Linux v2.6.18 kernel, and hence it is most likely to be
widely used in recent Linux senders in the Internet. Reno was chosen because it
represents a legacy sender-side TCP implementation that is still widely used in the
Internet today, setting some baseline standards. Veno was chosen because it is a recent
sender-side proposal for being able to deal with random segment losses better than
existing TCP algorithms, and the aim was to simply observe its respective authors’

claims.

136

Both the sending machine and receiving machine were enabled with the SACK option,
as this is typical of most implementations today, being able to deal with multiple TCP
segment losses per RTT. The window scaling option was also used at both sides. A

TCP MSS of 1448 bytes was used for all experiments, with a MTU of 1500 bytes.

Based on the findings of [123], random packet loss rates ranging from 10 (0.0001%)
up to 7x107 (7%) were used at the bridge via netem, which are common to wireless
channels. At packet loss rates greater than 7% the performance of TCP was too
degraded to continue with experiments. The maximum network capacity was 100
Mbps, as governed by the Ethernet transmission medium used. The latency within the

network was unaltered, as it was not significant in what was trying to be shown.

5.4 Results

We begin this section by presenting a range of results from various TCP experiments
over the emulation platform. Discussions of the results are made in the following

section.

5.4.1 Maximum End-to-End Bandwidth Achieved

The first metric presented is the maximum possible bandwidth (or channel capacity)
that was achieved over the 100 Mbps forward and reverse paths between the TCP
sender and the TCP receiver. As was described earlier, iperf was used in server-client
mode to transfer a total of 100 Mbytes of data in the server-to-client direction. Hence,
the reverse channel consisted of only ACKs generated by the receiver on their way to
the sender. The tests for each TCP variant were repeated three times for each particular
packet loss rate over the channel and the results in this section are averages of three

runs.

Random packet loss rates as percentages were applied initially to the forward channel
traffic only passing through the bridge machine (will be referred to as unidirectional
errors). The experiments were then repeated with identical packet loss rates affecting

both the forward and reverse channel traffic (will be referred to as bidirectional errors).

137

Direct comparisons could then be made to highlight the effects on the different TCP

algorithms when a reverse channel is erroneous causing ACKs to be lost too.

Figure 5.2 presents the maximum achieved channel bandwidth performance of TCP
Reno in unidirectional versus bidirectional error conditions, for random packet loss
rates ranging from 0.0001% up to 6%. Likewise, Figure 5.3 compares the performance
of TCP BIC, and Figure 5.4 shows TCP Veno’s performance. Note that a packet loss

rate of 2% is what would be seen typically in real-world wireless channels.

TCP Reno
1BB T T T T T
% Forward Path Losses Only —&—
e Forward & Reverse Path Losses —&—
98 "'E&; e |
T H’ﬁ\
\ Y
~ 88| . u i
P \ N
CR N ., "
- o, N
> 60 “, _
(] RN -,
2 ~
[\"-‘
= 50 F N N -
- N AN
.;| | ‘..\ R
3 N
5 . \
@ . ™
£ 30 3 " o i
H \ .
§ H"x._’q_
£ 20 G : |
10 + '“"nhw "‘ﬁmm____m_____.
N_B___—__wﬂ}
B 1 1 1 L 1
2] 1 2 3 4 5 6

Packet Loss Rate (%)

Figure 5.2: TCP Reno — Maximum achieved channel bandwidth performance

138

Haxinun Bandwidth Achieved {Hbits/s)

Haxinun Banduidth Achieved {Hbits/s)

TCP BIC

108 T T T T T

;g Forward Path Losses Only —&-——

“’5‘1,:\ Forward & Reverse Path Losses —&—
90 U g

T
.
80 | ; \i\ .
Y
A3
70 | “\\]
Vs
L
60 N .
S
R
N, "
50 AN T
N
\ .
40 F \ I . -
30 | \1% T 8
20 | T B]
T .
-,_‘_‘_- T o L
18 e A
ST
a L 1 1 i 1

] i 2 3 4 5 6

28

10

Packet Loss Rate (%)

Figure 5.3: TCP BIC - Maximum achieved channel bandwidth performance

TCP Veno

Forward Path Losses bnlg i
Forward & Reverse Path Losses —&— J

1 1 1]

3] 1 2 3 4 5 6 7
Packet Loss Rate (%)

Figure 5.4: TCP Veno — Maximum achieved channel bandwidth performance

139

5.4.2 100 Mbytes Transfer Time Performance

In this section the second measurement taken for each of the experiments conducted
are presented, i.e. the total time taken to transfer 100 Mb of data (as per Figures 5.2,
5.3, and 5.4). This metric was chosen because it is more meaningful, and easier to
comprehend in terms of application-layer performance at the user level. Since iperf is
persistent with the transferring of the data, it kept running until the entire 100 Mb was
transferred, regardless of retransmissions and RTO events at the TCP sender, as well
as other TCP features that would otherwise cause a connection to terminate such as
connections which are idle for greater than a period of 3600 seconds. Again, average

values have been presented in all plots.

TEF Reno
228 T —T T
Forward Path Losses Only —&—
Forward & Reverse Path Losses ——B——/w
188 | //"
168 - ’3,
. - 1
N /
® 148 r E
T P
fa /
¢ 1201 AT
e e -
[%] Vs o
c i . - 4
E 108 ’.,,.- ‘ff
=] // J/
E a0 S ,,.“f/
8 y -
= / e
60 - -
a8 __,.E/ P h
e -
T e
20 | T g
;t}Em.‘—vi'__ .—g:“"w___
ﬂ 1 L L L L
1] 1 2 3 4 5 6

Packet Loss Rate (%)

Figure 5.5: TCP Reno — 100 Mb transfer time performance

Figure 5.5 presents the performance of TCP Reno with regards to the total time taken
to transfer 100 Mb of data (in the server-to-client direction) at varying channel packet
loss rates, in both unidirectional and bidirectional scenarios. Figure 5.6 and Figure 5.7
represent the results for TCP BIC and TCP Veno, respectively. As a note to the reader,
the results in Figures 5.5, 5.6, and 5.7 correspond to the same experiments as in

Figures 5.2, 5.3, and 5.4, respectively.

140

1688HB Transfer Tine {s}

188HB Transfer Tine {s)

TCP BIC

180 T T T T T N
Foruard Path Losses Only —&-—
Foruard & Reverse Path Losses =%3——}1
168 //4
/
F
148 | /j :
!
128 L ;/ E
/
,’F
i
1600 fJ h
!
g
e
80 e 4
a J;f’
- . .
60 A e 1
-~ T
«// - =
40 + 7 e i
/_./ -
I
20 |- T wT .
TE},__M__quﬁﬁ}“*
B 1 1 1 1 L
] 1 2 3 4 5 6
Packet Loss Rate (%)
Figure 5.6: TCP BIC — 100 Mb transfer time performance
TCP Veno
229 T T T T T
Forward Path Losses Only —&—
Forward & Reverse Path Losses —5—
200 - i
7
.f{(
188 !; n
i
¢
r
160 | fﬁ .
/
146 - / T
/
{!
128 JJ -
100 e !
v
.'/ e
80 | o A
..J/‘I ,A"-’.
60 - s]
e ‘_.J'_‘i',
-~ = ——
40 | P o 7
o P
- e
20 | _,.._--‘-":._.’.'::_—:r_“_'—’ﬂ?_w y
$§ﬂ g
B I 1 i [l i i
a 1 2 3 4 5 6

Packet Loss Rate (%)

Figure 5.7: TCP Veno — 100 Mb transfer time performance

141

5.4.3 Sender Congestion Window Behaviour

In this section the impacts of bidirectional packet losses (i.e. ACK losses) on a TCP
sender’s cwnd behaviour are presented, supporting the general hypothesis of this
chapter. Since the cwnd governs the overall sending performance of a TCP sender,
observing its behaviour under varying random packet loss conditions can help to
explain why performance is affected. All cwnd values were obtained from the TCP
layer in the live Linux kernel during the experimental runs, and have been averaged
over three runs per plot. Results for random packet loss rates of 0.001%, 0.01%, and
0.1% (applied at the bridge) have been presented for the Reno sender (Figures 5.8 to
5.10), the BIC sender (Figures 5.11 to 5.13), and the Veno sender (Figures 5.14 to
5.16), respectively. Higher packet loss rates produced very illegible plots due to the
extremely erratic behaviour of the cwnd. Note that the plots in this section depict very
accurate TCP sender cwnd behaviours of the real-world implementations in Linux

v2.6.18.

' 1277 Forward Losses Only
1400000 i < Forward and Reverse Losses
1200000 <
i3
g ;! 13
= E
« 1000000 q
H ki g
n LR
z i
k=] of “
: :!
.E socauu - 3 e PR T LS
s O T T UL e fonneneee
c oG |
2 o
k=l b .!
8 i %
@ 600000 - : |
o 4 {
(5} 5
e :‘% i
3 |
@ i %
k] !
E :
o i
i L
200000 X)
k]
)
]
"
*
o

Emulation Time

Figure 5.8: TCP Reno — 0.001% packet loss rate — unidirectional vs. bidirectional channel errors

142

= Forward Lo-sses Only
- ‘Forward and Reverse Losses

1

1400000 -

1200000

(=] (=] [=] =]
=3 =1 = =3
=1 =] =1 (=3
=] = =3 o
=] (=} o (=]
= w© ©w g
—

(se3kq) az1s mopuip uopsabuoy Japuas

200000

(=]

Emulation Time

1 channel errors

irectiona

1 vs. bi

irectiona

TCP Reno — 0.01% packet loss rate

Figure 5.9

= Forward Losses. Only

"~ Forward and Reverse Losses |

200000

150000
100000

(sa1hg) azig mopuip, uonsabuos Japuasg

50000

Emulation Time

I channel errors

irectiona

ional vs. bi

irect

TCP Reno — 0.1% packet loss rate —un

.

Figure 5.10

143

1400000 -
1200000
7
8
E 1000000
& |
w
z
o
2 800000 |
=
[=4
s
g
H
S 600000
o
[§)]
5
]
S 400000 |
w
200000
0

L A

i |
R Forward Losses Only
- Forward and Reverse Losses

Emulation Time

Figure 5.11: TCP BIC - 0.001% packet loss rate — unidirectional vs. bidirectional channel errors

1400000
1200000
7
8
==
a2
2 1000000
N
w
z
o
-
£ 800000
=
=
-]
[
@ 600000
o
(&)
=
@
2
3 400000
200000
0

amrnITIRT ' ===~ Forward Losses Only .
{ -Forward and Reverse Losses |

e e e g,

Emulation Time

Figure 5.12: TCP BIC - 0.01% packet loss rate — unidirectional vs. bidirectional channel errors

144

B
|

‘----- Forward I:_osses.Orﬂy

* Forward and Reverse Losses |

gz

o P

L

e

e ST

400000
350000
150000 -
100000
50000

300000
250000

(saahq) azis mopuipy uopsabuog Japuas

Emulation Time

bidirectional channel errors

irectional vs.

= uni

TCP BIC - 0.1% packet loss rate

Figure 5.13

!

 Forward and Reverse Losses

:T -~ Forward Losses Only
]

ree s

1400000

1200000

1000000
800000
600000
400000

{sa14q) azig mopuipy uonsabuos Japusg

Emulation Time

idirectional vs. bidirectional channel errors

TCP Veno — 0.001% packet loss rate — un

Figure 5.14

145

[Forward Losses Only
1400000 ’ Forward and Reverse Losses |

1200000 - i
1000000

800000

600000 -

Sender Congestion Window Size (bytes)

400000

200000 -

Emulation Time

Figure 5.15: TCP Veno — 0.01% packet loss rate — unidirectional vs. bidirectional channel errors

AB0000D oo : .
2 L L Forward Losses Only
"

Forward and Reverse Losses

1200000

1000000 -

800000

600000

400000

Sender Congestion Window Size (bytes)

200000

Emulation Time

Figure 5.16: TCP Veno - 0.1% packet loss rate — unidirectional vs. bidirectional channel errors

5.5 Discussion of Results

It can be seen from Figures 5.2 (Reno), 5.3 (BIC), and 5.4 (Veno) that the maximum

bandwidths achieved for TCP connections in forward-only (unidirectional) packet loss

146

conditions are consistently higher than for those connections where packet losses were
introduced on the reverse channel too. This confirms the theory that when ACKs are
subjected to lossy paths (such as over wireless channels), the evolution of the TCP
sender’s cwnd is affected, which then limits the amount of data that can be transmitted
per RTT, i.e. the data rate at the sender is limited. The cwnd evolutions for each of the
TCP algorithms under varying packet loss rates have been plotted for reference
purposes in Figures 5.8 through to 5.16. Since the maximum bandwidth measurement
by iperf is directly related to the maximum possible data rate over the channel by TCP,
then as was expected, when the packet loss rate was increased for all experiments, the
achieved channel bandwidth dropped as a result, although at different rates for the
differing error scenarios and TCP variants. Ultimately this led to an increase in the
times taken to send 100 Mb of as the packet loss rate increased, with unidirectional
conditions producing better performance than bidirectional conditions across all TCP
variants albeit at different rates. Figures 5.5 (Reno), 5.6 (BIC), and 5.7 (Veno) plot the
transfer time performance under varying packet loss rates for both unidirectional and

bidirectional conditions.

Figure 5.2 (Reno) shows that at a packet loss rate of 1% the unidirectional bandwidth
measurement is 36% greater than for the equivalent bidirectional measurement. At
packet loss rates of 3%, 5%, and 6% the corresponding differences in achieved
bandwidth are 51%, 95%, and 73%, respectively. Figure 5.4 (Veno) is also consistent
with this trend, showing similar significant differences in the achieved bandwidths
between the unidirectional and bidirectional error conditions on the channel. In Figure
5.3 (BIC) it can be seen that at a packet loss rate of 3%, the difference between the
unidirectional and bidirectional error conditions is quite significant; the achieved
bandwidth for unidirectional packet losses is 46% greater than for bidirectional packet
losses, and at a 5% packet loss rate the difference in achieved bandwidths is 55%. At a
6% packet loss rate the achieved bandwidth for unidirectional channel errors is more
than twice that of what was achieved for bidirectional error conditions. These
differences in performance highlight that an error-free reverse path for TCP
experiments or simulations should not be assumed, as it will skew any results obtained.

In reality, TCP ACKs do get lost over wireless channels.

147

Prior to progressing the discussions onto the results relating to the transfer times for
100 Mb of data, it is important to state what was considered to be an acceptable
amount of time an end-user would be prepared to wait for the download of a 100 Mb
file, for example. Taking the maximum capacity of the emulation platform into
account (100 Mbps), a waiting time of up to 40 seconds was considered to be an

acceptable level of performance.

First of all, looking at Figures 5.5 (Reno), 5.6 (BIC), and 5.7 (Veno), it is quite clear
that the performance of all TCP algorithms in unidirectional error conditions is
consistently better than when subjected to bidirectional errors conditions. To gain
further insights into the magnitude of the differences between the two differing error
scenarios, it was observed that the difference in percentages was very similar to those
calculated for the maximum achieved bandwidth results. All three TCP variants were
able to perform the 100 Mb transfer within 41 seconds for packet loss rates up to 3%,

in both unidirectional and bidirectional conditions.

Further analysis led to an observation regarding the different variants of TCP in that
the Veno algorithm performed better than its counterparts at the higher packet loss
rates, for both unidirectional and bidirectional packet losses. Taking only the results
for bidirectional packet losses, at a 5% packet loss rate Veno completed the 100 Mb
transfer in 77 seconds. Comparing that to the likewise performance of Reno and BIC,
their transfer times were 152 seconds and 89 seconds, respectively. At a 6% packet
loss rate, Veno continues to outperform, taking 115 seconds for the transfer. At the
same packet loss rate Reno took 205 seconds, and BIC took 172 seconds. It was
decided to test Veno further at a bidirectional packet loss rate of 7%, with the 100 Mb
transfer taking 201 seconds, which is still better than the performance of Reno at a 6%
packet loss rate. For completion Reno and BIC were also tested at a 7% bidirectional
packet loss rate; however the transfer times for both were well over 300 seconds, at
which point the connections required manual termination via the iperf tool. These
observations of Veno support previous claims of enhanced performance over existing
algorithms in conditions where random packet losses are prevalent. This is because a
Veno sender is able to distinguish between congestive-losses and random losses,
thereby reducing its cwnd only slightly for random losses with the aim of maintaining

a higher sending rate. Since the experiments consisted only of random packet losses

148

being induced, Veno was able to send more data per RTT due to a larger average

cwnd.

5.5.1 Sender Congestion Window Dynamics

To highlight the impacts of bidirectional packet losses on a TCP sender’s cwnd
behaviour, plots of the cwnd evolution under varying packet loss rates (0.001%,
0.01%, and 0.1%) for unidirectional versus bidirectional packet loss scenarios are
presented in Figures 5.8 to 5.10 (for Reno), Figures 5.11 to 5.13 (for BIC), and Figures
5.14 to 5.16 (for Veno). These plots may help to justify the reasoning behind the
argument of not assuming an error-free reverse path for TCP connections. All plots
have been generated from actual values of the cwnd size variable (in bytes) that was
read from the TCP sending machine’s instrumented Linux kernel during live

experiments.

Figures 5.8, 5.11, and 5.14 are plots of the behaviour of the sender’s cwnd at a random
packet loss rate of 0.001% using Reno, BIC, and Veno, respectively. The plots clearly
show the differences in the evolutions of the cwnd under each of the packet loss
scenarios. As can be seen for Reno and Veno in particular, the cwnd size for
unidirectional errors grows to a much higher value by the end of the emulation time,
experiencing no packet losses. Both plots exhibit a perfect display of the slow start
phase, followed immediately by the congestion avoidance phase when the cwnd size
reaches the ssthresh value. In contrast, for bidirectional conditions, the cwnd
experiences some reductions due to the introduction of packet losses on the reverse
path of ACKs, and is generally starved of growth throughout the connection. Lost
ACKs will cause the sender to either timeout if the ACK does not arrive within the
RTO timer value, or if three DUPACKSs are received, whichever comes first. Looking
at Figure 5.11 for TCP BIC, although both scenarios produced similar behaviour of the
cwnd at a packet loss rate 0.001%, it can be seen that a cwnd reduction occurred earlier

on for bidirectional conditions.
Increasing the random packet loss rate tenfold to 0.01% produced the plots that further

supports the theory above, as presented in Figures 5.9 (Reno), 5.12 (BIC), and 5.15

(Veno), where the differences between unidirectional and bidirectional packet losses

149

are more pronounced. In Figure 5.9 the Reno sender experiences four cwnd reductions
for unidirectional packet losses in comparison to six reductions for bidirectional packet
losses. The Veno sender also experiences similar behaviour to Reno. Figure 5.12 for
the BIC sender produced a more significant result, clearly showing the starved growth
of the cwnd in bidirectional packet loss conditions, with a much smaller average size
throughout the entire connection due to nine reductions in comparison to just five for
unidirectional packet losses. As can be seen from Figure 5.12, the BIC sender’s cwnd
in bidirectional packet losses did not exceed a size of 600000 bytes; contrasting that
with unidirectional packet losses, the cwnd size did not fall below 600000 bytes,

reaching a maximum size of 1458136 bytes.

When increasing the random packet loss rate to 0.1% the cwnd evolution for both
scenarios across all TCP senders became erratic and difficult to follow. The plots are
presented in Figures 5.10 (Reno), 5.13 (BIC), and 5.16 (Veno). The first thing that
stands out is the average size of the cwnd throughout the connections, which are all on
a much smaller scale than previous plots. The Reno and Veno senders had an average
cwnd size of just 50000 bytes, whereas BIC was able to produce a slightly higher
average cwnd size. Focussing on the difference in the number of cwnd reductions as a
ratio between unidirectional to bidirectional packet loss conditions, Reno experienced
a 39:64 ratio, BIC experienced a 41:73 ratio, and Veno experienced a 29:61 ratio of
cwnd reductions between the two conditions. Looking at these ratios, it is clear that on
average there are twice as many cwnd reductions in bidirectional channel packet losses
than unidirectional packet losses, which is a significant difference. This ultimately
leads to lower overall TCP throughputs for the end-users, as mentioned in a previous
section. Again, it highlights the importance of the reverse channel for TCP
experiments (and the importance of ACKs), and how unidirectional packet loss

conditions can significantly over-estimate the performance of TCP.

5.6 Chapter Conclusions

The results obtained and presented in this chapter provide strong evidence that there
are significant differences in the performance of TCP between differing experimental
path-loss conditions, regardless of the sender-side TCP variant used. The significant

impacts of excluding a packet loss model on the feedback channel for TCP

150

experiments have been clearly shown through a comprehensive set of experiments
over an emulation platform using real implementations of TCP. The general consensus
is that in experiments where packet losses are induced only on the forward data
channel, the performance results for TCP are over-estimated. In reality, over wireless
channels, TCP experiences losses in both directions; hence ACKs on the reverse
channel are also affected. Such bidirectional packet losses were induced into the
experiments of this chapter, and the performance of TCP was shown to be worse-off.
Note that although the reverse packet loss rates in this chapter may represent an upper-
bound on TCP performance in bidirectional error conditions, problems do exist,

especially within the 2% operating range that is typical of indoor wireless channels.

In summary then, end-to-end experiments with different ‘flavours’ of TCP were
conducted over varying random packet loss rates, and each has been consistent in
highlighting the same problems, albeit with individual characteristics. Overall, the
observations are that TCP Veno proved to be the most robust in such random packet

loss conditions, being able to sustain a higher packet loss rate.

Finally, the message to researchers of reliable transport protocol issues for wireless
networks is that all protocol experiments, be it via simulation or emulation, should be
configured to use forward and reverse channel loss models in order to fully justify the

capabilities of the protocol.

151

Chapter 6

A Testbed for Evaluating TCP over 802.11 WLANSs

6.1 Introduction

Recently there has been a great deal of research conducted into the performance issues
and behaviour of TCP over wireless networks, as documented in Chapter 3, and
researchers are always keen to experiment with the protocol in a variety of ways. TCP
is still the most popular transport protocol in the Internet, carrying a huge proportion of
traffic to end-users. The difference now is that these end-users are increasingly
becoming mobile and wireless; many homes and offices are now fully equipped with
WLANSs [47], with the IEEE 802.11 standard being the most prominent, showing no

signs of a slow-down with this trend in the foreseeable future.

TCP is a complex transport protocol that has gone through several evolutions in recent
years [8], constantly being updated to meet the needs of the changing Internet and its
end-users. It was originally designed as a reliable connection-oriented end-to-end
transport protocol for the fixed wired Internet, at a time when its heavy usage over
wireless links was not envisioned [11]. Today, the situation is somewhat very
different, with the pervasiveness of wireless technologies changing the final delivery
process of TCP data. It is therefore very important to gain accurate insights into the
capabilities of sender-side TCP implementations over heterogeneous paths, where

wireless links become part of the end-to-end journey of TCP segments.

In this chapter, the focus is on the scenario that is more common today: end-users of
the IEEE 802.11 WL ANSs accessing the Internet and downloading content and services
using legacy protocols via local APs (which act as private gateways into the wired
domain). These 802.11 wireless end-users are effectively TCP clients from the
perspective work in this thesis. Figure 6.1 illustrates the scenario that is becoming
more commonplace today. Hence, this chapter proposes a wired-to-wireless testbed
that allows for the complete experimental testing of TCP, and for the observation and

evaluation of end-to-end TCP performance when segments traverse both wired and

152

wireless links in the same connection, where the wireless path is last-hop real-world

802.11 WLAN.

END-TO-END TCP CONNECTIONS

M Local ISP WIRELESS PATH
¥ “Z Exchange

AN

\\ 7

802.11 AP Last-hop WLAN
> TCP Clients

WIRED PATH i

—
.. Internet <
N

Figure 6.1: The typical scenario today for TCP senders running over last-hop WLANSs

Researchers commonly use simulation as the preferred method of putting TCP under
test due to the ease of setting up a wireless network environment and running
experiments under controlled circumstances. NS-2 and OPNET Modeler'™ both offer
excellent wireless models, together with accurate implementations of TCP. However,
in light of many of the advantages of network simulation, modelling the true behaviour
of TCP over wireless networks is a very precise procedure, and one that simply cannot
be tested using simulation alone. It has been noticed that in many research reports the
conditions in which TCP is put under test have been overlooked. Assumptions are
easily made regarding parameters and measurements when running simulations, and
there was a lack of parallelism with how TCP is actually used and operates in the real-

world today.

The idea of this work is to promote experiments on TCP over wireless networks using
alternative techniques, which can only lead to a more robust TCP that will survive well
into the future. This is why the proposed testbed is highly relevant and beneficial to
TCP research for combined wired-to-wireless networks. The testbed can provide

insights into how the wireless channel behaves, and how this affects the performance

153

of TCP back at the sender in the wired domain. In addition, it allows the capturing of
reverse channel traffic from both the wired and wireless domains from within the same
experiment, increasing the accuracy of any evaluation work on captured data. For
example, using the captured data from the testbed, evaluations can be made of the
sender’s cwnd performance, accurate 802.11 frame error distributions over the WLAN
can be inferred, and the relationship between TCP and 802.11 MAC can be

investigated, and so forth.

6.2 Related Work and Motivations

More often than not, simulation has always been welcomed as a first choice by
researchers, despite their attentiveness to the intrinsic inaccuracies associated with
models of wireless protocols and channels [269]. There is now a wealth of research on
the experimental studies of TCP over IEEE 802.11 WLANS, as documented in Chapter
3. Literature reviews within the area revealed that there are three distinct categories
that the experimental work on TCP over wireless paths fall into; 1) simulation [125]
[270], ii) emulation [59] [271] [272], and iii) testbeds [41] [68] [129] [157] [273] [274]
[275] [269]. It was also noticed that the network topologies used for testbed
experiments are generally unrealistic of how TCP is typically used in the real-world.
There appears to be the lack of an Internet component between the TCP server and the

802.11 WLAN, which was the case in [41] [129] [275].

Focussing only on testbeds for the purposes of this chapter, the work in [129] was
some of the earliest contributions to the field of TCP over wireless environments. The
authors in this paper used a testbed to run TCP experiments between a fixed server in
the wired domain, and a client in the wireless domain. Although the work in the paper
was original at the time, the testbed used was not reflective of real-world conditions
today, i.e. the TCP server was positioned within the same wired subnet as the wireless
AP. This is not the most accurate way of testing TCP sender behaviour, as servers
today tend to be separated from the AP by the Internet. By factoring in the presence of
an Internet between the server and client within the testbed, TCP segments would be
subjected to additional delays or congestion-related losses that normally occur in the
fixed wired domain [276]. This leads to increased levels of realism and accuracy for

end-to-end TCP experiments over the testbed.

154

A fairly recent paper that used the idea of a testbed for evaluating TCP over wireless
networks is presented in [273]. Although this is a good example of how testbeds can be
very useful, the authors in this paper used the GPRS wireless technology for the
wireless portion of the testbed, which is somewhat different to the behaviour of the

802.11 WLAN standard for supporting TCP clients.

In [274], a testbed is used for studying TCP performance over an 802.11 WLAN, but
the authors’ focus is primarily on ad-hoc wireless links between devices in the WLAN,
with an emphasis on device mobility and roaming. There was also a lack of evaluation
work on the actual behaviour of TCP at the sender-side, as the testbed lacked the

ability to collect a wide range of data.

In [157] the authors demonstrated the effective use of a testbed for TCP experiments
over an 802.11 WLAN. The work in this paper was clear and concise, agreeing with
the motivations and views of this chapter, in that simulations do not always reveal true
TCP behaviour to that observed in real-world conditions. The limitations of the work
come from the fact that the authors’ focus on TCP was mainly on the client-side, i.e.
when wireless end-users are the TCP senders creating uplink traffic. Our view on the
work of this paper is that the bulk of TCP data sending is done by servers in the
Internet, and hence it is more beneficial to study TCP settings and behaviour at the
server in the wired domain of testbeds, i.e. when wireless end-users are downloading

data from the Internet creating downlink traffic over the WLAN.,

An integrated wired-to-wireless testbed was proposed in [277], which takes into
account the Internet component between the TCP senders and wireless end-users.
However, the authors did not use a real-world fully operational wireless network for
the wireless path; instead they used an emulated wireless channel, which accurately
reproduced a UMTS wireless propagation environment. In addition, the testbed
required the connecting of components across different sites over a VPN connection,
with the use of a web-interface to manage and control experiments. This is a rather
cumbersome approach, as it results in limited control of the testbed, and suffers from

not being straightforward for other researchers to easily adopt.

155

Finally, other wired-to-wireless testbeds tend to be very complex arrangements, built
using an array of dedicated components (including both expensive hardware and
bespoke software) by researchers for a specific scenario [68] [269]. Although these
testbeds tend to be very comprehensive at producing results, they often lack the ‘ease-
of-use’ factor which is important if the testbed is to be adopted by a wider research
community. It is often difficult for other researchers to gather all the necessary

components in order to build such complex testbeds.

6.3 Proposed Experimental Testbed and Architecture

To advance on the aforementioned testbeds a decision was made to construct a wired-
to-wireless testbed for TCP that allows certain conditions to be controlled (as in a
simulator or emulator), but also one that utilises real-world protocol implementations,
real-world links (both wired and wireless), real networking hardware components, and
with the presence of an Internet component (via emulation) between the server and
wireless clients. The idea is to minimise the level of assumptions that would need to be

made when conducting experiments.

Inspiration for the testbed design came from a review of statements in [108], in which
the authors discuss best practices for TCP experiments, especially on how to collect
data accurately from both sides of a connection. So, unlike previous comparable
testbeds, the objective here was to be able to capture data from all angles of an
experiment, trying to incorporate the advantages of simulation into the testbed;
specifically, to be able to capture accurate statistics from the sending TCP server in the
wired domain, which is difficult to do in the real-world where the TCP server is often
in a geographically distant location (i.e. in the Internet). This is a particularly unique
feature of the proposed testbed, which will be elaborated upon in the coming sub-

sections.

To gain a full understanding of the wireless side of experiments, a further objective
was to be able to capture as much information as possible from the IEEE 802.11
WLAN whilst running end-to-end TCP experiments. Further inspiration came from the
work undertaken in [73] [76] [130] [131] [240], all of which provide good insights into

the techniques for capturing and analysing wireless network traffic, especially for

156

defining accurate loss models of the real-world. Such data could assist researchers with
defining more realistic wireless models for end-to-end TCP performance testing over

wireless networks.

A final design goal was that the testbed should be relatively straightforward to build
using easily available hardware and software, allowing for easy repeatability of
experiments, alongside offering high levels of realism and accuracy for dependable

results.

6.3.1 Testbed Architecture

The proposed testbed is based on a collection of components that have each been
carcfully selected. The architecture of the testbed can be broken down into five
separate components; i) the wired TCP server, i1) the Internet emulator, iii) the IEEE
802.11 AP (i.e. the WLAN), iv) the wireless TCP client/s, and v) the 802.11 sniffer
devices for wireless traffic. At a high-level, there is a wired path and a wireless path

for all TCP connections. Figure 6.2 illustrates the schematic layout of the testbed.

END-TO-END TCP CONNECTIONS

T e E >
802.11
Sniffer
(FWD traffic)
% 802.11
‘3) Sniffer
1)) (REV traffic)

Internet 802.11blg AP

TCP Server Emulator Tfai:} ;:il::;]t
--- D P UB
WIRED PATH (BACKBONE + INTERNET) WIRELESS PATH (LAST-HOP)

Figure 6.2: The proposed wired-to-wireless TCP experimental testbed

The TCP server and the Internet emulator both need to be fast Pentium 4 or equivalent
machines, equipped with a minimum of 1024 Mb of system memory each. The

emulator machine consists of two Ethernet 10/100 NICs to allow traffic to flow

157

through it in both directions at layer-2 (via a bridging of the two NICs — see

subsections below).

The 802.11 AP is a Linksys WRT54G device whose factory firmware was flashed with
the DD-WRT v23 [278] third-party firmware, which is still based on the IEEE
802.11b/g MAC standards, but offers many additional and advanced features for
greater control in experimental situations. In a nutshell, the DD-WRT firmware was
developed and released under the terms of the GPL for many IEEE 802.11-compatible

APs based on either a Broadcom or Atheros chipset.

The TCP client/s in the WLAN need to be Intel Centrino or equivalent specification
notebooks/machines, equipped with a minimum of 512 Mb of system memory and an
IEEE 802.11b/g-compatible client adapter. However, there are no real strict
requirements for the clients in the WLAN of the testbed, as in the real-world there is
little control over the types of 802.11 devices that connect to the Internet, and the

operating systems they run.

The 802.11 sniffer devices are inexpensive proprietary USB adaptors supplied by
CACE Technologies, referred to as their AirPcap device [279]. AirPcap enables the
capturing of 802.11 frames, including control frames, management frames, and low-
level power information per frame. Being a completely passive capture solution, it is a
great component in the testbed for capturing forward and reverse channel wireless
traffic. Both AirPcap devices need to be plugged into independent MS Windows based

machines for their operation.

Finally, all wired connections between the server, Internet emulator, and the AP are
made using full-duplex cross-over Ethernet 10/100 cables to eliminate the need for

additional hardware such as switches or hubs.

6.3.1 TCP Server Settings

The operating system of the TCP server machine needs to be running the current
generation of Linux version 2.6, preferably release v2.6.13 of the kernel and newer. As

already touched on in a previous chapter, from kernel v2.6.13 onwards, Linux supports

158

sender-side ‘pluggable’ congestion control algorithms for the TCP stack [81]. This
allows for the switching between the different implementations at runtime from the
Linux user-space by making echo «calls to write values to the
/proc/sys/net/ipv4/tcp congestion control entry. For example, the
following command would set the current TCP congestion control algorithm to the

Hybla variant with immediate effect:

shell> echo “hybla” > /proc/sys/net/ipv4/tcp congestion control

Table 6.1 summarises the TCP congestion control algorithms that are currently
available for use, based on v2.6.19 release of the kernel. The implementations are

being updated all the time with each new version releases of the kernel.

To extract accurate and meaningful data during experiments directly from the TCP
layer, the Linux v2.6 kernel needs to be instrumented using the web/00 patches [280],
which are freely available from the official web100 project website [281]. A web100-
instrumented TCP stack allows low-level data from the Linux kernel to be extracted

and collected at the user-space level.

The entire web100 suite is distributed as two components: 1) a Linux kernel patch that
implements the instruments, and ii) a set of user-level libraries and tools for reading
and writing values to/from the kernel instruments, referred to as the userland tool.
These two components must be downloaded and installed separately. While the kernel
patch may be used in its entirety, the userland tool requires the web100 kernel patch to
be installed for it to work. Note that the entire set of TCP instruments has been defined
in an [ETF internet-draft; they are referred to as the kernel instrument set (KIS)
variables. The KIS variables are fully documented in the fep-kis.txt document that is

distributed with the kernel patch.
In summary then, the webl00 instrumentation solution is a passive technique for

capturing low-level information on passing traffic through the TCP-layer, as well as

extracting useful data from the TCP-layer itself [280] [282].

159

Variant Target Usage Reference
Reno Legacy Implementation of TCP [99]
EE—
High-Speed TCP Large Bandwidth and RTT Paths [283]
H-TCP Large Bandwidth and RTT Paths [284]
Scalable TCP Large Bandwidth and RTT Paths [285]
BIC Large Bandwidth and RTT Paths [268]
CUBIC Large Bandwidth and RTT Paths [286]
Hybla Transmissions over Satellite Links [208]
o Low Priority Transmissions
Low Priority TCP [287]
without Disturbing other Flows
—
Vegas Estimating Path Conditions using RTT [193]
Transmissions over Wireless Links
Veno _ [199]
with Random Losses
Large Bandwidth and RTT Paths _
Westwood+ [195]

with Random Losses

Table 6.1: Currently available TCP congestion control algorithms in Linux v2.6.19 kernel

6.3.1.1 Capturing and Analysing TCP Traffic

To generate TCP traffic flows (i.e. connections) between the server machine and the

802.11 WLAN devices in the testbed, a modified version of the popular iperf traffic

measurement tool was installed on the server machine, whilst the devices in the testbed

have the standard version of iperf installed. Modifications were necessary to ensure

that iperf delays the sending of any data by 2500 ms after initiating a new TCP

connection with the receiving end. This was to allow sufficient time for a web100

connection id to be written to the kernel /proc/webl00/*id entry, and for

160

the userland tool to be initiated so that it was waiting for the start of reading TCP KIS
variables from the very first byte of TCP data sent. The source code of the modified

iperf tool for the benefit of web100 experiments is available upon request.

A further tool called readiperfport was developed to work in conjunction with the
userland tool after it is initiated. Userland comes ready with a set of web100 libraries
that have been written in the PythonC language. This essentially provides a clean
object-oriented interface to the kernel web100 KIS variables through userland at the
user-level. The readiperfport tool, written in PythonC, takes as its initial input
parameter the TCP sender’s port of the newly created connection by iperf, which is
port 5001 by default. Hence, readiperfport uses the value 5001 by default to get the
corresponding web100 connection id, which it then uses to read all the KIS
variables from the /proc/webl00/*id entry mentioned above. The readiperfport
tool is easy to use and very customisable. It can read values from the KIS variables at
regular intervals during a live TCP connection on the order millisecond granularities,
which can be set by the user. The user can also specify the KIS variables they would
like to read from, and where the data should be stored. By default the readiperfport
tool dumps all read data into a standard text-file by the name of
webl00 <connection_ ids.txt inthe current directory. The source code of the

readiperfport tool for the benefit of web100 experiments is available upon request.

As a final step, in order to capture all TCP data segments and ACKs that have been
sent and received, the popular fcpdump tool [288] was installed on the server machine
and on the 802.11 clients in the WLAN of the testbed. It needs to be initiated on both
sides prior to the invocation of iperf, and should be configured to listen for all TCP
traffic that is associated with the iperf port: port 5001 by default. The rationale behind
this is to have information from both sides of a TCP connection, as recommended for
accurate TCP analyses in [108]. This technique allows for the tracing of segments and
ACKs from both the server’s viewpoint and the 802.11 client’s viewpoint. The two
independent tcpdump capture files give a complete set of data for inferring accurate
statistics such as the true number of segment losses encountered at the TCP-layer. The
teptrace tool [289] is recommended for parsing and analysing the tcpdump capture
files.

161

6.3.2 Internet Emulator Setup and Configuration

In order to incorporate the idea of an Internet component in the testbed between the
server and the 802.11 AP, a separately running emulation machine needs to be built
and configured to act as a WAN traffic shaper. The idea is to be as realistic as possible
in subjecting forward and reverse channel TCP flows to the typical characteristics of

the Internet.

The Internet emulator machine (running a Linux v2.6 kernel release) consists of two
10/100Mbps Ethernet NICs, which must be bridged at layer-2 using the Linux bridge
packages [264], as discussed in Chapter 5. This allows traffic to flow through the
bridge interface in both directions (full-duplex) as close as possible to the PHY, with
the objective of trying to minimise packet-header overheads. The idea behind this is to
make TCP (at layer-4) believe that all sent and received segments have just traversed a

wider area network, i.e. the Internet.

Ideally the emulator machine should be a fast Pentium 4 or equivalent, and have at
least 1024 Mb of system memory, preferably more. To configure the machine as a
WAN traffic shaper the open-source linux advanced routing and traffic control
(LARTC) packages [290] need to be installed and configured. The key component of
the LARTC package is called traffic control (TC), which allows a Linux machine to
perform various methods for classifying, prioritising, shaping, and limiting both
inbound and outbound traffic. Further components of the LARTC suite consist of
netem, which was introduced in Chapter 5, and ebtables [291] which enables the basic

Ethernet frame filtering at the bridge.

To setup the emulator machine to behave as the Internet, LARTC parameters need to
be set manually by the user. Rather than inputting arbitrary values as parameters, some
real-world studies were conducted on the general path characteristics of the Internet, as
instructed in [8]. Primarily the interest was in those statistics that would impact the
end-to-end behaviour of TCP. Hence, the popular pchar tool [292] was used to gauge
chosen statistics from the live Internet at random intervals over a period of seven days,
targeting an extensive list of popular web-servers at varying physical distances at

different times of the day, including the likes of Google.com, Sourceforge.net, and

162

Yahoo.com. All pchar tests were performed from within a home environment using an
802.11 WLAN device connected to the Internet (via a broadband connection) as the

initiating client.

The key pchar statistics that were of interest are a) the end-to-end propagation delay
(including the standard deviation), b) the bottleneck bandwidth across the Internet
(upstream and downstream), ¢) average queuing delay at intermediate hops, and d) the
packet loss probability. All collected results were averaged, and the values
recommended as good LARTC parameters for the Internet emulator in the testbed are
a) 108.76+4 ms as the one-way propagation delay for packets (to two decimal places),
b) 5.029 Mbps as the downstream bottleneck bandwidth and 0.686 Mbps as the
upstream bottleneck bandwidth, ¢) 0.0048 ms as the average queuing delay for
packets, and d) 0.002 as the probability of losing a packet. It was reassuring to know
that the values obtained for the packet loss probability closely matched that of the
Internet studies conducted in [276]. Once these values were applied to LARTC at the
bridge interface, it enforces the rules on all forward and reverse traffic so that TCP
connections were also subjected to fixed-network related issues such as path

congestion, segment losses, and queuing delays as in the real Internet.

6.3.3 The Last-hop 802.11 WLAN

The wireless portion of the testbed in Figure 6.3 is a fully operational real-world
802.11 WLAN, acting as the last-hop link for TCP data segments arriving from the
wired server. All TCP data segments arrive at the 802.11 AP from the wired side and
are encapsulated in 802.11 data frames before being transmitted over the WLAN. TCP
ACKs are generated by the TCP-layer of the 802.11 end-device/s, which are
encapsulated as 802.11 data frames at the MAC before being transmitted back to the
AP over the WLAN. The AP then forwards all TCP ACKs to the wired side. Figure
6.3 1illustrates the flow of TCP traffic between the wired and wireless domains,

defining the meanings of downlink and uplink traffic over the 802.11 WLAN.

163

TCP Data Segments (DOWNLINK)

> 8§02.11 Data Frames containing
TCP Data Segments
______________________________________ .’.
)
TCP Internet
Server Emulator 802.11
AP
© 802.11 Data Frames containing
s - TCP ACKs
TCP ACKs (UPLINK)
< End-to-End TCP Connections >

Figure 6.3: The flow of TCP traffic over the wired-to-wireless testbed

6.3.3.1 Capturing 802.11 Traffic

The AirPcap USB devices are used to capture all downlink (forward channel) and
uplink (reverse channel) 802.11 traffic over the WLAN. As shown in Figure 6.2, one
AirPcap device is positioned directly next to the AP so that it can capture all data
frames being sent towards the end-device using downlink filters (i.e. TCP data
segments), and one AirPcap device is positioned directly next to the end-device so that
it can capture all data frames being sent back to the AP using uplink filters (i.e. TCP
ACKs). This technique produces two independent AirPcap capture files for each TCP
experimental run, a downlink traffic dump and an uplink traffic dump. The capture
dumps can then be analysed to infer useful statistics about the transmission
characteristics of 802.11 frames over the WLAN, and about the impacts on TCP

segments and ACKs that they encapsulate.

6.3.3.2 Analysing 802.11 Traffic

The analysis of each AirPcap capture dump is performed in two stages: i) the filtering
stage, and ii) the processing stage.

In the filtering stage the popular wireshark network analyser tool [293] is used to load

and display the contents of each capture file. Wireshark filtering rules are then applied

164

in order to display only those frames that are of interest. For example, if loading up the
downlink traffic dump then only those frames with the source address field equal to
the AP’s MAC address and the destination address field equal to the end-device’s
MAC address should be displayed. Once the frames of interest have been filtered, all
802.11 and TCP protocol header field values inside each of the frames are exported to
a separate text file, in the order that they were captured. Hence there will be two text-
files, one for downlink traffic and one for uplink traffic. The text files are then ready to

be processed and analysed.

In the processing stage the text files are vigorously analysed using a bespoke script that
has been developed using the Perl scripting language. Hereinafter, the script will be
referred to as the analysewiresharkcaptures tool, and is openly available to the
research community upon request. The analysewiresharkcaptures tool takes as its input
parameters the filenames of the downlink and uplink text-files, and after processing
them it outputs the retransmission distribution of all frame transmissions by the 802.11
MAC, the frame error rate (FER) for 802.11 data frames for both the downlink and
uplink captures, and the amount of time TCP segments and ACKs spend waiting in the
transmit queue of the MAC before being released. The complete methodology behind
how the analysewiresharkcaptures tool has been programmed to compute these

statistics is presented in the subsections below.

Computing the 802.11 Frame Retransmission Distributions for TCP

Here an effective methodology for analysing the behaviour of TCP traffic over an
IEEE 802.11 WLAN is presented. The methodology on captured frames produces the
distribution of retransmissions for all frame transmissions by the 802.11 MAC for both
the downlink and uplink channels (i.e. by the AP and by the end-device), which may

be insightful to those working in the field of error control techniques.

To define, a frame error occurs when the frame is not received successfully by the
802.11 MAC layer at the intended recipient/device. A major cause of such errors are
due to bit corruptions of frames whilst in transit due to noise over the radio medium;
here frames will fail their 802.11 frame check sequence (FCS) check at the receiving

802.11 MAC and are immediately discarded. A further possible cause of frame losses

165

is when frames simply do not arrive at the intended recipient/device due to severe

signal fading.

It is always the sending MAC that has responsibility for the successful transmission of
data frames to the recipient. Upon the successful arrival of a data frame at the recipient
MAC without errors, it immediately confirms to the sending MAC a successful
delivery by transmitting an 802.11 ACK frame. Upon receiving an 802.11 ACK for the
most recently transmitted data frame, the sending MAC transmits the next data frame
in the sequence from its transmit queue. If the sending MAC does not receive an
802.11 ACK frame within a set period of time, it will immediately retransmit the same
data frame. This is known as an 802.11 ACKTimeout. This process continues until the
number of retransmission attempts equals the retry limit of the sending MAC. At
which point the sending MAC will discard the data frame in concern, and proceed to
the next data frame in sequence from its transmit queue [20]. Note that a sending MAC
can either be a downlink sender (i.e. an AP transmitting TCP data segments), or an

uplink sender (i.e. an end-device transmitting TCP ACKs).

Based on the above description, it can be deduced that a sending MAC will be forced

to retransmit an 802.11 data frame if one of two situations (or conditions) occur:

1. A data frame is lost in transmission or is received in error at the receiving MAC, in

which case an 802.11 ACK will be not be generated by the receiving MAC.

2. A data frame is received successfully by recipient MAC, and an 802.11 ACK is
transmitted back towards the sending MAC to positively acknowledge the
successful reception. However, the 802.11 ACK frame is lost in transmission or is
received in error at the sending MAC, in which case the sending MAC is still
waiting for the 802.11 ACK. Eventually the sending MAC’s retransmission timer

will expire, causing an 802.11 ACKTimeout.

The analysewiresharkcaptures tool uses the 802.11 header sequence number field to
keep track of the evolution of all frame transmissions that occurred at the sending
MAC, for both downlink and uplink channels. Using the evolution of sequence

numbers for data frames from both sides, the tool computes and produces the

166

retransmission distributions, Rpownink(i) and Ryppvk(i), (for i=1,2,...,.M), for all
transmitted 802.11 data frames for both sending MACs. The value of Rpowniivk(i)
represents the number of data segments requiring 7 retransmissions by the AP before it
was accepted by the receiving 802.11 MAC, and where M is the retry limit. Likewise,
the value of Ryprwk(i) represents the number of data frames that have been
retransmitted 7 times by the 802.11 end-device. For example, the value of Rpownrivk(3)
implies the total number of data frames during the entire experiment that had to be
retransmitted three times by the AP before it was successfully accepted by the 802.11
MAC-layer of the end-device. Note that the value of M could be different for the AP
and the end-device/s, depending on the specific implementation of the IEEE 802.11
MAC which can vary from vendor to vendor. Here it is assumed that A at both sides is

equal.

The retransmission distributions, Rpowneivk(i) and Ryprivk(i), can be used to compute
the probability distribution functions for the frames in which an error occurs,
Ppowxeivk(i) and Pyppnk(i), associated with the sending MAC retransmitting a data
frame 7 times before a successful delivery, where 7 ranges from 1 up to its retry limit,
M. Hence, Ppowntivk(3), for example implies the probability of a data frame in which
an error occurs being retransmitted five times by the AP, with success on the fifth
attempt (i.e. six transmissions of the same sequence number in total). The value of

P D(_)}VNL,TNK(E) 1s computed as follows:

i+ Roowae(i
Puou'.\'.f.r,\'x(f) = “—M)' (Eq. 6.1)
Npiwons

where Naprrrors 18 the total number of data frames (i.e. TCP data segments) where an

error occurred in transmission by the AP during the experiment. Nipgrrors 1S

calculated as shown by Eq. 6.3.

The value of Pyprivk(i) is computed as follows:

P:Hm\(i’) = M (E(] 62)

N CLIENTERRORS

167

where Neyenterrors 18 the total number of data frames (i.e. TCP ACKs) where an error

occurred in transmission by the 802.11 end-device during the experiment.

By having an awareness of retransmission probabilities for 802.11 WLAN channels it
could help researchers working in the field of error recovery to more accurately design
ARQ mechanisms that can dynamically adapt their persistence levels according to
historic probabilities maintained by the MAC. They may even assist researchers of
TCP; for example, if the probability values of Ppowniivk(M) and Ppownrivk(M-1) are
quite high in relation to lower values of i (for i=1,2,...,M, where M is the retry limit of
the MAC) then it could be inferred that the AP’s ARQ mechanism at the MAC is
likely to increase the overall end-to-end delay experienced by TCP data segments
arriving at the AP from the fixed domain (i.e. TCP’s RTT is likely to experience
periods of sudden increases). By knowing this, a TCP sender’s RTO timer could be
heuristically modified to cater for such fluctuations in the RTT calculation, thereby
avoiding unnecessary timeouts and reductions of the cwnd size. The same is also true
if Puprink(M) and Pyppivk(M-1) are of high values, which would cause delays to
returning TCP ACKs from the WLAN.

Calculating Downlink/Uplink 802.11 Frame Error Rates (FERs) for TCP

This subsection presents a new technique for independently calculating the total frame
error rate (FER) for downlink (forward channel TCP traffic) 802.11 data frames
(containing TCP data segments), FERpownunk, and the FER for uplink (reverse
channel TCP traffic) 802.11 data frames (containing TCP ACKSs), FER yprink.

To compute FERpownLink, the total number of downlink data frame errors, N4perrors,

must be calculated first, and is given by the following expression:
A
Naperrors = ZJ‘" Roowvumr(F) (Eq. 6.3)

The value of FERpownrivk (%) is then calculated using the following expression:

N APERROHRS

F ER DOWNLING =

100 (Eq. 6.4)

Ni!‘?'{)],”’.

168

where N,proras is the total number of data frames that are transmitted by the AP during

an experiment, including all retransmissions, as shown by Eq. 6.5.

Navrors = Z(I + 1) . R;wua\uw;(ll) (Eq. 6.5)
To compute FERypink, the total number of uplink data frame errors, Nepenrerrors,

must be calculated first, and is given by the following expression:
Newvwvrerrors = 2]’ . RUP:.L\'K(f) (Eq. 6.6)

The value of FERp; vk (%) 1s then calculated using the following expression:

N CLIENTERRORS

FERuvrng = 100 (Eq. 6.7)

Nevexrrorat

where Neyevrroran 1S the total number of data frames that are transmitted b)’ the
802.11 end-device during an experiment, including all retransmissions, as shown by

Eq. 6.8.
Newmxrrora = i i+ 1) * Ruex (1) (Eq. 6.8)

Transmission Delays at the 802.11 MAC for TCP Traffic

One major problem for TCP includes spurious expirations of its RTO timer due to the
variable (and often lengthy) delays over the wireless path of a connection, causing
unnecessary TCP retransmissions and reductions of the sender’s cwnd size. Delays
over the WLAN are variable because the 802.11 MAC protocol uses its own stop-and-
wait ARQ technique to retransmit locally unacknowledged frames before continuing
with the next frame in the sequence [23]. This can suddenly increase TCP’s RTT
calculation, as well as lead to a RTO event. Such problems exist because TCP is
disconnected from all error recovery mechanisms performed below layer-4, and has no

control over the delays experienced by individual segments or ACKs.

169

This subsection therefore presents the methodology used to calculate the delays
experienced by TCP data segments and ACKs being transmitted by an 802.11 MAC

until each frame is successfully delivered, accounting for frame retransmissions.

Assuming that one TCP data segment is encapsulated by just one 802.11 data frame,
and that one TCP ACK is also encapsulated by just one 802.11 data frame (i.e. there is
no fragmentation at the MAC), then it is possible to compute the individual delays
experienced by each unique TCP data segment and ACK before it is successfully

received by the MAC of the recipient device.

The analysewiresharkcaptures tool parses the downlink and uplink capture text-files to
extract values from the timestamp field in the 802.11 header of each data frame, which
is set at the point when it is actually transmitted by the sending MAC. The tool also
extracts the corresponding 802.11 sequence number of the outgoing frame. Both
values are immediately added to separate arrays, one for the timestamp

(timestamp []), and one for the sequence number (sequenceno [1).

After parsing each file from beginning to end, each array is then processed. The first
clement of timestamp [] is stored in a temporary variable, starttime, and the
first element of sequenceno[] is stored in a temporary variable,
currentseqgnum. The tool then reads the second element of sequenceno [], and
stores its value in nextseqnum. If the value of nextseqnum and
currentsegnum are equal then the tool moves onto the third element of
sequenceno [], storing its value next segnum. If the value of next segnum and
currentsegnum are still equal then the tool moves onto the fourth element of
sequenceno [], and this continues until nextsegnum does not equal
currentsegnum. At this point the corresponding element of timestamp[] is

read and stored in the variable endtime.
The difference between endt ime and starttime is then calculated, and the result

is stored in another array, delays []. This value is effectively the period of time

taken to successfully transmit the 802.11 data frame with sequence number

170

currentsegnum; hence it can also be said that it is the delay experienced by the

TCP data segment or ACK over the WLAN.

Finally the value of currentsegnum is set to next seqgnum, and the tool continues
traversing through sequenceno [] after setting the starttime variable to the
next in-sequence timestamp [] element. Once all processing is complete, the tool
outputs all elements of the delays|[] array for each of the text-files into two
separate output text-files, one for downlink TCP data segment traffic and one for the
uplink TCP ACKs. Each text-file contains a list of all the individual time periods that
will have been experienced by TCP traffic over the WLAN.

Such insights can be useful to researchers wanting to gain insights into the pattern of
delays experienced by downlink and uplink TCP traffic over 802.11 WLANs under
specific conditions. The data could assist with the better tuning of the sender’s RTO
timer in-line with the likelihood cause of an unexpected hike in the TCP RTT. A likely
sender could use the delay distributions (of either the data segments or the ACKs) to
make decisions as to whether the delay could be due to network congestion in the fixed
path, or whether it is due to delays at the 802.11 MAC as a result of poor channel
conditions and constant frame retransmissions. The key idea is to prevent unnecessary
timeouts and retransmissions at the sender when the 802.11 MAC may have already

successfully delivered the TCP data segment in concern.

6.4 Evaluating the Impacts of an 802.11g WLAN on TCP

In this section the results of extensive real-world measurements made over the
proposed wired-to-wireless testbed are presented, which consisted of a TCP sender
combined with a last-hop real-world indoor IEEE 802.11g WLAN. This section also

acts as a demonstration of the usage of the testbed.
The experiments investigate the effects of radio signal attenuation due to varying

distances of an 802.11 end-user from the AP. The focus is on the downlink and uplink

FERs for TCP flows over the WLAN, and consequently on the retransmission

171

behaviour of the fixed TCP. This is one the strengths of the testbed, as it is able to

gauge TCP and 802.11 statistics from the same experiment.

Specifically, a series of experiments are performed using the different modulation
schemes belonging to the 802.11g OFDM PHY to gauge potential differences in
characteristics between them. For each modulation scheme, a separate downlink and
uplink FER against varying SNR is calculated from actual captures, clearly

distinguishing between the two.

Finally, insights into the real-world probability distributions of the number of
retransmissions per data frame that were made over the WLAN by the AP are also

given, with useful findings.

6.4.1 Motivations

[t is important to segregate the forward and reverse channels of the 802.11 WLAN for
TCP studies because each direction is carrying a different type of TCP segment,
leading to differing reactions by the TCP sender when losses or delays occur. When
802.11 data frame losses occur in the forward channel of the WLAN they affect TCP
data segments, which then lead to the TCP-layer of end-device generating DUPACKs
for each subsequently arriving TCP data segment. When three DUPACKSs reach the
sender, the fast retransmit and fast recovery algorithms are invoked, causing the sender
to retransmit the presumed lost data segment. Similarly, 802.11 data frame losses in
the reverse channel of the WLAN affect TCP ACKs on their way back to the sender. If
ACKs are lost then the TCP sender will not receive the acknowledgment that it is
waiting for in order to advance its cwnd size and the sending of more data. However, it
will only wait until the expiry of the RTO timer for the ACK to arrive, after which it
simply retransmits the data segment in concern, reducing its cwnd size drastically. Of
course, the ACK may actually arrive after the TCP sender retransmits, as it may simply
have been delayed due to the end-device’s MAC performing its ARQ on the 802.11

data frame containing the TCP ACK in concern.

Another problem with TCP senders is where segments (both data and ACKs) are

randomly (or stochastically) lost over the wireless path, which ultimately leads to

172

reductions of the sender’s cwnd size as with congestion-related losses. As discussed
previously in Chapter 3, TCP losses can occur in both the forward and reverse
channels of a WLAN due to a range possible causes, ranging from poor radio channels

to unfairness issues between downlink and uplink flows, and so on.

Several attempts have been made to correlate the error characteristics of the 802.11
WLAN with the behaviour of TCP [36] [37] [40], however, very little literature was
found that investigates the real-world error characteristics of a typical indoor 802.11
WLAN, cross-comparing it to the segment retransmission behaviour of a TCP sender,
which also studies both the forward and reverse channels of the WLAN. Since the
reverse channel of a WLAN also consists of 802.11 data frames that encapsulate TCP
ACKs, which the sender is solely reliant upon for advancing its cwnd size, then it is of
prime importance that the frame error characteristics of a WLAN in both channel
directions was understood. Therefore, simultaneously capturing and studying data
from the 802.11 WLAN and from TCP at the sender for the same experiment is what is
promoted in this chapter, often referred by the community to as a cross-layered

approach.

6.4.2 Testbed Configuration Settings

The testbed topology shown in Figure 6.2 was used for all experiments in this section,
with the wireless path consisting of a real-world indoor WLAN using the 802.11g

standard, using just a single stationary 802.11g end-device.

The TCP server was set to use the Reno implementation from the array of possible
variants, as it reflects a widely used TCP. The SACK option, timestamps, delayed-
ACKs, and window scaling extensions were also enabled, as this is typical of sender-

side implementations today. The TCP MSS was set to 1448 bytes.

The 802.11¢g device was an Intel Centrino notebook with 512 Mb of system memory,
and was running the MS Windows XP SP2 operating system, which is typical of most
WLAN end-user devices today. No changes were made to the TCP/IP stack on the
notebook. The built-in 802.11g adaptor was an Intel Pro Wireless 2200BG card, with

settings left to their factory defaults, which included a data frame retry limit of 15.

173

The IEEE 802.11 AP, running the DD-WRT v23 firmware, was configured to operate
in 802.11g mode only. The firmware was also used to fix the data transmission rate
(and hence the OFDM modulation scheme) of the AP to the desired value, as given in
Table 6.2. All other AP settings were left to their defaults, which included an 802.11
MAC frame retry limit of 7, as specified by the IEEE 802.11g standard.

OFDM
Supported Data Rate

Modulation (Mbps)
S

Scheme P

BPSK 6,9
QPSK 12, 18
16-QAM 24, 36
64-QAM 48, 54

Table 6.2: 802.11g modulation schemes and supported WLAN data rates

6.4.3 Measurements and Scenario

To keep the analysis work focused, only a single 802.11g device was used in the last-
hop WLAN in order to exclude the effects of multiple clients, such as 802.11 MAC
contention issues and frame collisions that do occur (refer to Chapter 3). This was to
capture the best-case scenario results. The aim was to investigate the error
characteristics over the WLAN, i.e. to gain real-world insights into the error rates of
frames traversing the forward channel and reverse channel independently. Hence the
focus could be put solely on the relationship between indoor channel conditions and

TCP sender behaviour in the wired domain.

The scenarios concerned were that of the effects on a TCP sender of increasing the
distance of the 802.11g device from the AP. Simultaneously for each unique distance
from the AP, an additional objective was to discover how each 802.11g PHY
modulation scheme impacted the performance results. In order to keep the analysis
work systematic, each unique modulation scheme of the OFDM system was chosen to

experiment with. The chosen schemes were BPSK at 9 Mbps, QPSK at 18 Mbps, 16-

174

QAM at 36 Mbps, and 64-QAM at 54 Mbps, covering all of the OFDM modulation

schemes.

The 802.11g device was positioned at exactly 2m, 4m, 6m, 8m, and 10m in a straight-
line distance from the AP. At each of these distances there were an array of common
office obstacles, including plasterboard walls, furniture, and sources of electrical and
radio interference, creating LOS and NLOS situations for each case. Technically, these
distances are only useful as labels for positioning purposes due to the uncontrolled
nature of the WLAN environment. Refer to Table 6.3 for more details on what each of
the discrete distances actually implies. Prior to commencing any experimental work, a
wireless site survey was conducted from within the home-office WLAN using the
popular retstumbler wireless network scanning tool [294] to assess the levels of
interference from neighbouring WLAN APs operating in the same channel, which is a
common situation today due to the popularity and penetration of the 802.11
technology. Then, using the built-in IPW2200BG card of 802.11g device (in
conjunction with proprietary Intel software) a signal quality measurement survey was
performed at each of the locations over a period of seven days at different times of the

day, capturing metrics such as signal and noise values as reported by the device.

For the experiments, the testbed AP was set to operate in channel 11 of the 2.4 GHz
band. The netstumbler tool revealed that there were 10 additional APs detected nearby,
consisting of two operating in channel 1, three operating in channel 6, and five
operating in the same channel 11. In Table 6.3 the averages of the signal quality
measurements at varying distances from the AP are given, as perceived by the 802.11¢g

device. Figure 6.4 is a screenshot from netstumbler revealing results of the site survey.

Distance from AP Path Signal Noise SNR
(m) (dBm) (dBm) (dB)

2 LOS -43 -93 50

4 LOS -50 -94 44

6 LOS -51 -93 42

8 NLOS -56 -94 38

10 NLOS -61 -93 32

Table 6.3: Indoor home-office WLAN signal quality measurements with varying distance

175

5) Channes MAC BRI - = [Hame [Chan [Speed [Venda [Yype Tenc | v T Signah [Nokie { SHR+
L2481 @ 0NBAD040Z0 SKYBOS42 M SiMigs (Fake) AP WEP 18 @2 400 18
¢+ @ 00035BLCF33 @ M0IBDIBASIE SKYES1SS 1 SiMbgs [Fake] AP WEP 18 79 am 2
1 s ® 00124D1RASSE @ COMECEEC276 SKY2T4TE 1 SiMbps [Fakel AP WEP 18 81 400 19
.= a é PSR @ OOVBFMEGEE SKYBI2AS E SiMbps [Feke] AP WEP 0 A0 W
L ® oz | @ 00BEEDDNET TakTakkka 11 SiMbps (Fake] AP WEP 20 78 a0 w2
© 1 L@ oosupoFzazas | @UUSBCCEIN Heme Waekss 1 SiMbps MNelgew AP WEP 20 i a0 2
sogtn @ ovieTseEF2 skyDIns 1 GiMbes [Fake] AP WEP 23 T a0 2
O WNDETHES |@oorereeacess BTHomeHubDSFC 1 StMbps (Fake) AP WEP % 66 a0 M
@ (0V4BCEEC2TE @ 0neeFn207 Skyosdg 6 GdMbps [Fake) AP WEP 54 40 00 B0
@ ODIBEEDDIIC |®0ox00F23744 D2wiekessAAIFDD & SAMbps Thomso. AP WEP 72 25 w7
'@ 001840040230 O O0NDEISEN ddvatv23 T SiMbps (Feke) AP 3OS a0 75
- (@ O0VBFRAALER
(@) DOVB2F7EEFF2

Figure 6.4: Site survey results using netstumbler WLAN scanner

For the experiments then, the scenario that was of particular interest was the
performance of a wired TCP sender (i.e. on a server in the Internet somewhere) when
an IEEE 802.11g end-user in a last-hop WLAN (i.e. in a typical home or office
environment) downloads a 10 Mb file from the TCP sender. The primary interest was
to discover whether a relationship existed between a TCP sender in a geographically
different location, and the perceived channel SNR of an end-device in the last-hop
802.11g WLAN, and to investigate if the PHY modulation scheme has any impacts on
the performance. Note that iperf was used to generate the TCP traffic at the server in
the wired-to-wireless testbed (refer to earlier sections for more details). In total each 10
Mb transfer was run three times at each of the five locations, and repeated for each of
the four modulation schemes. All results were measured in a stable and consistent
indoor environment across all experimental runs. All results in the following

subsection have been averaged.
6.4.4 Results and Discussions

Downlink and Uplink Frame Error Rates

Figures 6.5 and 6.6 are the plots of the forward (downlink) and reverse (uplink)
channel FERs for the BPSK, QPSK, 16-QAM, and 64-QAM modulation schemes that
were tested over the 802.11g WLAN as the measured SNR of the end-device was
increased (i.e. decreasing distance from the AP). The results presented in Figures 6.5
and 6.6 were produced using Eq. 6.4 and Eq. 6.6 (via the analysewiresharkcaptures
tool) based on 802.11 frame captures from the testbed. On each figure an average
trend-line has also been drawn, representing a general trend of the FER across all

modulation schemes.

176

It is evident from Figure 6.6 that the FER over the reverse channel in all experiments is
very much present, and potentially an issue. Because the reverse channel consisted of
802.11 data frames encapsulating TCP ACKs, it can be said that both protocols (TCP
and the 802.11 MAC) would be affected by this. The plots also show that the error
rates in both channel directions are different from each other, something which should
be considered when developing channel loss models for indoor WLANSs. Finally,
supporting the work undertaken in Chapter 5 of the thesis, a reverse channel error

model should not be omitted by researchers of wireless networks.

Looking at both Figures 6.5 and 6.6, the initial observations are that frame errors are
prevalent in both channel directions, even at very short distances of the end-device
from the AP. Another observation is that the reverse channel possesses FERs that
mustn’t be ignored; the results indicate that TCP ACKs do become erroneous on their
way to the AP (to be forwarded to the TCP sender), and hence can cause unnecessary
retransmissions of a TCP data segment if the end-device’s MAC is unable to recover

the TCP ACK within a suitable time period.

3.5 | -

(5]
—t
|
|
|

M
o

802.11 DOWNLINK FER (%)
o n

—
|
|
|
|
|

___________ _— e = - ___-_BPSK
—4—- QPSK
— 16-QAM
-&-64-QAM
= Ayerage

0.5

32 38 42 44 50
SNR (dB)

Figure 6.5: Forward channel FERs over the WLAN under OFDM modulation schemes

177

2 - S S — —

-#- BPSK
1.75 + - & QPSK
—16-QAM
8- 64-QAM
15 . e S o - _ o _ _ _ .
_ " === Average
£ -
4 B IR (O e R S - - NG e el
il 1.25
T
x
= 1 . [= _
-
5 —
07+
of
o
=]
0.5 - - - - - - . S U s
. 025 - - : - - . o . N N
32 38 42 44 50

SNR (dB)

Figure 6.6: Reverse channel FERs over the WLAN under OFDM modulation schemes

Looking specifically at the downlink FERs in Figure 6.5, it can be seen that at low
SNR values, with the end-device positioned no more than 10 metres from the AP, the
FER can reach as high as 4% of all data frames transmitted by the AP. It was also
noticed that even at very high SNR values, with the end-device positioned less than Sm
from the AP the FER remained in the region of 2.5%. Overall, BPSK and QPSK
performed better than 16-QAM and 64-QAM for all SNR values. However, looking at
the average trend-line in Figure 6.5, the average FER for data frames in the forward

channel remained fairly constant across all distances, in the region 2% to 3%.

Looking specifically at the reverse channel FERs in Figure 6.6, it can be seen that data
frame errors in the uplink direction possess their own unique error characteristics. First
of all, at low SNR values the FER can reach as high as 2% of all data frames
transmitted, which is quite significant and comparable to forward channel FERs. An
interesting behaviour that was noticed is that uplink data frames were less affected at
the higher SNR values, with FERs dropping significantly in the region of 0.25% to
0.5% on average across all the modulation schemes. Surprisingly, BPSK produced the
highest number of reverse channel errors, contradicting its performance on the forward
channel. Notice also that 16-QAM produced the lowest number of reverse channel

frame errors, but produced the highest number on the forward channel.

178

In summary then, the significance of 802.11 (data) frame errors has been clearly
highlighted by the experimental results. It is emphasised that these results represent a
best-case scenario, when in fact FERs could be much higher as soon as more 802.11
devices are factored into the WLAN increasing channel contentions, or when the
distances from the AP are greater than 10 metres which is often the case. Researchers
should therefore at least consider these results when designing applications for higher-

layer protocols (i.e. TCP) for usage over wired-to-wireless systems.

TCP Sender Retransmission Behaviour

With accurate insights into the error characteristics of the testbed WLAN, this
subsection presents the TCP sender’s retransmission behaviour (extracted from the
web100 kernel) for the same experiments conducted in the preceding subsection, again
highlighting one of strengths of the proposed testbed. In other words, the testbed
allows for the observation of how TCP’s error recovery mechanism behaved in the
presence of forward and reverse channel FERs in the WLAN as the distance of the
end-device was altered from the AP. Thus, Figure 6.7 presents the results of the
average number of TCP data segments that were retransmitted by the server during an

entire 10 Mb transfer with increasing SNR over the last-hop WLAN.

Looking at Figure 6.7, the initial observation is that the TCP sender had to retransmit
data segments at all SNR values for each of the modulation schemes, with 64-QAM
consistently causing the greatest number of segment retransmissions. In fact, with the
client located just 10 metres from the AP, 64-QAM caused on average 181
retransmissions of data segments, i.e. amounting to over 5% of the original data (10
Mb) being retransmitted. Note also that each of the retransmissions would have stalled

the evolution of sender’s ewnd size, affecting its sending rate each time.

A second observation from Figure 6.7 is that of a negative correlation for TCP
retransmissions with increasing SNR. In order to get a better understanding of this
behaviour these observations are cross-referenced with the forward channel (Figure
6.5) and reverse channel (Figure 6.6) FERs. It is noticed that the average reverse
channel FERs also possessed a negative correlation with increasing SNR values,

whereas the forward channel FERs remain fairly constant. This leads to the hypothesis

179

that TCP retransmissions may be more closely related to reverse channel losses, rather
than forward channel losses. A possible explanation for this is if TCP ACKs are lost in
the reverse channel of the WLAN, then the TCP sender in the wired domain will not
receive that ACK, and eventually its RTO timer will expire, causing it to retransmit the
unacknowledged data. However when cross-comparing this result with Figure 6.5 for
the downlink FERs, the result of obviously contradictory to expectations, and therefore

a full conclusion cannot be drawn.

A second possible explanation for linking the reverse channel FERs to TCP segment
retransmissions is due to the ACK-compression effect occurring [11], leading to TCP
data segments being dropped from the AP’s sending buffer due to bursts of data being
injected into the network as a result of sudden increases in the sender’s cwnd size.
TCP’s self-clocking nature means that it relies on the timely arrival of ACK segments
in order to progressively advance the cwnd size and the sending of new data into the
network by probing network capacity gently. However, due to the existence of frame
errors on the reverse channel of the WLAN, TCP ACKs can go missing. If several
TCP ACKs are lost between two successively arriving ACKs, then when they
eventually reach the sender in the wired domain, it will cause TCP to suddenly send
out back-to-back all the data segments being acknowledged by the very last ACK,
resulting in the ACK-compression effect. Because this phenomenon can occur in a
single RTT, it could burden the entire forward path with an instant burst of new data
segments. Such an event could further exacerbate conditions, especially on the forward
channel, because the data segments would traverse the wired domain and arrive at the
AP’s sending buffer. If the buffer has already reached capacity, segments would of

course be dropped, leading to further losses.

180

200 - - . .
—&- BPSK

180

160 | -~ - -

140 -

120

100 - -

80

60 | -

40 -

20 - ----

TCP Retransmissions at Server (Data Segments)

SNR (dB)

Figure 6.7: Number of data segment retransmissions by TCP at the wired server

To summarise then, the results obtained highlight the fact that TCP sender
performance is not only affected by TCP data segments being lost in the forward
wireless channel, but can also be attributable to TCP ACK segments being lost in the
reverse channel. The significance of highlighting to researchers the prevalence of
reverse channel errors is that in many cases link asymmetry is not considered in TCP
loss models due to the relatively smaller size of TCP ACKs in comparison to data
segments. Because TCP is an ACK-clocked protocol relying on the reverse channel for
feedback, the sender can easily misinterpret an erroneous reverse channel as network
congestion on the forward channel, thereby reducing its sending rate unnecessarily,

ultimately leading to starved throughputs for wireless end-users.

Probability Distribution of Frame Retfransmission Attempts by the AP

The retransmission probability, Ppowniivk(i), is the probability of a frame being
retransmitted 7 times by the AP before success, as defined by Eq. 6.1. Recall from an
earlier section that 7 ranges from 1 to M, where M is the retry limit of the sending
MAC and is equal to 7 for the AP. Hence, Ppowniivk(4), for example implies the
probability of a data frame being retransmitted four times, with success on the fourth

attempt (i.e. five transmissions of the same frame in total).

181

The results presented in this subsection are from the same TCP experiments conducted
in the preceding subsection, and have been averaged. All probabilities are based on the
total number of data frames transmitted in the downlink and uplink channels of the
WLAN per experiment. Figures 6.8 to 6.12 present the distributions of the downlink
frame retransmission attempt probabilities, Ppownrivk(i), for each of the modulation
schemes tested at distances of the end-device of 2, 4, 6, 8 and 10 metres from the AP,
respectively. The plots do not show the case where 7 is equal to zero, as technically

these are not classed as retransmissions. All probabilities have been calculated using

using Ppowntivk(i) X FERpownLINK.

Looking initially at Figure 6.8, single retransmission attempts by the AP dominated the
probability distribution, with double attempts also being present. The probabilities for i
ranging from 3 to 6 were very small, as would be expected in good channel conditions,
with only the QPSK modulation scheme producing incidences of 5 and 6
retransmissions per frame. There were not any incidences of 7 retransmissions per
frame. Figure 6.8 also shows that the 64-QAM modulation had the highest probability

of single, double, and triple frame retransmissions occurring.

From Figures 6.9 (4 metres) and 6.10 (6 metres), it can be seen that there was an
increased likelihood of a greater number of retransmission attempts per frame,
especially for QPSK and 64-QAM, which in Figure 6.9 had a higher probability of

retransmitting the same frame 6 times than when 7 is equal to 2.

The most striking observation can be seen in Figure 6.12, where the initial observation
was that the Ppownrivk(i) distribution possessed a very different behaviour to that
presented in previous plots. The striking result here was that 60% of all frames sent by
the AP using the QPSK modulation scheme were retransmitted 7 times on average.
Note also that the AP’s retry limit was set to 7, so it was possible that a subset of these
frames were discarded by the AP (i.e. complete losses). QPSK also had the least
percentage of retransmission lengths ranging from 3 to 6 inclusive. Equally striking
was that for 64-QAM, over 50% of all sent frames were retransmitted 6 times. Of
course, such events can be detrimental to TCP’s end-to-end performance, as they
would have increased the delay experienced by TCP data segments over the WLAN

due to the persistence of the ARQ mechanism. Such delays can hike TCP’s estimate of

182

the RTT, and cause unnecessary retransmissions due to the expiry of the RTO timer.
Taking the situation where 7 is equal to 6, the AP would have succeeded in transmitting
the frames on the 6" attempt, however due to the increased delays TCP may have
retransmitted the same data segment from the fixed domain (and hence reduced its
cwnd size), ultimately leading to a duplicate and wasted effort. This result clearly
demonstrates why there should be some form of cooperation between TCP and the

802.11 MAC in order to avoid such inefficiencies.

In summary, the results are surprising, especially because the distance of the end-
device from the AP was just 10 metres or less, well within the typical signal range of
an 802.11g infrastructure WLAN. Such end-user distances are not uncommon within
home-office WLAN environments. Hence, TCP senders in the fixed Internet could be

greatly affected by last-hop WLAN error conditions, more so than was previously

assumed.
0125 . - . . - . o S DBPSK
BQPSK
o1 0 16-QAM
B864-QAM
> 0075 | -~ - - - - -
g
m
2
[
o 005 _) _ . . . Ll
0025 - - PR N S IR P S I R — S
1 2 3 4 5 6 7

Retransmission Attempts by AP (/) (DOWNLINK)

Figure 6.8: Probability distribution of frame retransmission attempts by AP (2m / SNR = 50dB)
(Probabilities plotted using Ppowniivk(i) X FERpownLng)

183

OBPSK
0.075 - - A - T - EQPSK
316-QAM
B64-0AM
0'05_ - - - e e - -
2
a
1]
=]
2
o
0.025 - -
o U ‘—E = N=T W= = E
1 2 3 4 5 6 7

Retransmissions Attempts by AP (/) (DOWNLINK})

Figure 6.9: Probability distribution of frame retransmission attempts by AP (4m / SNR = 44dB)

(Probabilities plotted using Ppopniink(i) X FERponniing)

0.1
[] OBPSK
mQPSK

016-QAM

0.075 | | |-- - - : 264.0AM

Probability

(HTITTTITITIT

005 - - - - R S R R - - - R
0.025 - - -
1 % (W (Lo s k
0 : - -
1 2 3 4 5 6
Retransmissions Attempts by AP (i) (DOWNLINK)

Figure 6.10: Probability distribution of frame retransmission attempts by AP (6m / SNR = 42dB)

(Probabilities plotted using Ppowniivk(1) X FERpownt.ivk)

184

1 B
E N 16-QAM
0.1 §§ - - B64-0AM -
NE
: |||\
2 \e
: NS
& 505 §§ _________________ o .
NS
NE
SE E
NE
NE E
Nl =i H HRE S 4

Retransmissions Attempts by AP (i) (DOWNLINK)

Figure 6.11: Probability distribution of frame retransmission attempts by AP (8m / SNR = 38dB)

(Probabllltles p]olted using PD(}”';\"U:’\"K(U X PﬁERDOH’M‘JNK)

06 OBPSK
BQPSK

0.5 §16-QAM _ .
B864-QAM

o
'S

Probability
(=]
L]

©
[N

01+

Retransmissions Attempts by AP (i) (DOWNLINK)

Figure 6.12: Probability distribution of frame retransmission attempts by AP (10m / SNR = 32dB)

(Pr{}babi]ities p]otled Using P;)()H!r\”‘h\ix(i) X FER-UU"’J\'HNK)

185

Probability Distribution of Frame Refransmission Attempts by End-Device

Figures 6.13 to 6.17 present the distributions of the uplink data frame retransmission
attempt probabilities, Pyprivk(i), for each of the modulation schemes tested at distances
of the end-device of 2, 4, 6, 8 and 10 metres from the AP respectively. Likewise,
Puprink(i) is the probability of a data frame being retransmitted 7 times by the 802.11
end-device before success, as defined by Eq. 6.2. All probabilities have been computed
plotted using the following calculation, Pyppvk(i) X FERypLink. The retry limit, M, is
equal to 15 for the end-device’s MAC, which is the default setting as configured by the
vendor of the IPW2200BG 802.11 adaptor. Again, the plots do not show the case
where 7 is equal to zero, as technically these are not classed as retransmissions. These
plots show the retransmission behaviour of TCP ACKs generated by the end-device’s

TCP-layer, encapsulated by 802.11 data frames.

Looking initially at Figures 6.13 (2 metres), all modulation schemes had incidences of
frame retransmissions requiring up to four attempts, with 16-QAM retransmitting
some frames 7 times before success. In Figure 6.14 (4 metres), a dramatic increase in
the probabilities of i can be seen, with double, triple, and quadruple retransmission

attempts dominating the probability space.

An interesting result occurred in Figure 6.15 (6 metres), where BPSK and QPSK had
incidences of up to 15 retransmission attempts for frames. Note that such a high

number of i would have resulted in significant delays for TCP ACKs in the transmit

queue of the device’s MAC [53].

At 10 metres from the AP, Figure 6.17 shows significant increases in the probabilities
associated with retransmitting a particular data frame in the uplink direction for i
ranging from 11 to 15. Note that a subset of the retransmissions for 7 equaling 15 may
not have been successful either, thereby resulting in complete frame losses. Although
64-QAM possessed the highest probabilities, generally all modulation schemes

followed a similar trend.

In this subsection it has been discovered that the MAC will exhaust its retry limit in the

case of poor channel conditions, at the expense of increased delays for incoming

186

higher-layer data into the transmit queue. By having such a high value of M it causes
unnecessary delays in returning TCP ACKs to the sender, who may actually timeout in
the waiting process. If the delays are consistent, eventually the sender may inflate its
RTO timer in-line with the inflated RTT, however an inflated RTT decreases the rate
of growth of the cwnd size, leading to lack-lustre performance. An inflated RTO can
also be an issue if a wireless end-user suddenly moves into a location with better signal

quality, and in the event of an actual TCP loss the sender will take too long to respond.

It is therefore suggested that vendors of 802.11 client adaptors should strive to leave
the default setting of the MAC retry limit to that specified in the original IEEE 802.11
standard [20].

0.18 | - -~ -~~~ -~ OBPSK
WQPSK
§16-QAM

B864-QAM

0.16

0.14

0.12

0.1

Probability

FTTTITTITTITTITTFETTITITTITIFIIIS

P TTTIT,

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Retransmission Attempts by End-Device (i) (UPLINK)

Figure 6.13: Probability distribution of retransmission attempts by end-device (2m / SNR = 50dB)
(Probabilities plotted using Pyppwvk(i) X FERuppng)

187

DBPSK
Al - - - ---
0 mQPSK
316-QAM
0.08 B - - - - - - - B864-QAM
\
\
£ 006 | N -- -- LR R -
1
m
o N
2 \
% 004 |G- - -- - -
N
\
N
5\
N
0.02 | N -
N
\
\
o LI a mE

1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15
Retransmission Attempts by End-Device (i) (UPLINK)

Figure 6.14: Probability distribution of retransmission attempts by end-device (4m / SNR = 44dB)

(P]'Obabi]ities plo‘rted using PI:'-"J'.J'NK(U X FERUPLL\’K)

OBPSK
BQPSK
02 ' o) o) 016-QAM
B864-QAM
0.15
2
5
1y]
£
2 01
o
005 . - - R - -
1 2 3 4 5 6 7 8 9 10 1M 12 13 14 15

Retransmission Attempts by End-Device (i) (UPLINK)

Figure 6.15: Probability distribution of retransmission attempts by end-device (6m / SNR = 42dB)
(Probabilities plotted using Pyppk(i) X FERyppinvg)

188

OBPSK
0.3 BQPSK
N 16-QAM
0.25] -- B64-QAM
o2 |- —_— -
2
=
8 015 - -
=4
[+
A
0.1 -H ;‘E
\s
N
N
\E =
0.05 1| N3 E
\E \E
\ K
o LN \= : : = by : : : : :
1 2 3 4 5 6 7 8] 10 11 12 13 14 15

Retransmission Attempts by End-Device (i) (UPLINK)

Figure 6.16: Probability distribution of retransmission attempts by end-device (8m / SNR = 38dB)
(Probabilities plotted using Pyppvk(i) X FERyp k)

OBPSK .\‘.
BQPSK =
02 N
N 16-QAM ‘\.
B64-QAM E
\z
015 |- - - ----- I S ag
z N
5 N
8 =
2 NE
2 0.1 §=
o =§
\E
\E
\S
\s
0.05 N
\Z
\E
\S
\S
\
0 - -

1 2 3 4 5 6 7
Retransmission Attempts by End-Device (i) (UPLINK)

Figure 6.17: Probability distribution of retransmission attempts by end-device (10m / SNR = 32dB)
(Probabilities plotted using Pyppvk(i) X FERup k)

189

6.5 Chapter Conclusions

In this chapter the objective was to provide new insights to researchers working in the
area of TCP performance enhancements for wired-to-wireless paths; this is
comprehensively conveyed with the proposal of a purpose-built testbed for conducting
more advanced and accurate experiments using TCP over last-hop 802.11 WLANS.
Strong reasons were also given for opting to conduct physical experimental studies

over computer simulations alone.

A strong feature of the testbed is that it can be constructed from readily available
hardware and software tools, encouraging rescarchers to add new dimensions to their
experimental works. The importance of an Internet component within wired-to-

wireless TCP experiments has also been stressed, being a key part of the testbed.

The uniqueness of the testbed is that it can be used to study the TCP-layer of the
sending machine in the wired domain when there is an emulated Internet and a real-
world wireless path in the journey of TCP segments and ACKs. In addition to studying
TCP behaviour, the testbed allows researchers to conduct detailed studies into
transmission behaviour of the IEEE 802.11 MAC. The novelty lies with the fact that it
simultaneously allows the capturing of data/information from the TCP-layer and from
over the 802.11 WLAN from all angles of the same TCP experiment, from both the
sender’s and the receiver’s perspective. Having such a wealth of captured data
becomes invaluable when evaluating the end-to-end performance of TCP over wired-

to-wireless paths.

In the next chapter the testbed will include an investigation of TCP sender-side
performance with a variable number of last-hop 802.11 devices in order to understand

TCP behaviour as a function of WLAN channel contentions.

To highlight and demonstrate its effectiveness, some TCP experiments were conducted
over the testbed using a real-world 802.11 WLAN that is reflective of typical home-
office indoor environments, using a best-case scenario. A wide set of results from the

testbed confirm that frame errors are prevalent over WLAN channels in both downlink

190

and uplink channels. But interestingly, it was also discovered that the reverse channel
of the WLAN possessed its own frame error behaviours, quite different from forward
channel error rates. Further observations led to the conclusion that there may be more
correlation between reverse channel error rates over the WLAN and the number of

times a TCP sender invokes its retransmission mechanism, more so than for forward

channel FERs.

Also investigated in this chapter were the probability distributions of the number of
times a particular 802.11 data frame was retransmitted by the AP and by the 802.11
end-device; this again highlighted the depth of data that can be extracted from the
testbed. The results demonstrated that when channel conditions degrade, an 802.11 AP
and end-device will maximise the use of their MAC ARQ mechanism, right up to the
configured retry limit, M. In fact, at end-device distances of just 10 metres from the
AP, M and (M-1) retransmissions of the same data frame are more likely to occur than
single or double retransmissions. Such real-world observations may be useful to those
working with error correction techniques such as erasurc-control coding to design
optimal codes, or equally to those wishing to gain an understanding of how TCP’s
RTO timer could be closely aligned to the highly variable delay conditions occurring

over an 802.11 WLAN due to localised retransmissions.

191

Chapter 7

Evaluation of Linux Sender-Side TCP Implementations
7.1 Introduction and Motivations

The legacy TCP congestion control (AIMD) algorithms, referred to as Tahoe and
Reno, have been very successful in making the Internet function efficiently to date.
They have provided a reliable connection-oriented end-to-end data delivery service to
end-users across the globe. In recent years however, there appears to be a changing
environment, in which end-users of TCP are no longer restricted by cables [15]. The
advent of the IEEE 802.11 WLAN technology has allowed end-users of TCP
applications to detach from the traditional methods of accessing services from the
fixed Internet, so they can be mobile and work location independently from within
their home/office environments. Specifically, many homes and offices are now fully
equipped with 802.11 WLANS, enabling users and devices to connect to the Internet
via a local gateway AP in order to access services that still run over TCP for reliable
end-to-end transportation [135]. It is therefore a common scenario today for TCP
segments originating from a server somewhere in the Internet to traverse a wireless

link in the last-hop portion of the end-to-end journey [295].

In summary, the key problems for a sender-side TCP of having an 802.11 WLAN at
the last-hop are: i) higher BERs from the natural effects of the radio transmission
medium, leading to higher FERs and losses [11], ii) the prevalence of over-the-air
collisions of frames when there are multiple 802.11 end-devices generating uplink and
downlink TCP flows via the AP, and, last but not least, iii) highly variable
transmission delays of frames over the WLAN in both uplink and downlink directions
[296], which is due to medium access delays by all sending 802.11 devices (including
the AP), as well as sudden queuing delays when the 802.11 MAC stop-and-wait ARQ

mechanism is in progress.

In this chapter, detailed evaluations are presented for some of the most recently

proposed sender-side TCP enhancements when used over wired-to-wireless conditions,

192

in an attempt to observe how they weigh up against the legacy TCP protocol, Reno.
The problems faced by the TCP Reno over wireless paths have been pursued by many
researchers in an attempt to increase its sending efficiency. The idea supported
throughout this thesis is to make enhancements to the protocol at the sending side in
the fixed domain, which can be more easily rolled out across servers in the Internet.
Also, by keeping modifications only to the protocol’s code, the rules of the OSI

layering principle for network stacks are obeyed [3].

A common solution to the problem that has been suggested and proposed by many
authors is to customise the AIMD mechanisms of TCP Reno in order to better predict
network conditions and make sound judgements on how to react when a segment loss
occurs in the wired-to-wireless path, or when there is a random delay in the returning
of ACKs [13]. Obviously the pinnacle of such research would be for a TCP sender to
know exactly the cause of the loss or delay. If the loss occurs in the wired portion,
which would indicate network congestion, then TCP should adjust its sending rate to
alleviate a bottleneck. If the loss occurs in the wireless portion, which would imply an
erroneous radio channel, then there is no need for TCP to worry about reducing its
sending rate as the AP will usually continue sending incoming data from its transmit

queue at the same data rate over the WLAN.

The focus therefore in this chapter is on some of the popular and recently proposed
enhancements to the standard TCP’s AIMD algorithms for wired-to-wireless paths,
which have also made their way into the Linux v2.6 kernel’s TCP stack [82]. Research
within the area suggests that TCP Hybla [208], TCP Veno [199], and TCP Westwood+
[195] appear to be some of the most popular and recent candidates for enhanced
performance over wired-to-wireless conditions that are also available in the Linux v2.6
kernel. To increase diversity, TCP CUBIC [286] is also put under test, as it is default
algorithm in Linux kernels since v2.6.19. The rationale here is that Linux web-servers
are widely deployed across the Internet, and server administrators may not make
changes to the default TCP congestion algorithm, implying that last-hop wireless end-
users around the world are more likely to be served by TCP CUBIC when accessing
web-services from such servers. Finally, legacy TCP Reno is also put under test, acting
as a base-line in order to make comparisons against and evaluate the enhanced AIMD

algorithms.

193

Due to the amount of work that has been undertaken in the area of TCP performance
over wired-to-wireless paths, a real need has arisen for the screening of proposals in
order to identify suitable candidates for future progression. Evaluating the performance
of TCP over wireless paths is not a straight forward task, and many studies opt for
simulation or emulation in order to study TCP behaviour in a non-complex manner.
Several studies try to add realism through the use of an experimental testbed,
consisting of a real-world last-hop wireless network. However researchers only tend to
use legacy TCP implementations or one which they feel is adequate, putting little
emphasis on the actual comparison of sender-side TCP variants, but rather on the core
performance of TCP. Finally, very little literature was found that undertakes a
systematic evaluation of real-world TCP AIMD implementations in real-world typical
conditions, reflecting a true wired-to-wireless path for TCP. Therefore, concrete
conclusions relating to the merits of competing wired-to-wireless proposals in the real-

world have been difficult to make based on currently available published results.

The aim in this chapter is to systematically use the wired-to-wireless testbed proposed
in Chapter 6 to compare and evaluate the performance of competing TCP AIMD
enhancement proposals for tackling the issues related to wired-to-wireless conditions.
It is important to emphasise on the outset that the goal is not to achieve exhaustive
testing of each proposal, but rather to perform an initial screening of them.
Specifically, a set of benchmark tests over real-world conditions are performed,
reflecting a typical home-office 802.11 WLAN environment that is connected to a
wired backbone, using the Linux v2.6.20 kernel as the TCP server machine.
Experimental results of the performance of TCP Reno, CUBIC, Hybla, Veno, and
Westwood+ are presented from tests over a range of typical real-world scenarios

involving multiple 802.11 end-devices in the last-hop WLAN.

7.2 Prerequisite Knowledge

Before proceeding with the experimental descriptions and methods, the basic
functionalities of the following sender-side TCP AIMD variants are briefly reviewed:

Reno, CUBIC, Hybla, Veno, and Westwood+. Each of these algorithms has been the

194

subject of considerable interest and testing in recent years, with patches of their

specific implementations publicly available in the Linux v2.6 kernel patches.

It is assumed that the reader is somewhat familiar with the basic principles of
congestion control in TCP, i.e. the concept of the sender’s cwnd, and its relationship
with the AIMD mechanisms. It should also be stated that a TCP sender performs loss
detection in either of the two ways [99]: 1) via a RTO timer expiry event whilst
waiting for an ACK from the receiver, and 2) through the arrival of three DUPACKSs
for the same unacknowledged data. Because TCP’s error detection and recovery is
performed end-to-end, it also operates transparently for segment losses occurring over
the wireless path of a connection. For more detailed insights into the functionality of
each of the TCP AIMD algorithms in this section the reader is referred to the

respective original literature.

TCP Reno

TCP Reno was introduced as an enhancement to the original TCP Tahoe [1] by
altering the way in which it reacted to segment losses due to congestion. It introduced
the fast recovery algorithm, which is activated immediately after the fast retransmit
algorithm upon the arrival of three DUPACKs. Although Reno was never designed
with the intention for usage over wireless paths, it was very widely adopted by the
Internet community and is still likely to be in use today by legacy servers serving last-

hop wireless end-users. Reno’s AIMD algorithm in more detail is as follows:

upon every ACK:
if cwnd < ssthresh

cwnd « cwnd + 1

if cwnd > ssthresh

cwnd « cwnd + 1/cwnd

upon every Loss:
RTO
ssthresh « cwnd/2

cwnd « 1

195

3IxDUPACKSs
ssthresh « cwnd/2
cwnd « ssthresh + 3xMSS
foreach DUPACK:
cwnd « cwnd + MSS
upon new ACK:

cwnd « ssthresh

It is the above rules that govern Reno’s behaviour in light of segment losses and
network congestion events. The cwnd size dictates how much data can be pushed into
the network at any one time, effectively controlling the sending rate. The rate of
incoming ACKs returning from the recipient governs the additive-
increase/multiplicative-decrease mechanism of the cwnd at the sender. The ssthresh
variable keeps a note of the current end-to-end network capacity, in an attempt to
prevent further segment losses from occurring due to the injection of too much data
into the network. As can be seen, Reno was designed with network congestion in
mind, where losses were presumed to occur mainly due to buffer overflows along

connection paths, and not due to random wireless channel errors.

TCP CUBIC

TCP CUBIC is a sender-side congestion control algorithm that was designed to meet
the demands of today’s high-speed long distance networks, with the core objective
being to take advantage of unused end-to-end bandwidth, a problem that is exhibited
by standard TCP algorithms due to their poor AIMD response times. In essence,
CUBIC uses a cubic function to govern the size of its cwnd. A variable W, is
maintained as the size of the cwnd prior to a reduction event. When the cwnd size
increases again, it grows quickly initially, but decelerates this growth as its size
approaches W, accelerating again as its size continues to grow beyond W In

CUBIC the cwnd evolves according to the following rules:

upon every ACK:

cwnd « cwnd + [C(T - K)? + Wmax]

upon every Loss:

196

RTO or 3*DUPACKSs
Wmax « cwnd
T « 0

cwnd « cwnd + [C(T-K)® + Wmax]

X :JW,,,,.X,B
C

and C' is a scaling constant equal to 0.4, T is the time elapsed (in milliseconds) since

where:

the last cwnd reduction (or segment loss event), and f is the multiplicative decrease

factor after a segment loss occurs, equal to 0.2, regardless of cause.

TCP Hybla

TCP Hybla was proposed with the primary objective of providing better performance
in end-to-end paths that possess larger segment RTTs due to wireless hops such as a
satellite radio link. Briefly, its core enhancements include a modification of the
standard TCP AIMD algorithm for higher latency paths, enforcing the use of the
SACK policy (to tackle multiple losses due to larger cwnd sizes), the use of segment
timestamps (to tackle RTO timer exponential back-off issues due to higher RTTs), and

the usage of a proprietary segment ‘pacing’ technique.

Hybla’s modifications to the cwnd evolution are a direct result of analytical studies on
its behaviour in such conditions, leading to the conclusion that altering the cwnd’s sole
dependence on the RTT for growth is a viable solution. In essence, the higher the
latency of a segment’s journey, the larger the cwnd size needs to be in order to achieve
a given throughput, generally calculated by cwnd/RTT. This leads to the rationale that
for higher latency TCP connections the cwnd growth should be more accelerated to
take advantage of end-to-end system bandwidth more effectively. In more detail,
Hybla uses the notion of a parameter p as an equalisation term for the R77) of a
reference wired TCP connection, and the actual R77T of high latency connection. Hybla
then equalises the rate of injection of new data (i.e. how the cwnd grows) by replacing

the standard TCP AIMD algorithm with the following procedures:

upon every ACK:

197

if cwnd < ssthresh
cwnd « cwnd + 27 - 1
if cwnd > ssthresh
cwnd « cwnd + p?/cwnd
where:

o RIT
RTTo

upon every Loss:

RTO
ssthresh « cwnd/2
CWI'ld — 1
3IxDUPACKSs

ssthresh « max(FS/2, 2xMSS)
cwnd « ssthresh + 3xMSS
foreach DUPACK:

cwnd ~ cwnd + MSS
upon new ACK:

cwnd « min(ssthresh, FS)

TCP Westwood+

TCP Westwood+ is a direct modification to the standard TCP AIMD algorithm in an
attempt to provide enhanced performance over wired-to-wireless paths. Westwood+
uses an end-to-end bandwidth estimator (BWE) to alter the size of its cwnd and the
ssthresh value, specifically after a segment loss event. Using a ‘low-pass filtering’
mechanism, it monitors the rate of returning ACKs from the recipient. The idea behind
this is to continuously be aware of the end-to-end bandwidth of the connection, so that
at the point of a segment loss occurring Westwood+ is able to adaptively set the
ssthresh and cwnd to suitable values which better reflect network conditions. Its
authors confirm specifically that Westwood+ can increase throughput over wireless

networks.

198

The bandwidth estimation in Westwood+ is performed by counting and filtering the
flow of incoming ACKs. For every RTT, an estimated bandwidth sample, by, is
obtained via: by = di/A;, where dj is the amount of data acknowledged during the last
RTT, 4;. In more detail, the following rules define the AIMD mechanism of

Westwood+:

upon every ACK:
if cwnd < ssthresh
cwnd « cwnd + 1
if cwnd > ssthresh
cwnd « cwnd + 1/cwnd

compute end-to-end BWE

upon every Loss:

RTO
ssthresh « max (2, (BWExXRTTuin)/MSS)
Cwnd — 1

3xDUPACKs

ssthresh « max (2, (BWExRTTgin) /MSS)

cwnd « ssthresh

where RT7,,, is the minimum of all the measured RTT samples.

TCP Veno

TCP Veno is a direct modification to the standard TCP AIMD algorithm, with the
objective of trying to improve performance over wired-to-wireless paths by
heuristically being able to discriminate between segment losses due to congestion in
the wired network and random losses due to the wireless radio link in the end-to-end
path. The key feature of Veno is that it monitors the network path for levels of
congestion, and then uses this information to determine the cause of loss. If a loss
occurs whilst Veno is in the congestive state, it assumes that the loss is due to network
congestion; otherwise it assumes that the loss is random. In each of these situations

Veno adjusts the cwnd size differently (i.e. the multiplicative decrease phase), taking

199

into account that random losses require a less aggressive reduction of the sender’s
cwnd size in order to maintain a higher throughput over the wireless portion of the
connection. Another feature of Veno is its modified linear portion of the additive
increase algorithm of standard TCP, so that when Veno is in the congestive state the
cwnd growth is less aggressive. This effectively allows any self-induced network
congestion to be relieved without segments being dropped in the wired network,
helping Veno connections to maintain a higher overall throughput by remaining in an

optimal operating region for longer.

Veno is able to determine whether or not it is in the congestive state by using
calculations adopted from TCP Vegas [193] to calculate the value of N, the number of
backlogged segments at a bottleneck queue somewhere along the connection path. The
value of N is continuously updated during a live connection, and is derived from: N =
(ExpectedRate — ActualRate) * RTT,;, where RTT,; is the minimum of all the
measured RTT samples. Hence, if N < f when a segment loss occurs then Veno
assumes that the loss is more likely to be random (most likely occurring in the wireless
link), than due to congestion. The authors in [199] suggest a value of 3 for £ from their

experimental work. In more detail, below is the AIMD algorithm of Veno:

upon every ACK:
if cwnd < ssthresh
cwnd « cwnd + 1
if cwnd > ssthresh
if N < B
cwnd « cwnd + 1/cwnd
if N2§p
for (every other ACK)

cwnd « cwnd + 1/cwnd

upon every Loss:
RTO
gsthresh « cwnd/2

cwnd « 1

200

3xDUPACKSs
if N < B
ssthresh « cwndx(4/5)
else

gssthresh « cwnd/2

cwnd « ssthresh + 3xMSS
foreach DUPACK:

cwnd « cwnd + MSS
upon new ACK:

cwnd « ssthresh

It can be noticed from the above pseudo-code that when the value of N is less than
then the reduction of the cwnd is less aggressive (i.e. only a 20% reduction in its size).
The authors’” experimental work in [199] demonstrates that any reduction factor for the
cwnd of less than 50% works well, with reductions of less than 25% being the most
desirable. Note also that when N is greater than or equal to £, the reduction of the cwnd
is identical to that of TCP Reno, so is Veno’s slow start phase and its congestion

avoidance phase when N is less than f.

7.3 Testbed Setup and Procedures

All experiments were conducted using an extended version of the wired-to-wireless
testbed proposed in Chapter 6. Figure 7.1 illustrates the newly adopted testbed, the
details of which are given in the following subsections. The extension of the testbed
refers to the fact that it now includes multiple 802.11 end-devices (as opposed to just a
single end-device in Chapter 6), and a live connection to the Internet backbone for all

end-devices.

7.3.1 Hardware Setup

As can be seen from Figure 7.1, the main hardware change is the incorporation of a
gateway into the live Internet. The idea behind this is to allow some 802.11 devices in

the last-hop WLAN to access real web-services, creating contention over the WLAN

201

Y.:\ ‘_;\\ r/ 1
< \‘-,_ F __/'; —
P g g e
The Internet = o«
Fast Gbit ' A4 Lasthop
i 80241gAP 7 HomeWLAN <
/'/

Switch \\\

- Layer-2
Experimental Internet

TCP Server Emulator

............... - N —— ..). e SR ——)
) WIRED PATH ‘ WIRELESS PATH

Figure 7.1: The adapted wired-to-wireless testbed

and generating additional downlink/uplink traffic. This adapted topology ensures that
an end-device in the WLAN should not be able to discriminate between TCP data
being sent from a server somewhere in the live Internet and TCP data being sent from
the experimental testbed server locally. The basic idea behind having the experimental
TCP server coupled with the Internet emulator is simply to create a lower-level of
abstraction of a typical server in the Internet. This technique ensures the server isn’t in
a geographically distant location and can actually be controlled, and whose TCP-layer
can be observed and measured. It can be appreciated that in the live Internet it is not
practical to instrument or measure the TCP behaviour of a web-server. The view on the
work of this chapter is that the bulk of TCP data sending is done by web-servers in the
Internet, and hence it is more beneficial to study TCP settings and behaviour at the

server in the wired domain.
The IEEE 802.11g AP settings were left untouched, set to their factory defaults. The

last-hop WLAN consists of a maximum of five 802.11g end-devices, which is in

contrast to the configuration in Chapter 6.

202

802.11g

Client Name ‘Description oS Memory CPU
. : : : Interface
SEAMOSS
) HPCompagq Windows XP Intel
(REFERENCE 512MB 1.8GHz
tc4200 SpP2 IPW2200BG
END-DEVICE)
HPCompaq Linux Intel
HANALENI 512MB 1.9GHz
nc6220 v2.6.22 FC6 IPW2100BG
_ Apple iPod Marvell
TEMPLETREE iPhone OS 128MB 412MHz
Touch 8GB W8686B22
DELL Inspiron ~ Windows XP Intel
CEMPAKA 256MB 1.5GHz
1300 SpP2 IPW2200BG
Compagq Presario Windows XP _ Intel
DAVANA 512MB 1.5GHz
M2000 SP2 IPW2200BG

Table 7.1: WLAN end-device names and specifications

The WLAN was configured using DCF in an infrastructure configuration. Details of

their assigned names and specifications have been provided in Table 7.1. Note that

SEAMOSS is the reference end-device for all experiments in this chapter i.e. all focus

and measurements were based on this end-device.

Finally, a fast Netgear SR2016 gigabit switch was used to interconnect both wired

backbones to the AP. All wired connections between the experimental server, the live

Internet, the Internet emulator, the switch, and the AP were using full-duplex

10/100Mbps Ethernet cables to eliminate the need for additional hardware.

203

7.3.2 Software Configurations

The experimental TCP server in the testbed was updated to run the slightly newer
Linux v2.6.20 kernel, which was also instrumented with extensions from the web100
project. Each of the TCP congestion control algorithms to be studied were built into
the kernel upon compilation in order to provide consistency and control over the

differences in implementations that exist for differing kernel versions.

At the TCP-layer on the server the following options were enabled: SACK, window
scaling, delayed-ACKs, the nagle algorithm, and path MTU discovery. Such settings
are typical of most TCP implementations today [108]. The TCP MSS was set to 1460
bytes. Note that it is up to the contributed TCP congestion control patches in the Linux
kernel as to which of the above options are used, which is of course beyond the control
and the scope of this chapter. Also, it is not uncommon for certain TCP patches to
make alterations to some of the standard options, either for greater processing

efficiency, or for their usage in non-conventional ways as part of the enhancement.

The iperf tool was used throughout the testing to transfer fixed amounts of TCP data
from the server to a designated 802.11g client (SEAMOSS) in the last-hop WLAN. In
order to minimise the effects of local host queues and flow interactions, and unless
otherwise stated, only single connection TCP flows were run from the experimental

server per iperf run.

As well as using web100 data at the server, the tcpdump tool was also used at the TCP
layer on the experimental server and on SEAMOSS to capture all sent and received
segments and ACKs per experimental trial; the dump files were then analysed using

the popular teptrace tool.

As listed in Table 7.1, all 802.11g devices were running default TCP/IP networking
settings of the installed operating system in order to maintain realism throughout. This
is typical of most 802.11 WLAN end-users, who generally do not want to be altering
system configurations, due to either a lack of understanding or not having an interest in
them. They simply want to power up the device, let the operating system boot, and

then experience wireless connectivity to the Internet.

204

7.4 Real-World Home WLAN Scenarios

The infrastructure WLAN component of the testbed was setup and configured to
represent a modern-day home WLAN environment, consisting of up to five wireless
end-users (802.11g devices) connected to the Internet via a local gateway, and the
802.11g AP. In this context it is assumed that this represents a typical US family or
household consisting of two adults and three youths [135]. Each family member
presumably owns an 802.11g compatible wireless device, and is connected to the AP
with the ability to access services and unlimited content from the Internet. For the
purposes of the study, five different physical locations are allocated within an actual
home where wireless users typically could be situated, each independently
downloading and uploading data to and from the Internet via the AP. At each of the
chosen locations a particular 802.11g device from Table 7.1 is permanently assigned.
The layout of the home environment is illustrated in Figure 7.2 (not to scale), clearly
showing the positions of the five chosen locations (marked 1 to 5), as well as the
location of the AP. The dimensions of the home are 12.3 metres by 10.4 metres, with
internal room wall partitions made from two layers of plasterboard with air cavities

between them.

To create as much realism as possible two key scenarios within the home WLAN will
be investigated in order to observe how the TCP sender-side enhancements in the
wired domain perform over a variety of wireless conditions in the last-hop journey of
segments. The first scenario investigates the impacts on the TCP sender of multiple
802.11 end-users in the WLAN. The second scenario investigates the impacts on the
TCP sender of varying the locations of particular end-user (i.e. varying the SNR) in the
home WLAN.

205

L —d
Figure 7.2: The real-world home WLAN floor plan (12.3 x 10.4 metres)

7.4.1 Scenario 1 — Multiple 802.11g End-Users

In this section five sub-scenarios, ranging from A to E, are considered. In sub-scenario
A there is just a single end-user in the WLAN, positioned at location 1. The name of
this device is SEAMOSS. In Table 7.2 each of the sub-scenarios are described in more
detail, providing information on where the devices were positioned, and the actions

that were performed by each.

206

Sub-Scenario | Client Name Client Action Location
A
SEAMOSS Downloading iPerf TCP Data 1
(SNR=32dB)
B
SEAMOSS Downloading iPerf TCP Data 1
(SNR=28dB)
HANALENI Downloading FTP Data 2
C . .
_ SEAMOSS Downloading iPerf TCP Data 1
(SNR=26dB)
HANALENI Downloading FTP Data 2
TEMPLETREE Streaming Video from BBC iPlayer 3
D .
SEAMOSS Downloading iPerf TCP Data 1
(SNR=23dB)
HANALENI Downloading FTP Data 2
TEMPLETREE Streaming Video from BBC iPlayer 3
CEMPAKA Uploading FTP Data 4
E
SEAMOSS Downloading iPerf TCP Data 1
(SNR=25dB)
HANALENI Downloading FTP Data 2
TEMPLETREE Streaming Video from BBC iPlayer 3
CEMPAKA Uploading FTP Data 4
DAVANA Streaming Video from BBC iPlayer 5

Table 7.2: Sub-Scenarios A to E

207

In summary then, each sub-scenario from A to E increases the number of 802.11g
devices in the WLAN, from 1 to 5 respectively. Note that for each sub-scenario, and in
order to maintain consistency with the results, SEAMOSS at location 1 is always the
subject device as the recipient of iperf data from the experimental TCP server, i.e. it is
always the TCP client in all tests. All other devices were communicating with the live
Internet as per Table 7.2, performing download and upload operations with real-world
data. Note that the 802.11g WLAN was in saturation mode for each sub-scenario, i.e.
all devices were downloading or uploading data for the full duration of the TCP data

download by SEAMOSS.

7.4.1.1 Experiments and Selected Measurements

For each of the sub-scenarios A to E, experiments consisting of small, medium, and
large TCP data flows were performed in order to cover a diverse range of testing
styles. The the small flows transfer 1 Mb of data (representative of web-page
downloads including all objects via HTTP v1.1), the medium flows transfer 10 Mb of
data (representative of downloading, for example, hi-resolution image files via HTTP
v1.1), and the /arge flows transfer 50 Mb of data (representative of downloading, for
example, an open-source application package via FTP). All data flows are from the
experimental TCP server to SEAMOSS in the last-hop WLAN in a downlink fashion.
All TCP segments (including TCP ACKs returning from SEAMOSS) passed through
the Internet emulator machine. Each flow is therefore representative of an 802.11g
end-user within a home environment downloading a file using TCP from a web-server

located in the Internet.

The small transfers test the initial start-up behaviour of the various TCP congestion
control algorithms, where it is mainly the slow start algorithm that governs the
performance for this type of flow [49], as these connections barely reach a steady
bandwidth probing state. In contrast, the medium and large transfers test the steady-
state behaviour of the various algorithms, which rely mainly on the congestion
avoidance algorithm for the bulk of the data transfers. To recall, the congestion
avoidance phase has been designed to gently and fairly probe for maximum end-to-end

bandwidth, until a segment loss occurs somewhere in the path.

208

In order to obtain a good performance representation of the variability between runs,
each of the small, medium, and large data flows was repeated three times for each TCP
algorithm per sub-scenario in the home WLAN. Hence all results are the averages

(arithmetic mean) of all measurements made.

The key performance measurements that were of interest from experiments were a) the
time taken to transfer the entire amount of data per flow, and b) the average
throughput achieved during the lifetime of a flow, which are both correlated. These are
the most subjective of performance indicators as far as an 802.11g end-user in the
WLAN is concerned, and hence these are the only results presented initially. It is
appreciated that there are many additional indicators of TCP performance; however the
idea in this chapter is simply to evaluate how the various proposals perform in a real-
world context, where wireless end-users are expectant of high performance from the

Internet, i.e. quick downloads and response times.

As a supplement, a results subsection has been included that presents the average
connection RTO value, which was obtained by computing the median of all the
individual web100 samples that were collected from the running Linux kernel on the

TCP server during each experimental run.

TCP uses the RTO timer [107] to ensure data delivery in the absence of feedback from
the recipient, i.e. by the non-arrival of ACKs. Note that the RTO timer is constantly
updated during the lifetime of a TCP connection and its value at any moment in time is
a function of the measured current RTT, hence its sole reliance on the end-to-end
latency. The duration of time TCP waits for an ACK is known as the RTO timer value,
which when it expires triggers the immediate retransmission of the first
unacknowledged segment. Because the expiration of the RTO timer is typically an
indication of severe congestion in traditional wired networks, TCP also drastically
reduces its cwnd size, which usually results in a significantly reduced sending rate due

to initiation of the slow start phase.

It has recently been derived that the traditional computation of TCP’s RTO timer may
not be suited to wired-to-wireless paths [145], which are typical of non-congestion

related segment losses due to either radio channel corruptions or frequent

209

disconnections of devices from the AP. In addition, the 802.11 MAC at the AP uses
persistent ARQ to recover from local frame errors, allowing a queue to develop in its
send buffer for incoming higher-layer data. Each of these reasons causes randomly
variable delays to occur, affecting TCP’s end-to-end RTT estimate, which then affects
the RTO timer calculation. Refer to Chapter 3 for a more details relating to the issues

with the RTO timer over 802.11 WLANSs.

To summarise then, observing the average RTO timer value of a particular TCP
congestion control algorithm can be insightful, because its value is dependent on the
current estimate of the RTT. Since each of the TCP algorithmé on test utilises different
methods for obtaining and updating its current RTT measurement, this could have a
direct impact on values computed for the RTO timer. A large RTO timer value can
help to absorb the high variability in RTTs due to the effects of the wireless path, by
avoiding spurious timeouts and maintaining a higher overall sending rate. However,
the RTO timer value should not be too large as to hinder TCP’s fast response times in
the recovery of segment losses that are genuinely occurring. There is clearly a trade-off
between the increases in TCP throughput achieved due to avoiding spurious time-outs
and the decreases in TCP throughput due to increased delays whilst waiting for an
ACK to arrive and for the RTO timer to expire (i.e. the ewnd growth becomes stuttered

as TCP is willing to wait a long time for an ACK to arrive).

7.4.1.2 Analysis of Effective FERs over the WLAN

Before proceeding with the actual experiments, the decision was made to conduct an
assessment of channel error conditions over the WLAN for each of the sub-scenarios
using the capabilities of the testbed. This would give insights into typical downlink and
uplink FERs of a real-world home WLAN with a varying number of 802.11 end-

devices.

For the experiments in this subsection, the iperf tool was used at the server to generate
a continuous source of TCP data traffic (using a MSS of 1460 bytes) in a downlink
fashion over the WLAN, with SEAMOSS as the receiving end-device. Each transfer
lasted for 900 seconds, and was repeated five times for each sub-scenario. The AirPcap

capture devices were configured to capture all forward and reverse data frames over

210

the WLAN, and all capture files were processed and analysed as per Chapter 6. All

results are averages of the five runs for each sub-scenario.

71 WDOWNLINK | I
| BUPLINK

FER as Perceived by SEAMOSS (%)

A B C D E
Sub-Scenario

Figure 7.3: 802.11 FERs using TCP data flows under varying number of end-devices

The computed FERs in each sub-scenario for the downlink (containing TCP data
segments) and uplink (containing TCP ACKs) channels of the WLAN have been
plotted in Figure 7.3. Note that the WLAN was in saturation mode for all experiments.
For each sub-scenario from A to E, the number of end-devices is incremented by one,
up to a maximum of five. As can be seen from Figure 7.3, the FERs for the downlink
channel are consistently higher than those for the uplink channel across all sub-
scenarios. Interestingly, the downlink FERs possessed a more accelerated increase as
the number of end-device increased, whereas the uplink FERs remained fairly steady
up to sub-scenario D (four end-devices). In summary, from sub-scenarios A to E, the
FERs for both channel directions almost doubled, with an error of over 7% affecting
TCP data segments, and an error rate of over 2% affecting TCP ACKs. This can be
explained by the fact that a greater number of end-devices generating TCP traffic in
the WLAN creates greater levels of contention for access to the radio channel, and
hence increases the likelihood of data frame collisions. The plot reveals that downlink
TCP flows may suffer from greater unfairness than uplink TCP flows as the number of

end-devices increases.

211

7.4.2 Scenario 2 — Varying the Location of the 802.11g End-Device

In this subsection there are three sub-scenarios that are considered; good, fair, and
poor channel conditions. In the good sub-scenario the end-device SEAMOSS is
located within the home so that its perceived SNR measurement is in the average
region of 30 dB, as reported by the netstumbler tool [294]. In the fair sub-scenario
SEAMOSS is located so that its experienced SNR measurement is in the region of 20
dB. In the poor sub-scenario SEAMOSS is located so that its perceived SNR
measurement is in the region of 10 dB. Whilst sending TCP traffic to SEAMOSS, the
TEMPLETREE and HANALENI devices were in their locations according to Table
7.2, performing the actions defined therein to generate additional WLAN traffic for
added realism. Note that TEMPLETREE and HANALENI were both in saturation

mode for all experiments in each sub-scenario.

7.4.2.1 Experiments and Selected Measurements

For each of three sub-scenarios, experiments consisted of transferring 30 Mb of TCP
data using iperf from the experimental server to SEAMOSS in the last-hop WLAN. All
data flows are in a downlink fashion. All TCP segments (including uplink TCP ACKs
returning from SEAMOSS) passed through the Internet emulator machine. Each flow
is therefore representative of an 802.11g end-user within a home environment
downloading a 30 Mb file using TCP from a file-server located in the Internet. All
flows were repeated three times for each TCP sender algorithm per sub-scenario.

Hence all results are the averages of all measurements made.

Before proceeding with the actual experiments for the second main scenario, the
decision was made to conduct an assessment of channel error conditions over the
802.11 WLAN for each of the channel condition sub-scenarios (good, fair, and poor
conditions). This would give insights into typical downlink and uplink FERs for TCP
traffic over a real-world home WLAN under varying channel conditions of a particular

end-user.

As in the previous section, the iperf tool was used at the server to generate a

continuous source of TCP data traffic (using a MSS of 1460 bytes) in a downlink

212

fashion over the WLAN, with SEAMOSS as the receiving end-device. Each transfer
lasted for 900 seconds, and was repeated five times for each channel condition. The
AirPcap capture devices were configured to capture all forward and reverse data
frames over the WLAN, and all capture files were processed and analysed as per

Chapter 6. All results are averages of the five runs for each sub-scenario.

7.4.2.2 Analysis of Effective FERs and Retransmission Characteristics

In Figure 7.4 the downlink and uplink FERs have been plotted for each of the
perceived channel conditions by SEAMOSS in the home WLAN. The plot gives
accurate insights into the FERs in a typical home WLAN scenario under varying
conditions. As would be expected, when the SNR decreases the error rates will
increase for both channel directions. An interesting observation is that the downlink
FERs increased significantly for every 10 dB drop in the SNR, which wasn’t
uncommon between the different locations in the home shown in Figure 7.2. The
uplink FERs also doubled for every 10 dB drop in the perceived SNR by SEAMOSS.
Taking the poor channel conditions (i.e. two interior walls between SEAMOSS and the

AP), the downlink FER was almost 65% and the uplink FER was almost 30%.

70 | : - —
B DOWNLINK

B UPLINK

[

2]
o

o
(=}

£
(=}

W
o

FER as Experienced by SEAMOSS (%)
8
T

-
o

GOOD (~30dB) FAIR (~20dB) POOR (~10dB)
Sub-Scenario

Figure 7.4: 802.11 FERs using TCP data flows over varying channel conditions

213

To gain further insights into the MAC retransmission characteristics behind the FERs
presented in Figure 7.4, the distribution of retransmission probabilities have been
calculated for both the AP and SEAMOSS over each sub-scenario. Figures 7.6 to 7.8
plot the probability distribution for all transmissions and retransmission attempts by
the AP in the downlink channel (i.e. Ppowniivk() where i is number of retransmission
attempts made for a particular data frame). Figures 7.9 to 7.11 plot the probability
distribution for all transmissions and retransmission attempts by SEAMOSS in the
uplink channel (i.e. Pyprivk(i)). To give further insights into the significance of i
retransmission attempts of a data frame on the delays experienced by TCP traffic, all
figures also plot the average transmission delay for an 802.11g sending MAC for i
ranging from zero up to the retry limit. This delay value is, on average, the amount of
time a TCP data segment or TCP ACK will require for a successful delivery across the
radio channel, thereby impacting the RTT calculation by the TCP sender in the wired

domain.

To calculate the theoretical delays experienced by each TCP data segment and TCP
ACK, the 802.11 data frame exchange model needs to be referred to. Here it is
assumed that each 802.11 data frame encapsulates only a single TCP data segment or
TCP ACK. Recall that the 802.11 MAC requires a positive acknowledgement (an
802.11 ACK) for all data frames transmitted, and only proceeds to the next in-
sequence frame after an 802.11 ACK has been received. If an 802.11 ACK is not
received within the ACKTimeout interval, the MAC will retransmit the same data

frame. This continues until the MAC reaches its retry limit.

For TCP transmissions over an 802.11 WLAN, the transactional model consists of data
segments being sent in the downlink channel, and TCP ACKs being transmitted in the
uplink channel. Therefore, according to the IEEE 802.11g standard [20], the delays
associated with the transmission of a TCP data segment by the AP consists of the
Distributed Interframe Space (DIFS) period, a random back-off period by the MAC,
the transmission of the actual 802.11 data frame, a Short Interframe Space (SIFS)
period, and the transmission of an 802.11 ACK by the end-device. Similarly for the
802.11 end-device, the transmission of a TCP ACK consists of delays associated with
a DIFS period, a random back-off period by the MAC, the transmission of the actual
802.11 data frame, a SIFS period, and the transmission of an 802.11 ACK by the AP.

214

The aforementioned explanation is illustrated by means of a simplified diagram in

Figure 7.5.
e time -
RANDOM
o DIFS BACKOFF SIFS
< «— >4 >
____________ lkansnﬂsﬁon
Radio Transmission Medium
L transmission
o
ﬁ & > ¢ »
O DIFS RANDOM SIFS
A BACKOFF
s
i}

Figure 7.5: The 802.11 AP-client data interchange sequence

For TCP data segments of 1460 bytes, the total size of an 802.11 data frame
transmitted in the downlink direction is 1536 bytes (12288 bits). For TCP ACKs of 40
bytes the total size of an 802.11 data frame transmitted in the uplink direction is 76
bytes (608 bits). Assuming that all 802.11 devices and the AP always transmit at a data
rate of 54 Mbps, the times required to transmit a TCP data segment and a TCP ACK
are given in Table 7.3 [23]. Table 7.3 also gives the duration values of the various
802.11g MAC transmission parameters, which have all been based on a data rate of 54
Mbps [121].

802.11g Parameter Duration (ms)
802.11g_slotTime 0.009
802.11g DIFS 0.028
802.11g SIFS 0.010
Tx_802.1lldata_TCPdata 0.254
Tx 802.1lldata_TCPack 0.038
Tx 802.11lack 0.030
802.11 ACKtimeout 0.043

Table 7.3: 802.11g parameters and duration values

Prior to calculating the total transactional delays for downlink and uplink TCP traffic,

it is important to understand and factor in additional delays associated with the random

215

and exponential back-off mechanism of the 802.11 MAC. Before gaining access to the
radio medium for a transmission attempt, the sending MAC chooses to wait for a
further back-off timer. The timer’s value is set randomly by choosing an integer
number of slots between zero and the minimum contention window (CWyn), which is
multiplied by the slot-time defined for the 802.11g MAC. According to [297] the

average number of slots chosen from the CWyy,, 4, can be defined as:
,uzé-cw."-m (Eq.7.1)

where:

CW we=min(2""" —1,1023) (Eq.7.2)

where 7 is the ordinal number of transmission attempts for a particular data frame.
Hence, for the first transmission attempt, a sending 802.11g MAC’s back-off timer

will have an average value as defined by:

aBackoff = u-slotTime (Eq.7.3)

As soon as the back-off timer expires, the sending MAC is granted access to the
medium and it transmits the frame. If an 802.11 ACK is not received within the
ACKTimeout period, the MAC assumes that the frame transmission failed and
schedules a retransmission by re-entering the back-off process described above. Table
7.4 presents the calculated values of the average back-off times in relation to the n"

frame transmission attempt for an 802.11g MAC using Eq. 7.3.

Assuming that the WLAN operates in an 802.11g-only mode (i.e. no 802.11b devices
are present), and according to [297] the time required to transmit a TCP data segment
over the WLAN is 0.254 ms, the time required to transmit a TCP ACK over the
WLAN is 0.038 ms, and time required to transmit an 802.11 ACK is 0.03 ms.

216

Frame Average
Average Back-off Time
Transmission CW,in | Number of
by MAC (ms)

Attempt (1) Slots (1)
1 15 7.5 0.06750
2 31 15.5 0.13950
3 63 31.5 0.28350
4 127 63.5 0.57150
5 255 127.5 1.14750
6 512 256 2.30400
7 1023 S11.5 4.60350
>7 1023 511.5 4.60350

Table 7.4: Calculated theoretical average back-off timer values for 802.11g MAC transmissions

Using the values listed in Table 7.4, the total average delay experienced by individual
TCP data segments and TCP ACKs can be calculated. Taking the downlink channel
initially, where TCP data segments are transmitted by the AP towards the end-device,
the total MAC delay experienced in relation to the ordinal number of transmission
attempts, n, is given by the following expressions (where the AP’s retry limit is equal

to 7):
When n is equal to 1 (i.e. the first transmission attempt) then:

AP!O?(?{MACde.’(DJ = DIFS + aBackoﬁ' + Treppara + STFS + Tsnnnacs (Eq. 74)

When n is equal to 2 (i.e. the second transmission attempt) then:

APtotalMACdelay = DIFS + aBackoff (n = 1)+ Trcrpars

Eq.7.5
+ ACKTimeout + DIFS + aBackoﬁ“(n = 2)+ Treppara + SIFS + Tsoznacx (Eq)

Continuing with the calculations given in Eq. 7.4 and Eq. 7.5, the average MAC delays
at the AP for all values of n have been calculated and presented in Table 7.5, where the
value of » is limited to 8 due to the retry limit. Looking at Table 7.5, it can be said that

the average transmission delay experienced by a TCP data segment that requires, for

217

example, 6 transmission attempts of the encapsulating data frame is 5.95 ms (i.e. 5

retransmissions).

Total Transmissions (1) Total Time Spent by AP MAC (ms)
1 0.39

0.85

1.46

2.36

3.58

5.95

10.63

15.30

=T B« Y S L I

Table 7.5: Theoretical (downlink) transmission delays for TCP data segments at the AP

Taking the uplink TCP ACK transmissions towards the AP, the total MAC delay
experienced in relation to the »™ transmission attempt is given by the following

expressions (where the end-device’s retry limit is equal to 15):

When » is equal to 1 (i.e. the first transmission attempt) then:

EndDew’cemmeACde!ay =DIFS + ﬂ'BﬂCkOff + Trerack + SIFS + Twonaack (Eq. 7.6)

When # is equal to 2 (i.e. the second transmission attempt) then:

EndDevicetotal MACdelay = DIFS + aBackoff (n =1) + Trerack

Eq. 7.7
+ ACKTimeout + DIFS + aBackoﬁ'(n B 2) + Trersex + STFS + Tsnnack (1)

Continuing with the calculations given in Eq. 7.6 and Eq. 7.7, the average MAC delays
at the end-device for all values of » have been calculated and presented in Table 7.6,
where the value of » is limited to 16 due to the retry limit. Looking at Table 7.6, it can
be said that the average transmission delay experienced by a TCP ACK that requires,
for example, 11 transmission attempts of the encapsulating data frame takes 28.46 ms

(i.e. 10 retransmissions).

218

Probability

Total Transmissions (n)

Total Time Spent by End-Device MAC (ms)

1

e -1 Sy b s

—_— e
—_—

12
13
14
15
16

0.17
0.42
0.81
1.50
2.71
5.09
9.76
14.44
19.11
23.79
28.46
33.14
37.81
42.48
47.16
51.83

Table 7.6: Theoretical (uplink) transmission delays for TCP ACKs at the end-device

0.14

0.12

0.10

0.08

0.06 -

0.04

0.02 |

0.00 -

I[==Probailities |
~w—Delay |

1 2 3 4

Retransmission Attempts by 802.11 MAC at AP (i) (DOWNLINK)

Figure 7.6: Retransmission probabilities of the AP in good conditions (SNR~30dB)

(PI‘Obdl’)l]Itle‘a p]Ot‘EBd uSing P!){)ii-‘,\ff,wk(-') X FERpowniivg)

219

5

[

7

16

14

12

10

Theoretical 802.11 MAC Transmission Delay (ms)

0.30 +

0.25

e
)
=1

Probability
&
-

0.10 -

0.05 +

0.00

0.25

0.20

Probability

0.10

0.05

0.15

?,'I:_E;EPmbabililies
1
Doy |

16

14

- 12

1 10

1 2 3 4 5 6
Retransmission Attempts by 802.11 MAC at AP (i) (DOWNLINK)

7

Figure 7.7: Retransmission probabilities of the AP in fair conditions (SNR~20dB)

(Prl)babiﬁlics plOlted USiﬂg PJ’){)H’F\’.‘J‘NK(D X FERDGHWHNK)

C—Probabilities

| —8—Dalay

+ 16

114

12

110

1 2 3 4 5]
Ret ission Att ts by 802.11 MAC at AP (i) (DOWNLINK)

P

Figure 7.8: Retransmission probabilities of the AP in poor conditions (SNR~10dB)

(Probabilities plotted using Ppowniivk(i) X FERpowniiv)

220

Theoretical 802.11 MAC Transmission Delay (ms)

Theoretical 802,11 MAC Transmission Delay (ms)

0.08

0.07

Probability

0.03

0.02 {|

0.01

0.00

o
o
E-

|E==IPrabatilities

= |=®=Delay |
[_l'—'“'"'"""”' e e -

4 5 6 7 8 9 10 11 12 13 14 15
Retransmissions Attempts by 802.11 MAC at End-Device (i) (UPLINK)

55

50

45

40

1+ 35

+ 30

T 25

20

15

10

Figure 7.9: Retransmission probabilities of SEAMOSS in good conditions (SNR~30dB)

0.12

Probability
(=1

0.04

0.02 +

0.00

(Probabilities plotted Using PUPL!NK(U X FERUPF_H\’K)

=3 Probabilties |
~&=Delay

R — ; . L W

7 8 9 10 11 12 13 14 15
Retransmissions Attempts by 802.11 MAC at End-Device (/) {UPLINK)

55

50

1 45

40

35

30

25

20

115

10

Figure 7.10: Retransmission probabilities of SEAMOSS in fair conditions (SNR~20dB)

(Pl‘obabilities plol‘led Using p”p;‘hw;(.') X FERUPL.‘NK)

221

Theoretical 802.11 MAC Transmission Delay (ms)

Theoretical 802.11 MAC Transmission Delay (ms)

e

0.14

50
£
0.12 145 £
-
k]
0 3
c
0.10 o
35 B
S o008 | 3 5
s =
o 2%
o =
0.06 -
t20 &
(=]
w0
0.04 }| 115 8
1
5
110 2
0.02 — —l =

E=JProbabilities
2 |—@=Delay | 18
0.00 + t 1 4 - = =] “ E 1 : [] BT - 0 -
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Retransmissions Attempts by 802.11 MAC at End-Device (/) (UPLINK)

Figure 7.11: Retransmission probabilities of SEAMOSS in poor conditions (SNR~10dB)
(Probabilities plotted using Pyppnvi(i) X FERyp1wk)

In Figure 7.6 for the downlink retransmission probabilities in good channel conditions,
it can be seen that 10% of all unique data frames (TCP data segments) required one
retransmission before success by the AP. It can also be said that 10% of all unique
TCP data segments arriving at the AP from the server experienced an average delay of
0.85 ms over the downlink channel, and 2% of all unique TCP data segments
experienced an average delay of 1.46 ms over the downlink channel (due to them

requiring two retransmission attempts by the AP).

Looking at Figure 7.7 for the downlink retransmission probabilities in fair channel
conditions, the results are very different. Over 20% of unique data frames required one
retransmission by the AP, 10% required two retransmissions, and over 30% required
three retransmission attempts before successfully arriving at SEAMOSS. In other
words, 30% of all unique TCP data segments arriving at the AP experienced an

average transmission delay of 2.36 ms before arriving at SEAMOSS.
Looking at Figure 7.8 for the downlink retransmission probabilities in poor channel

conditions, the results are more pronounced, with i equalling S, 6, and 7 all having

probabilities in the region of 2% to 3%. Hence, around 2% of all unique TCP data

222

segments arriving at the AP experienced an average transmission delay over the
forward channel of 10.63 ms, with a further 2% experiencing an average transmission

delay of 15.3 ms.

Figures 7.9 to 7.11 give insights into the distribution of retransmission probabilities
(and associated TCP ACK transmission delays) for SEAMOSS, who was transmitting
TCP ACKs back to the AP in an uplink fashion. In the good channel conditions
(Figure 7.9) the distribution of probabilities for 7 in the uplink are comparable to that
for the downlink. Under fair channel conditions (Figure 7.10), the distribution of
probabilities for i are little affected, remaining similar to those seen under good
channel conditions. In Figure 7.11 for poor channel conditions, it can been seen that
over 5% of all unique TCP ACKs experienced transmission delays at the MAC of
SEAMOSS of 1.46 ms, with around 5% experiencing delays of 2.36 ms, and a further
5% experiencing delays of 3.58 ms. It should also be noticed that due to the higher
default retry limit (15) of the 802.11g adapter in SEAMOSS, 2% of all unique TCP
ACKs experienced delays of 19.11 ms (i.e. 8 retransmission attempts of the same data
frame), and 1% experienced delays of 37.81 ms before successfully reaching the AP

(i.e. 12 retransmission attempts of the same data frame).

7.4.2.3 Analysis of Transmission Delays for TCP Traffic over the WLAN

To summarise the findings from the preceding subsection on delays experienced by
downlink and uplink TCP traffic, Figure 7.12 plots the average transmission delays
experienced by unique TCP data segments over the downlink channel and for TCP
ACKs in the uplink channel. The averages have been calculated by summing up all of
the individual TCP delay samples reported from the experimental testbed’s software
tools, and then dividing by the number of samples reported. Hence, Figure 7.12
presents an accurate view from the analysis of raw data values extracted from the
captured 802.11 data frames in both channel directions. Looking at the plot, it can be
said that overall TCP ACKSs in the uplink channel experienced around twice the delay
as TCP data segments in the downlink channel. This could be explained by the higher
retry limit of SEAMOSS, making its ARQ mechanism more persistent than it is
necessary in good and fair channel conditions. It can be seen that in good and fair

conditions, the average delays experienced by TCP traffic is no more than 200 ms in

223

each direction. However, in poor channel conditions, downlink TCP data segments
experienced an average transmission delay at the AP of almost 2.1 seconds, and very
surprisingly TCP ACKs in the uplink direction experienced average delays of almost 8

seconds before successfully reaching the AP.

8000

| mDelay at AP MAC
7000 | . BDelay at SEAMOSS MAC |

6000 {- o
5000 {---- - ----- R . o [
4000 . -

3000

2000

Avg. TCP Transmission Delay (ms)

1000 -

0 L e CERRNN . eSS
GOOD (~30dB) FAIR (~20dB) POOR (~10dB)
Sub-Scenario

Figure 7.12: Average transmission delays for downlink and uplink TCP traffic
These values can be quite severe for a TCP sender in the Internet as on average it will
be waiting for over 10 seconds from the point of sending a TCP data segment until the
associated ACK arrives. Of course, the sender is more likely to experience an expiry of
its RTO timer under such conditions, leading to an unnecessary retransmission and

cwnd reduction potentially.

Using the individual transmission delay samples reported from the testbed for
downlink and uplink TCP traffic over the WLAN, further analysis work was carried
out that sorted through all the samples and generated the individual probabilities
associated with a particular delay value occurring at the MAC of the AP and
SEAMOSS. Figures 7.13, 7.15, and 7.17 plot the delay probabilities for downlink TCP
data segment transmissions by the AP under good, fair, and poor channel conditions,
respectively. Figures 7.14, 7.16, and 7.18 plot the delay probabilities for uplink TCP
ACK transmissions by SEAMOSS under good, fair, and poor channel conditions,

respectively. Such accurate insights into the actual probabilities of a certain amount of

224

delay occurring could assist researchers with fine tuning TCP’s RTO timer to prevent

unnecessary timeout events by referencing the likelihood cause of a sudden delay.

024 - B . - S - o L

0.15 - - R - - - R - - — -

Probability
o
p—
]

0.05 4

3.8
42
44
46
48

b
o

- S T S Y o el

TCP Data Segment Delay at AP MAC {ms)

Figure 7.13: Probabilities of transmission delays at AP in good conditions (SNR~30dB)

0.25 s — —

o2 4 14- S - - - - - — - - - — _

015 g - - - - ——— - — e e e e m Mo —— - - - -

Probability

005 - - - - - - - - - - -

Figure 7.14: Probabilities of transmission delays at SEAMOSS in good conditions (SNR~30dB)

225

0.1 - - - - - -

0.08 E - - - R - -

o
8

Probability

004 & - -HIHH - S S - - - .

0,02 -11-

WM e N YD DN N Y 0@ MmN Y WM T N T DMWY DWW WM DWW N W W N W
o oo - = = = ool oo ® ¢ @ o * < 7 L T R B B e R B B
[T T R B B e e

TCP Data Segment Delay at AP MAC {ms)

Figure 7.15: Probabilities of transmission delays at AP in fair conditions (SNR~20dB)

0.25 e S _— -
0.2 - E - - - -- - -
0.15 - - - ———-— - - - - - - - - - - -
5
]
o
o
=
o
0.1 4 - . . . D e
0.05 - - - - - - i i
0 u T — ST Te——
O M T W oOm e NY D@ NN T I @m MmN T @0 T NT O W N T @ @O oY g omnNY Q@D
o o oo - s o= - oo ool L + o T Wi W @ oo W [S

4 o
-
TCP ACK Delay at End-Device MAC (ms)

Figure 7.16: Probabilities of transmission delays at SEAMOSS in fair conditions (SNR~20dB)

226

.14

012 4+ - R S - IR - - R

0.1 - - -

Probability
o
2

o
8

0.04

0.02 - — - - - - - - -

(=TT S 4 WM om o ;M uy uwy Wy U w L A= I T = B« e O A A T B I
S - — o mvwn.nmmg“"\“.“’VQ:QN“’QQ‘OK}S.@"nor-ir-m"mcnc.-—ﬂwmm#
I B A == B B B B BN - & oo R
e T e e o e
TCP Data Segment Delay at AP MAC (ms)

Figure 7.17: Probabilities of transmission delays at AP in poor conditions (SNR~10dB)

0.12 B - - - - - -

o - . _

0.08 : - - . - - -

Probability

Figure 7.18: Probabilities of transmission delays at SEAMOSS in poor conditions (SNR~10dB)

From Figures 7.13 to 7.18, it is interesting to observe the changing magnitude of the
delay values along the horizontal axes of the plots. This happens at the interchange
between good conditions and fair conditions, and between fair conditions and poor

conditions. A TCP sender could therefore be enhanced with heuristics that allow it to

227

estimate whether conditions in the last-hop WLAN are in good, fair, or poor state.
Based on which state is estimated, a sending TCP could use statistics presented in this
subsection to take different approaches for determining its RTO timer, and/or react

differently to segment losses and non-arriving ACKs within a specific time period.

7.5 Scenario 1 — Results and Discussions

In this section the results obtained from performing end-to-end TCP data transfers to
SEAMOSS in the last-hop WLAN are presented. The effectiveness of TCP Reno, TCP
CUBIC, TCP Hybla, TCP Veno, and TCP Westwood+ over the wired-to-wireless

testbed, and for differing sub-scenarios over the WLLAN, is also reported.

7.5.1 Small TCP Transfers

Here the results for the 1 Mb data transfers between the experimental TCP server and
SEAMOSS are presented. The results incorporate data transfers for sub-scenario A
(consisting of SEAMOSS only) to sub-scenario E (consisting of five 802.11g devices
in the WLAN including SEAMOSS). The averages of the results from three
independent iperf runs per TCP congestion control variant per sub-scenario are

presented.

Figure 7.19 is a plot of the average time taken to transfer 1 Mb of data between the
server and SEAMOSS, as reported by the iperf tool running on SEAMOSS. It can be
seen that Hybla supersedes all of the other TCP congestion control algorithms on test
for all sub-scenarios. The legacy Reno also performed the transfer in less time than
Veno, TCP Westwood+, and CUBIC in sub-scenarios A, B, and C. This suggests that
for short transfers and fewer 802.11¢g devices in the WLAN, Reno’s performance may
not suffer as prominently as might originally have been thought. However, as the
number of devices in the WLAN was increased beyond three, Reno’s performance
quickly degraded the most, as can be seen from the rapid increase in the transfer time.
Interestingly, throughout the tests Veno performed only slightly better than Reno; this
is to be expected because it is a direct modification of the AIMD algorithms used in

Reno, with even identical functionality under certain circumstances.

228

Figure 7.20 plots the average end-user throughput achieved during the lifetime of a
particular transfer for each of the sender-side algorithms on test. It was calculated by
using tcptrace on the tecpdump capture files obtained from SEAMOSS. The tcptrace
tool reported the total number of TCP data segments that were actually received at the
TCP-layer, denoted by Nycp. The time taken to transfer the entire 1 Mb of data
according to the iperf tool is denoted by 7. The TCP throughput (bps), , was obtained
using the following equation (where MSS = 1460% 8 = 11,680 bits):

_ Nyep - MSS
T (Eq. 7.8)

Note that Eq. 7.8 is a more accurate computation of the perceived TCP throughput for
the end-users in the WLAN, as it excludes the sizes of all lower-layer packet headers
as well as the actual TCP header. It focuses solely on the payload, which is the only

data that is passed to the application-layer.

35 S
3.3 - - s
= = NA
t[1NE [|NE = \'
28 = NS = \Mﬁ
2 s = | \.’." = = N
22 = NZ= = N
g 23 |- — \; = — \":
5. = \4% = \F‘:
= N- = N
Sia | = N = = ¥
) = N = \%
S 15 = \vﬁg_ — \'Iﬁ
T 13 = \3515- = N
g = NA= = N
g 1.0 | 1 — \Egig_ = N
< = \vs = RNYSS
0.8 — \P.): = ocuBIC
0.5 — §=$3E —= | WHYBLA
5o = \3542 — | | orReno
= | N = = 2
00 = | INCE = 2

@

C

E

Sub-Scenario

Figure 7.19: Short TCP flows: Average 802.11¢g end-user download time for 1 Mb of data

It can be seen from Figure 7.20 that all TCP congestion control algorithms experienced
a drop in average throughput as the number of devices in the last-hop WLAN

increased, from sub-scenario A to D. However, an interesting phenomenon can be seen

229

with TCP Reno, Veno, and Westwood+ in that they all experienced a slight increase in
their average throughput in sub-scenario E, i.e. when the number of 802.11g devices
was increased from four to five. TCP CUBIC and Hybla however continued to show a
decrease, as would be expected due to the higher end-to-end latencies being caused by
increasing contention levels over the WLAN between the AP and 802.11g devices for
access to the radio medium [53]. Since each of the TCP congestion control algorithms
on test relies on its estimate of the RTT for advancing its cwnd size, one would expect
a gradual decrease in end-to-end throughput between the TCP server and SEAMOSS
as the number of 802.11g devices increase, as the cwnd is growing at a reduced rate.
Another factor that may have affected the average end-to-end throughput is that of the
increased data frame errors over the WLAN due to an increase in the number of
802.11g devices and the subsequent increase in the amount of TCP traffic being
generated over the downlink and uplink channels (as is shown in Figure 7.3).
According to [41] and [258], 802.11 frame errors tend to be more prevalent as the
number of 802.11g devices and hence TCP traffic levels increase; this is due to the

effects of ‘self collisions’ of 802.11 data frames containing TCP segments.

3.5

3.0 | -

<4

2.5

\

20 |-

1.5 -

| ocusic

| WHYBLA
ORENO |

| mvEND |

| EWESTWOOD+ |

Average Throughput for 1 Mb Transfer (Mbps)

{TFRIERRRREIOTERRRERRRTOTOCERRRIOOOCERRALL

Y,

(TR REEE R

(AR EEEEEEET TR EEEERERr EEEEER Ry

C D E
Sub-Scenario

p-]
w

Figure 7.20: Short TCP flows: Average throughput achieved by 802.11g end-user

The primary explanation here is that TCP ACKs from 802.11g devices are sent as
802.11 data frames in the uplink direction of the WLAN. With 802.11 data frames

230

travelling in both uplink and downlink directions, and with multiple devices at various
locations in the home WLAN, frame collisions can occur due to the ‘hidden node
problem’ and frames are corrupted (refer to Chapter 3). Of course, the 802.11 sending
MAC is able to conceal the majority of frame errors using its stop-and-wait ARQ
mechanism, however not all data frames can be recovered because the MAC will only
attempt a fixed number of retransmissions before giving up and moving onto the next
in-sequence data frame in its transmit queue. This effectively translates into a lost TCP
data segment that will not arrive at SEAMOSS, or a lost TCP ACK that will not arrive
at the AP. A lost TCP data segment will cause SEAMOSS to generate DUPACKSs for
every out-of-order data segment arriving thereafter, which will force the TCP sender to
perform a fast retransmit and fast recovery action, reducing its cwnd size, and
consequently its sending rate, unnecessarily. A lost TCP ACK will cause the TCP
sender’s RTO timer to expire as it waits for it to arrive, which incorrectly retransmits

the presumed lost data segment, and again reduces its cwnd size, and its sending rate.

The most striking result in Figure 7.20 is that TCP Hybla achieves the highest average
throughput across all sub-scenarios, producing up to a 30% better performance than
the next best algorithm, CUBIC. In sub-scenario E however, Veno achieves a higher
throughput than CUBIC, perhaps suggesting its superiority when the number of
802.11g devices increases significantly, which would require further investigation for

confirmation.

7.5.2 Medium TCP Transfers

Here the results for 10 Mb transfers between the TCP server and SEAMOSS in the
last-hop WLAN are provided, again presenting averages of three independent runs per

TCP congestion control variant, and per sub-scenario.

Figure 7.21 is a plot of the average times taken to transfer 10 Mb of data for each of
the TCP algorithms on test. It can be seen that all TCP algorithms, except for Reno,
follow a similar trend between sub-scenarios A to E, possessing a gradual increase in
the time taken to complete the transfer as the number 802.11g devices in the WLAN is
increased. Hybla performed the best, by completing the transfer, on average, 1 second

quicker in all sub-scenarios. In contrast, Reno exhibited a significant increase in its

231

transfer time from sub-scenario B to D inclusive; in sub-scenario C it took nearly 2
seconds (~7%) longer than Hybla to transfer the 10 Mb of data; and in sub-scenario D
it took nearly 5 seconds (~22%) longer. Interestingly however, Reno performed better
than Westwood+ and CUBIC in sub-scenario E, where there were five 802.11g devices
in the WLAN. A possible explanation for this sudden increase in performance could be
due to the way in which the 802.11g MAC randomly allocates back-off periods from
its contention window before gaining access to the radio medium [23]. Thus, five
devices in the WLAN may have altered the MAC’s randomness in favour of
SEAMOSS acquiring access to the radio medium quicker than the other devices.
Another possible explanation could be that Reno’s calculation of the RTO timer is
more sensitive to conditions in the last-hop WLAN, such as the loss rates affecting

TCP traffic and the variability of delays over the WLAN.

N

NSNS
IFFFFEFEFEET

SO

3

| AFEFFEEFETArRRTer T FEFFERRRRRRRI

Average 10 Mb Transfer Time (s)

N E \ =
§§g§ N = =
N = N = =
N= N = =
\%E %F}’;E =
N= N = =
N = N = .

N

>
oz]
9]
o

E

Sub-Scenario

Figure 7.21: Medium TCP flows: Average 802.11g end-user download time for 10 Mb of data

Figure 7.22 plots the average throughput achieved by the end-user over the lifetime of
a 10 Mb data transfer to SEAMOSS. Again, as elaborated upon in the preceding
subsection, tcptrace was used in conjunction with tcpdump capture files from
SEAMOSS. As already discussed for Figure 7.21, TCP Hybla achieved the highest
throughput across all sub-scenarios. Because the congestion avoidance phase was more

prevalent in these transfers, all TCP algorithms were able to probe for higher

232

bandwidth in all sub-scenarios due to way in which the AIMD mechanism has been
designed; hence the throughput values in Figure 7.22 are greater than those seen in
Figure 7.20. It was also noticed that up to sub-scenario C (i.e. three 802.11g devices in
the WLAN), all TCP algorithms experienced only a mild decrease in average end-user
throughput. When introducing a fourth (sub-scenario D) and fifth (sub-scenario E)
device into the WLAN, the decrease in throughput was much more accelerated, with
some more accentuated than others. Hence, it could be said from these results that
medium size TCP transfers are little affected by last-hop WLANSs containing up to
three 802.11g devices, but show a more rapid decline in performance when the number

of devices exceeds this number.

w
4]
7

I

SESNNRN

7

N

N

S

w
o
—_

‘

e

SAASMAAN Y

SR

NN

N
o
NN
55

=

u&;

S

L

LN

&
Z
2

{3

A

‘A

R NONNNNNNNNNNNY

v

SSSSNNY

-
(4]

ISSSSASSAS

i

o
”
'
'
'
5
P
A
'

5
N

NSS!

| ocusic ‘
| EHYBLA
1 | ERENO |

| BVEND
| BWESTWOOD+

E

-

S

Average Throughput for 10 Mb Transfer (Mbps)

(NN

AR

o
(411
—

5
OO

LS

S

%
\
\
\
\
%v
\
\
\
g
\

L T P

SSSSSSNTSSISNSNISSTISSSSINSISNNNNNN

ANV

N

L

o
o

>
w
o]
[w}

Sub-Scenario

Figure 7.22: Medium TCP flows: Average throughput achieved by 802.11¢g end-user

7.5.3 Large TCP Transfers

Here the results for 50 Mb data transfers between the TCP server and SEAMOSS in
the last-hop WLAN are provided, again presenting averages of three independent runs

per TCP congestion control variant, and per sub-scenario.

Figure 7.23 is a plot of the average times taken to transfer 50 Mb of data for each of

the TCP algorithms on test, and Figure 7.24 1s a plot of the average end-user

233

scenarios A to C, the average throughput (and subsequently transfer times) for each
algorithm remains relatively constant, around the 3.7 Mbps to 3.75 Mbps (around the

throughput achieved over the lifetime of connections. It can be seen that from sub-

114 seconds) mark.

| B

m_“ &

N g e S N N e O N S N N g e g g g N g e N N o | N N N N N N O A A W S o S W o o o
JSssssssssssssassaasasssssssol SSSSISSSSSINNMNNSSSSSASS A
oOmOo@O OmR20om

T

_.________.__________======__== |
: A

Y

_ ___________________=====_===_=====___==_==____=_=== ======___f___________==_____=_______E_____E______E______E

o
L RIIIVIIDDNDDNINNNSONNNNNNDNNNN 8 IRSSORRSSSRSSSNS
_ o om
=1
3
w
_______=_=___=_====_==========_====___=_=== _====________===___==_______________=______==_=_E_=====
R NI ININININNNNNNN SESSSTSSSANSSSNISSSNSSSINSSSANNSSSSs
m

nftitcitliillzzzzz2

| _______==______==_===.__=_w________=__=___=_______==_____=
SSSSSSSSSNNANANTISSNNSSSSANNANSS

p—“"

t T T T
o (=] o (=] o o (=] = (=] [=]
—

Figure 7.23: Large TCP flows: Average 802.11¢g end-user download time for 50 Mb of data

_
o 0 o © o © =

[=] o [=] w
-~ — — o o o (a¥] - -— (=] (=]
(s) swiy saysuea] q 05 abedany (sdqyy) 121suel) g 05 404 Indybnoay | abetany

C
Sub-Scenario

Figure 7.24: Large TCP flows: Average throughput achieved by 802.11g end-user
234

Looking at Figure 7.23, TCP Veno experienced a slight increase in the average transfer
time in sub-scenario B, but it wasn’t significant because in sub-scenario C its
performance was on terms with the other algorithms. Looking at the performance of
each algorithm from sub-scenario C onwards, it can be seen that Reno’s performance
degradation was the most accelerated. In contrast, Hybla achieved the highest

throughput and quickest transfer times across all sub-scenarios.

An interesting observation is that in sub-scenario E (with five 802.11g devices in the
WLAN), CUBIC was the worst performer, possessing a transfer time in excess of 127
seconds, taking over 2 seconds longer than Reno to complete the transfer, and 7
seconds longer than Hybla, which is a significant difference from an end-user’s
perspective. A possible explanation for this is that CUBIC has not been designed for
wired-to-wireless paths, and although its performance has been better than Reno’s with
fewer 802.11g devices in the WLAN. This was more likely to be due to the cubic
growth of its cwnd, which has been designed to initially possess a ‘steady state’
behaviour, then with further time elapsing, to possess more of a bandwidth probing
behaviour [286]. In sub-scenario E, the transfer times are the longest overall, and this
may have put CUBIC’s cwnd growth into the second bandwidth probing phase.
Although this probing technique may work well for CUBIC in a wired network, in
wired-to-wireless paths, a sudden accelerated opening of the cwnd would cause large
numbers of TCP data segments to arrive at the AP for transmission over the downlink.
This can lead to two possible events: 1) the AP’s incoming buffer queue size could
overflow, causing TCP data segments to be lost completely, or 2) a large transmit
queue at the AP will cause increased and variable delays for the return of TCP ACKs
back to the sender, leading to RTO events at the server. Both events could be an

explanation for the degraded performance of CUBIC in sub-scenario E.

From looking at Figure 7.23, it can be seen quite clearly that in sub-scenario E, Hybla,
Westwood+, and Veno offer better transfer times than Reno and CUBIC. This
confirms that the enhancements made in Hybla, Westwood+, and Veno for wired-to-
wireless paths do indeed produce better performance than those designed for
traditional wired paths only. The results indicate that the differences between these two

categories of algorithms are noticeable when the last-hop WLAN consists of at least

235

three active 802.11g devices, and where one of the devices is downloading large TCP

files from the Internet, possibly via the F'TP protocol.

7.5.4 Retransmission Timeout (RTO) Timer

In this subsection the results of TCP sender’s average RTO timer values are presented
(obtained from the web100 kernel), which have been averaged over the duration of
each data transfer, and then over the three independent trials that were conducted. As
discussed earlier, the RTO timer value is an interesting area of study for researchers, as
it governs the start-stop behaviour of a TCP sender in the presence of random and

variable delays that are typical of last-hop WLANS.

Figure 7.25 plots the average RTO timer values for the small data transfers; with the
exception of the legacy TCP Reno, it can be seen that the average value of the RTO
timer was fairly constant for all sender-side algorithms. The average end-to-end RTT
across all iperf runs was calculated to be 175.7 ms for all five sub-scenarios (from
web100 statistics). For Reno then, it can be seen that its RTO timer value is quite large
across all sub-scenarios in relation to the average RTT. In contrast, the other TCP
algorithms seem to all possess much lower RTO timer values, implying that their
response times would be better in the presence of actual TCP losses over the WLAN.
Recall from Chapter 3 that a large RTO timer value causes a sender to wait for
unnecessary longer periods of time whilst waiting for a TCP ACK to arrive from the
WLAN. The likelihood of TCP traffic being lost over the WLAN is higher than wired
networks, and so the legacy Reno is waiting on average up to three times longer than
the other algorithms just to confirm such losses. Figures 7.19 and 7.20 also support this
theory, which clearly show Reno to be the worst performer for small TCP transfers
between sub-scenarios C to E, where channel conditions over the WLAN were more
erroneous according to Figure 7.3. Hence, Reno’s over-inflated RTO timer
computation may be the explanation to date for its degraded performance over wired-

to-wireless paths.
Figure 7.26 plots the average RTO timer values for the medium sized TCP transfers. It

can be seen in Figure 7.26 that TCP Reno shows great variation in the value of its RTO

timer, experiencing a sudden increase from sub-scenario D onwards. The average end-

236

to-end RTT across all iperf runs was calculated to be 184.7 ms for all five sub-
scenarios. Comparing all the algorithms, it appears that Reno’s computation of the
RTO timer is highly sensitive to conditions over the last-hop WLAN, which again may
explain its poor performance in such conditions, as can be seen in Figures 7.21 and

7.22.

1400
| OCUBIC
1300 | muveia R T
@ | RRENO
-E- 1200 - DVEND
.:u:n 1100 || Bwestwoop+ | L o B , S -
’_i.g 1000 -
g 900 |- - - - - - R . S - B [R
% 800 |-
5 o700 | - - - - - - - -
E
= 600 |- TR \\ SR R EEEEEEE \ BRI F-- -1
o]
E 500 - - - - - - - R I S — - - L
o N — - e
g 400 TE = =
5 300 = = : =
o — = =
$ 200 7- = = =-
< 100 == = =
0 X= ,€= - E—E
A B Cc D E
Sub-Scenario
Figure 7.25: Small TCP transfer: Average RTO timer value at TCP sender
800 ———
i DcuBIC
—_ BHYBLA N
%’7001'EREN0 L %
g | @Bveno I \
2 | BWESTWOOD+ | \
d oo | s \
§ 600 - oo - e - \
: \
= 500 N
; \
o
L 400 - - - . . - . N
© 300 |- = = = N
= <}
E = — = N
= = = N
o = = = NA
= 200 -1 =B = g — \9 J
@ = —] \' 4
- = = — -\'fq
s = . = N
2 100 = — = \ur:
= = = §$,‘
0 = 2= = DNN<A
A B C D E

Sub-Scenario

Figure 7.26: Medium TCP transfer: Average RTO timer value at TCP sender

237

Figure 7.27 plots the average RTO timer values for the /arge size TCP transfers. The
average end-to-end RTT across all iperf runs was calculated to be 181.2 ms for all five
sub-scenarios. First and foremost, Figure 7.27 shows that TCP Reno’s RTO timer
value appears to exhibit similar behaviour to that seen in the small and medium sized
TCP transfers, again highlighting its high variability and sensitivity over such
conditions. The other sender-side algorithms exhibited less variability, but generally
(specifically for the large transfers) all of them showed an increase in the values of
their RTO timer as the number of 802.11g devices in the last-hop WLAN is increased
from sub-scenario A to E. Ideally, the TCP sender’s RTO timer value should remain
fairly constant across the sub-scenarios, or even be reduced when conditions over the
WLAN degrade. The justification for this is that one would expect channel conditions
over the WLAN to be the most erroneous in sub-scenarios D and E; hence TCP
segments (both data and ACKSs) are more likely to experience actual losses due to the
802.11 ARQ mechanisms reaching its retry limit. For this reason, it seems logical for a
TCP sender to reduce the magnitude of its RTO timer as opposed to increasing it,
thereby making it more responsive to the non-arrival of ACKs from the wireless end-
device. Further investigations would be needed to assess the impact of reducing the
RTO timer with increasing 802.11g device numbers in the last-hop WLAN on end-to-

end performance of TCP congestion control algorithms.

¢ ocusic
500 WHYBLA
| BRENO
| BVENO
| owestwoop+

400 -

300

200 -

100 | -

Average TCP RTO Timer for 50 Mb Transfer (ms)

TR AT TR TR ERERT FER

T
T T T T

TR

(=]
1
N

A B [D E
Sub-Scenario

Figure 7.27: Large TCP transfer: Average RTO timer value at TCP sender

238

7.6 Scenario 2 — Results and Discussions

This section presents the results of TCP experiments consisting of transferring 30 Mb
of data (using iperf) from the server in the wired domain to SEAMOSS in the WLAN.
In scenario 2, the locations of SEAMOSS were varied around the home to create sub-
scenarios of the channel conditions (signal quality) it perceived. Three sub-scenarios
were chosen, representing good (SNR = ~30 dB), fair (SNR = ~20 dB), and poor (SNR
= ~10 dB) signal qualities. In each sub-scenario, the wireless end-user performed the
equivalent of downloading a 30 Mb file from a TCP server in the Internet. The transfer
for each sub-scenario was performed three times back-to-back using each of the five
congestion control algorithms on test. This section therefore presents the averages

(arithmetic mean) of the three runs per sub-scenario per TCP variant.

7.6.1 Transfer Time Performance for 30 Mb Download

Figure 7.28 plots the 30 Mb transfer time performance of the five sender-side
congestion control algorithms on test. The transfer time is the total download time for
acquiring all the data, as reported by the iperf tool on SEAMOSS. Refer to Figure 7.4
for information relating to the frame error conditions of the WLAN in each of the three

sub-scenarios.

It can be seen from Figure 7.28 that in good channel conditions all five algorithms
completed the transfer within a respectable 84 seconds. Even in fair channel
conditions, with the exclusion of TCP Reno, all algorithms completed the transfer
within 103 seconds, with Reno taking almost 121 seconds. CUBIC completed the
transfer in less than 92 seconds, showing that it was little affected by a 10 dB drop in
channel conditions of the last-hop WLAN. Moving onto the poor channel conditions,
TCP Hybla was the best performer here, completing the transfer within a respectable
137 seconds, with CUBIC managing to complete it within 150 seconds. In contrast,
Reno took almost 300 seconds to complete the transfer, which is more than double the
time taken by Hybla and CUBIC. Veno performed quite well in poor channel
conditions, completing the transfer within 175 seconds, however Westwood+ took

almost 238 seconds.

239

In summary, CUBIC and Hybla were the strongest performers across the three sub-
scenarios, with Hybla experiencing only a 66% increase in the transfer time between
good to poor channel conditions. In contrast, Reno experienced a 253% increase, and

Westwood+ experienced a 186% increase.

300 [ocueic - e e T e

| mHYBLA

275_ DREND ‘ ________ - - -0 -0 00 - - - T - - - -
| BVENO

250 || awestwoops |

225 — - — - - - - - - - - - - - B -

200 - - - B S e U - . - -

175 B . e - _— - S - -

150 . . - - - — R - - _-— P

125___ e - - e -

100 - -~ - - - -

Average 30 Mb Transfer Time (s)

50

25 - -

GOOD (~30dB) FAIR (~20dB) POOR (~10dB)
Sub-Scenario (WLAN Channel Conditions)

Figure 7.28: Download time for 30 Mb of data by 802.11¢g end-user

7.6.2 End-User Throughput Performance

In the presence of the downlink and uplink WLAN error conditions reported in Figure
7.4 for each of the sub-scenarios, Figure 7.29 plots the average achieved throughput as
perceived by the end-user. The methodology described in subsection 7.5.1 using Eq.

7.8 was used to calculate the end-user throughputs.

As can be seen from Figure 7.29, in good channel conditions the maximum throughput
achieved was 3.08 Mbps (Hybla), with the 3.03 Mbps (Reno) being the minimum.
These values are governed by the upstream and downstream bandwidth settings of the
Internet emulator of the testbed. Also governing them are the existence of FERs over

the WLAN (refer to Figure 7.4).

240

[ocusic |

3.0) N -) -] " - - " - © miveLa
\ | ORENO |

BVEND
| DWESTWOOD: |

25 | -- - - - - - - S S

156 |-- --

1.0 - -

Average Throughput for 30 Mb Transfer (Mbps)

0.0

GOOD (~304dB) FAIR (~20dB) POOR (~10dB)
Sub-Scenario (WLAN Channel Conditions)

Figure 7.29: Throughput achieved by 802.11g end-user over varying WLAN conditions

Looking at the performance of the legacy Reno across the three sub-scenarios, it can
be seen that it was consistently the weakest performer. Unable to deal with the high
uplink and downlink FERs and transmission delays (Figure 7.12) in fair and poor
channel conditions, it achieved an average throughput of just 0.9 Mbps. In contrast,
Hybla and CUBIC were able to utilise more of the available WLAN bandwidth in poor
channel conditions, achieving throughputs of 1.85 Mbps and 1.7 Mbps, respectively.
Even Veno achieved a throughput for the end-user of 1.45 Mbps. The three algorithms
were able to achieve higher throughputs due to the enhancements made at the sender-
side. CUBIC has been designed to probe for more bandwidth quickly, which worked to
its advantage. Veno has been designed to be less aggressive with the reduction of its
cwnd size when losses are deemed to be random (i.e. over the WLAN), again working
to its advantage. Hybla has been designed to take advantage of higher RTT paths by
accelerating the growth of its cwnd size relative to the RTT, which (according to
Figure 7.12) would have been the case due to the higher transmission delays for TCP

data segments and ACKs over the WLAN.
TCP Westwood+ performed only marginally better than Reno, achieving an average

end-user throughput of just 1.05 Mbps, which is surprising since its authors claim that

it achieves good performance over wired-to-wireless paths with random losses. The

241

reason for its lacklustre performance may be due to inefficiencies with its end-to-end
BWE function, which relies on the rate of returning TCP ACKs from the wireless
domain. In poor channel conditions, the uplink FER was almost 30%, with average
TCP ACK transmission delays of almost 8 seconds in comparison to just over 2
seconds for TCP data segments (refer to Figure 7.12). Such uplink error conditions
may not have been factored into the original design of TCP Westwood+, hence forcing

it to perform poorly in such real-world tests.

In summary, Hybla and CUBIC were the best performers across all channel conditions

in the last-hop WLAN.

7.6.3 Retransmission Timeout (RTO) Timer

Figure 7.30 plots the TCP sender’s average RTO timer values (obtained from the
web100 kernel), which are averages over the duration of each data 30 Mb transfer, and

then over the three independent trials that were conducted.

900 [
oo || Soume
800 ORENO bmmmm oo -
750 OVENO .
700 |L-BWESTWOCD: |
550 - . — S S S - - J— -
600 - - S - J— o S R
550 |- - : - - - - - -
500 -+ — - - - _ - - —
450 1-
400
350 -
300 - -
250 -
200 -
150 | - -
100 - - -
50 - \ - -
0 —- < -
GOOD (~30dB) FAIR (~20dB) POOR (~10dB)
Sub-Scenario (WLAN Channel Conditions)

Average TCP RTO Timer Value (ms)

Figure 7.30: Average RTO timer value at TCP sender over varying WLAN channel conditions

Looking at Figure 7.30, TCP Reno seems to have inflated its RTO timer the most on

average as the channel conditions worsen from good to poor. This increased sensitivity

242

follows on from the results in subsection 7.5.4, where Reno’s RTO timer also

exhibited similar behaviour in sub-scenarios D and E, the most erroneous conditions.

An interesting observation from Figure 7.30 is that TCP Veno maintained a relatively
stable RTO timer value on average across all three channel conditions. All other
algorithms increased their average RTO timer significantly only when channel
conditions became poor. However, the maximum average RTO timer value seen is 873
ms (for Reno). This may have worked against all five algorithms in poor channels
conditions. Looking at Figure 7.12 for poor conditions, the average delay for a TCP
data segment and TCP ACK pair over the WLAN was in the region of 8000 ms, nearly
ten times greater than the average RTO timer value. This implies that in poor channel
conditions with significantly high FERs, a TCP sender is more likely to suffer from
RTO events as opposed to fast retransmit and fast recovery events caused by triple
DUPACKs. A RTO event always initiates the slow start algorithm after the
retransmission of a data segment, with the cwnd size reduced to its initial start size
(usually equal to 1 MSS or 2 MSS). This has a severe impact on the sending rate, and

on the maximum end-to-end throughput that can be achieved.

7.6.4 Retransmission Behaviour at TCP Server

Figure 7.31 plots the total number of TCP data segment retransmissions that occurred
at the TCP server during each 30 Mb transfer (obtained from the webl100 kernel),
either due to RTO events or due to the reception of three DUPACKSs. The results have
been averaged over the three independent transfers per sender-side algorithm, and per

each channel condition.

In Figure 7.31, it can seen that in good channel conditions, on average there were no
retransmissions of data segments for all sender-side algorithms, except for TCP Reno
who had to retransmit a data segment just the once on average. This indicates that a
TCP sender in the wired domain is able to resist FERs over a last-hop 802.11 WLAN
of up to 10% for downlink traffic and up to 5% for uplink traffic (refer to Figure 7.4).

When FERs increased over the WLAN in fair conditions to over 40% for downlink

traffic and over 10% for uplink traffic, the TCP sender first showed signs of

243

retransmissions taking place. In Figure 7.31, it can be seen that in fair conditions TCP
Reno retransmitted, on average, 20 data segments, which is nearly twice as many as
the other algorithms. In poor conditions, Reno retransmitted, on average, 68 data
segments, which is more than triple the number of segments retransmitted by CUBIC,
Hybla, and Veno. As discussed above in subsection 7.6.2, Westwood+ suffered from
weak end-user performance in poor channel conditions, and Figure 7.31 reveals that it
also retransmitted 52 data segments on average, which may have been due to lost TCP
ACKs. Unfortunately, TCP ACKs are not retransmitted; it is always the data segment
that is retransmitted by the sender. It may be better to perhaps incorporate a heuristic
mechanism at the sender for determining that a TCP ACK has been lost, and hence a
retransmission of the data segment is not necessary, thereby preventing a reduction in

the sending rate.

70

| ocusc

65 || mHyLea |- - - - : - - - -
RRENO

60 ' mveno

55 || owestwoops | _ _

50 - : - - - -
45
40
30
25 : : -

20 -
15
00 1l---- - - o e - o

Number of TCP Data Segment Retransmissions

GOOD (~30dB) FAIR (~20dB) POOR (~10dB)
Sub-Scenario (WLAN Channel Conditions)

Figure 7.31: Retransmissions by the TCP sender over varying WLAN channel conditions

7.7 Chapter Conclusions
This chapter presented experimental results evaluating the performance of TCP Reno,

CUBIC, Hybla, Veno, and Westwood+ sender-side congestion control algorithms over

wired-to-wireless paths, using a variety of scenarios that accurately replicated the real-

244

world. TCP Reno is the legacy algorithm used by servers in the Internet (and most
likely still being widely used); hence it was included in the tests in order to obtain
some base-line results. CUBIC is the default algorithm used by the latest Linux v2.6
kernels upon installation; hence it was included in the tests due to the popularity of
Linux as an operating system on many of the servers in the Internet today. TCP Hybla,
Veno, and Westwood+ are all specific (and recent) modifications to the legacy TCP
AIMD algorithm in an attempt to provide enhanced performance over wired-to-
wireless paths; hence all three were chosen to be put on test in such conditions in order
to verify their realistic performance and capabilities using a real-world based
experimental environment. Overall, the aim of the chapter was to explore advanced
experimental approaches using real-world protocols and devices in order to confirm
achievable performance of recently proposed sender-side TCP algorithms in relation to

their respective authors’ claims.

A purpose-built wired-to-wireless experimental testbed was used extensively, which
consisted of real-world implementations of the TCP algorithms being tested, an
emulated fixed network domain, and a real-world operational last-hop 802.11g home
WLAN with up to five devices. Prior to the actual experimental work with the various
TCP variants, thorough investigations of the transmission and error characteristics of
the WLAN for each of the main scenarios (1 and 2) and their respective sub-scenarios
were conducted using the full capabilities of the testbed. This was to provide further
insights of conditions of a typical home-office WLAN, as well as to support the results
generated by the remainder of the work in the chapter. After vigorous testing work and
evaluations, the key concluding remarks based on the experimental results achieved

have been summarised below:

1. It was discovered that, with the notable exception of TCP Reno, each of the recent
sender-side TCP proposals performed on comparable terms, with Hybla consistently
being the best performer in all of the testing sub-scenarios and for all transfer sizes
(scenario 1). Note that Hybla was specifically designed for high latency wired-to-
wireless paths, using a variety of techniques aimed specifically at enhancing the
legacy AIMD mechanism. Its superiority in such conditions has been confirmed,
outperforming the other wired-to-wireless enhancement proposals, Veno and

Westwood+.

245

2. It was observed from all experiments of scenario 1 that there was a clear turning
point in the data transfer performance for all TCP algorithms when the number of
802.11g devices in the last-hop WLAN exceeded three. For each additional 802.11¢g
device that was added to the WLAN, the TCP performance were reduced; this
includes small, medium, and large sized data transfers from the wired domain.
However, for up to three WLAN devices, TCP performance degradation was
minimal. Using greater than three 802.11g devices in the WLAN appeared to have
affected end-to-end TCP performance more noticeably, although it could be argued
that the turning point could easily have been due to peculiarities with the third end-

device (i.e. TEMPLETREE) being introduced into the experiments.

3. With regards to the legacy TCP Reno, the most likely congestion control algorithm
to still be used by servers in wired domains, it was noticed that it was actually the
worst performer in the majority of the tests for both scenario 1 and scenario 2. This
fully supports the many claims researchers have made about its poor performance

over wired-to-wireless conditions.

4. From further observations into the RTO timer values for each algorithm tested, TCP
Reno revealed some interesting insights that may explain its poor performance in
wired-to-wireless paths, which may have been overlooked in previous work. It was
learnt that Reno’s computation of the RTO timer during a connection was much
more sensitive to changes in the last-hop WLAN. As the sub-scenarios of scenario 1
and scenario 2 in the WLAN were varied, Reno’s RTO timer computations
exhibited high variability from sub-scenario to sub-scenario, and in some cases even
showed a significant increase in its average value (in comparison to the other
algorithms) when conditions were more erroneous over the WLAN. Increasing the
value of RTO timer significantly when TCP losses are more likely leads to stalled
growth of the sender’s cwnd due to long waiting periods between the sending of
data and the non-arrival of ACKs, which only leads to a ¢wnd reduction anyway.
There is clearly a trade-off between having a large RTO timer value and a small
one, which is heavily dependent on the conditions of the last-hop WLAN. Further
investigations would be required to study the TCP RTO timer in more detail using

the experiment testbed.

246

. Interestingly, TCP CUBIC, although designed primarily for wired networks, was a
strong performer in all of the transfer sizes. A simple explanation for its
effectiveness over wired-to-wireless paths is that CUBIC was designed to probe for
unused bandwidth via its cubic cwnd evolution, with the aim of maximising
throughput performance. This technique seemed to have worked well over the
various sub-scenarios, as the available bandwidth over the last-hop WLAN (54
Mbps) was higher than that of the wired path, whose bandwidth was governed and
shaped according to the Internet emulator (refer to Chapter 6). Hence CUBIC was
able to take advantage. However, it was found that for very long connection times
(i.e. large sized data transfers), CUBIC reduced its aggressiveness, and was easily

overtaken by the other sender-side algorithms.

. TCP CUBIC and Hybla were the strongest candidates for large sized (30 Mb) data
transfers over good, fair, and poor channel conditions in the last-hop WLAN. They
performed particularly well over poor channel conditions in relation to the other

algorithms.

. The Westwood+ sender suffered from poor performance when used over poor
channel conditions in last-hop WLAN, with high FERs. It caused the sender to
perform a high average number of data segment retransmissions, therefore trailing

not too far behind TCP Reno in such conditions.

. Finally, it was found that the performance of Veno and Westwood+ were on very
close terms throughout the tests of scenario 1 involving multiple end-devices in the
WLAN, exhibiting similar performance across all sub-scenarios and data transfer

sizes.

Overall, a consistent method for performing standardised testing for TCP congestion

control algorithms over wired-to-wireless paths has been demonstrated, with

experimental results yielding useful and accurate insights. Such insights could be a

step forward in the development and/or refinement of a TCP congestion control

algorithm that is able to operate with maximum efficiency over an increasingly

heterogeneous Internet.

247

Chapter 8

Thesis Conclusions and Future Work

8.1 Summary of Conclusions

The contributions of this thesis have been two-fold; a) it has thoroughly explored and
reviewed the current state of art relating to the key issues as well as some of the most
prominent solutions concerning fixed TCP senders over wired-to-wireless paths, with a
particular focus on those wireless paths using the increasingly popular IEEE 802.11
WLAN technology (Chapter 3), and b) it has demonstrated via comprehensive
experimental work the performance issues that fixed TCP senders suffer from in a
variety of conditions over last-hop 802.11 WLAN paths in the real-world environment
(Chapters 4 to 7). Further challenges and issues associated with the use of TCP in
conjunction with 802.11 WL ANs have been identified in this thesis, the work of which

has constituted as the core focus.

In Chapter 4 simulations using the popular OPNET Modeler™ were performed to
gauge the behaviour of a TCP sender under varying BERs over the wireless channel. A
custom bit error module was implemented, which was then used extensively to assess
the performance thresholds for TCP and associated applications. This chapter has
successfully highlighted and confirmed the ineffectiveness of TCP in conditions where

the BER over the WLAN channel is in excess of ~107, thus affecting wireless end-

users of popular Internet application-layer protocols such as HTTP and FTP. It was
also revealed that HTTP traffic performance can sustain higher BERs over the WLAN

than larger sized file downloads from the Internet using FTP.

In Chapter 5, the results obtained provide strong evidence that there are significant

differences in the sending performance of TCP between differing path-error
conditions, regardless of the sender-side TCP variant used. The significant impacts of
excluding a loss model on the reverse channel for TCP experiments were highlighted

through a series of controlled experiments over an emulation platform using real-world

248

implementations of TCP. The general conclusions from this work are that in
experiments where losses are induced only on the forward data channel, the
performance results for TCP are easily over-estimated. In reality, over wireless
channels, TCP experiences losses in both directions; hence ACKs on the reverse
channel are also affected. Such bidirectional losses were induced into the experiments
of this chapter, and the performance of TCP was shown to be worse-off. The message
to researchers of TCP issues for wireless networks is that all experiments should be
configured to use forward and reverse channel loss models in order to fully justify the

capabilities of the protocol.

In Chapter 6 a purpose-built testbed for conducting more advanced and accurate
experiments using TCP over last-hop 802.11 WLANSs is proposed. A strong feature of
the testbed is that it can be constructed from readily available hardware and software
tools, encouraging researchers to add new dimensions to their experimental works. The
importance of an Internet component within wired-to-wireless TCP experiments has
also been stressed, being a key part of the testbed. Typical path characteristics of the
Internet were also gauged, which may be useful to other researchers in the area. The
uniqueness of the testbed is that it can be used to study the TCP-layer of a sending
machine in the wired domain when there is an Internet and a real-world wireless path
in the journey of TCP segments and ACKs, which is difficult to do in the real-world.
In addition to studying TCP behaviour, the testbed allows researchers to conduct
detailed studies into transmission behaviour of the IEEE 802.11 MAC. The novelty
lies with the fact that the testbed can simultaneously capture data/information from the
TCP-layer and from over the 802.11 WLAN from all angles of the same TCP
experiment, from both the sender’s and the receiver’s perspective. Having such a
wealth of captured data becomes invaluable when evaluating the end-to-end

performance of TCP over wired-to-wireless paths.

To demonstrate the effectiveness of the testbed, a wide set of results from the wired-to-
wireless testbed confirmed that 802.11 frame errors are prevalent over WLAN
channels in both downlink and uplink channels. But interestingly it was also
discovered that the reverse channel of the WLAN possessed its own frame error
behaviours, quite different from forward channel error rates. Further observations led

to the conclusion that there may be more correlation between reverse channel error

249

rates over the WLAN and the number of times a TCP sender invokes its retransmission

mechanism, more so than for forward channel FERs.

Also investigated in Chapter 6 were the probability distributions of the number of
times a particular 802.11 data frame is retransmitted by the AP and by the 802.11 end-
device; this again highlights the statistics of data that can be extracted from the testbed.
The results show that when channel conditions degrade, an 802.11 AP and end-device
will maximise the use of their retransmission mechanism at the MAC. Such real-world
observations may be useful to those working with error correction techniques to design
optimal codes based on accurate channel behaviours, or equally to those wishing to
gain an understanding of how TCP’s RTO timer could be closely aligned to the highly
variable delay conditions occurring over an 802.11 WLAN due to localised
retransmissions. The aim was to inspire future work that looks at ‘cross-layer’

relationships between fixed TCP senders and the characteristics of an 802.11 WLAN.

Chapter 7 presented experimental results evaluating and comparing the performance of
TCP Reno, CUBIC, Hybla, Veno, and the Westwood+ sender-side congestion control
algorithms that are present in the recent Linux v2.6 kernel over a wired-to-wireless
path, using a variety of scenarios that accurately replicated a real-world home-office
WLAN environment. The proposed experimental testbed from Chapter 6 was used
extensively, which consisted of real-world implementations of the TCP algorithms
being tested, an emulated fixed network domain, and a real-world operational last-hop
802.11g home WLAN with up to five devices. After vigorous experimental work, a

summary of the concluding remarks are listed below:

= It was discovered that, with the notable exception of TCP Reno, each of the recent
sender-side TCP proposals performed on comparable terms, with Hybla

consistently being the best performer in all of the tests.

= [t was observed that there was a clear turning point in the data transfer performance
for all TCP algorithms when the number of 802.11g devices in the last-hop WLAN
exceeded three. For each additional 802.11g device that was added to the WLAN,

the TCP performance were reduced. However, for up to three WLAN devices, TCP

performance degradation was minimal.

250

It was noticed that TCP Reno was actually the worst performer in the majority of
the tests. This fully supports, through real-world tests, the many claims that have

been made about its poor performance over wired-to-wireless conditions.

It was discovered that TCP Reno’s computation of the RTO timer during a
connection was much more sensitive to changes in the last-hop WLAN. Reno’s
RTO timer computations exhibited high variability, and in some cases even
showed significant increases in its average value (in comparison to the other

algorithms) when conditions were more erroneous over the WLAN.

Interestingly, TCP CUBIC, although designed primarily for wired networks, was a

strong performer in all of the transfer sizes.

TCP CUBIC and Hybla were the strongest candidates especially for large sized (30
Mb) data transfers over good, fair, and poor channel conditions in the last-hop
WLAN. They performed particularly well over poor channel conditions in relation

to the other algorithms.

The TCP Westwood+ sender was a weak performer when used over poor channel
conditions in last-hop WLAN, where the FERs were high. It caused the sender to
have a higher average number of data segment retransmissions, therefore trailing

not too far behind TCP Reno in such conditions.
It was found that the performance of TCP Veno and Westwood+ were on very

close terms throughout the tests involving multiple end-devices in the WLAN,

exhibiting similar performance across all data transfer sizes.

251

8.2 Summary of Contributions

8.2.1 A New Synthesis of TCP Issues over IEEE 802.11 Wireless Paths

The thesis has made a new synthesis of the current state of the art based on available
literature and proposals relating to the performance issues of TCP senders over wired-
to-wireless paths. A vast collection of recent literature has been digested and presented
in a form that can be easily interpreted, allowing a future reader to quickly identify key
problem areas of interest, as well as the most prominent proposals and authors that
correspond to the area. To elaborate, this thesis has identified the most prominent
developments and key challenges in the area (Chapters 2 and 3), presenting the ideas
in the form of a concise and systematic survey. In summary, the systematic survey is a
collection of critical and constructive viewpoints based on a comprehensive review of

related and recent work/innovations in the area.

8.2.1 A CBG Module for the WLAN Model in OPNET Modeler ™

Since the majority of researchers use the NS-2 simulator to study TCP over wireless
paths, this thesis opted to use the more commercial OPNET Modeler™ simulation
suite as an alternative, comprising of very accurate models of TCP and the IEEE
802.11 protocols. To capture the impacts of varying BERs over the WLAN a custom
BER generator (CBG) was developed to replace the standard BER stage of the radio
transceiver pipeline (RTP) in OPNET Modeler™, i.e. stage 11 was replaced. The CBG

module was also contributed to the OPNET Modeler™ source-code community.

8.2.2 Significance of Bidirectional Error Models for TCP Experiments

The significance of ensuring that all TCP experimental work undertaken should
include a loss model for both data segments on the forward channel and ACKs on the
reverse channel was shown. This is to prevent an over-estimation of the capabilities of

TCP senders over such conditions.

252

8.2.3 A Platform for TCP Experiments over Wired-to-Wireless Paths

A wired-to-wireless testbed has been proposed, alongside a full demonstration of how
to perform effective TCP experiments over wireless paths, with a particular focus on
the IEEE 802.11 WLAN technology. Various software tools and new techniques have
been proposed, which have not previously been shown. The use of all the components
allows the capturing of the full picture of the interactions between the TCP protocol

and the IEEE 802.11 MAC protocol in unison for the same experiment.

8.2.4 Real-World Error Characteristics of IEEE 802.11 WLANSs

Clear and accurate insights into the characteristics of a real-world home-office 802.11
WLAN have been presented, the results of which can be used in future research to
minimise assumptions. Firstly, a novel methodology is proposed for calculating the
independent frame error rates (FERs) for downlink and uplink TCP traffic flows over
an 802.11 WLAN. Secondly, a new technique for obtaining the distribution of
retransmission probabilities associated with the 802.11 MAC ARQ mechanisms of
both the AP and the end-device is presented. Thirdly, a new technique for measuring
the delays experienced by individual TCP data segments in the downlink direction and
by TCP ACKs in the uplink direction of the WLAN is presented, again with useful
results obtained. The novelty lies in the fact that all three techniques can be applied to

the real-world captures.

8.2.5 Evaluating Linux v2.6 TCP Variants over Wired-to-Wireless Paths

This thesis has explored and evaluated for the first time implementations of various
sender-side TCP variants in the Linux v2.6 kernel over wired-to-wireless conditions,
using the proposed testbed consisting of a real-world wireless path. Five variants were
evaluated and compared against each other using a systematic and fair approach.
Although there were winners and losers based on the achieved results, the intentions of
this work ultimately is to encourage researchers to adopt new and more accurate
techniques for experimenting with TCP over wired-to-wireless paths. Specifically, the
use of Linux across servers in the Internet is gaining popularity and it is therefore of
paramount importance in understanding how to study the various TCP congestion

control implementations on offer. This will ensure that the strongest performers will

253

remain in the kernel as it evolves, leading to a better quality of service in the long-run
for the increasing masses of wireless last-hop Internet users who will rely on TCP for

the foreseeable future at least.

8.3 Directions for Future Work

The work presented in this thesis has explored an interesting avenue regarding the
future of TCP in the heterogeneous Internet. It should be reemphasised that the focus
consistently has been on those TCP senders in the Internet that communicate with
wireless 802.11 end-users situated at the edges day-in day-out, where the majority of
the path is wired, with the last-hop path being wireless. In addition, any changes or
enhancements to TCP for wired-to-wireless should be limited to the TCP

implementation at the sender-side in the wired domain, i.e. at servers in the Internet.

To further develop and build on the work undertaken in this thesis (in accordance with
the above vantage point) there are several directions of future work suggested, which

have been listed below:

= Although the simulation work undertaken in OPNET Modeler™ was sufficient
enough to investigate the effects of channel BERs over the WLAN on TCP
performance, the work could be extended by implementing a more accurate
channel error model that better reflects the real-world. The CBG module that was
developed could be replaced with a channel error model that involves more stages
of the RTP. It is suggested that the BER over the WLAN channel should be
determined according to the SNR perceived by an 802.11 end-device, which in turn
is used in accordance with a modulation curve implementation that is a replication
of a real-world 802.11bg adapter based on its data sheet. To enhance realism
further, it is suggested that the SNR perceived by the 802.11 end-devices is
randomly fluctuated between an upper and lower bound defined to ensure the BER

is not kept constant.

® The proposed testbed in this thesis uses an emulated Internet component to subject
all forward and reverse traffic to conditions that would typically be experienced
across the real Internet. A suggested extension to the testbed is to incorporate the

real Internet between the experimental TCP server and the real-world last-hop

254

WLAN. One solution is to use two separate sites that are under full control of the
researcher, which may be slightly challenging. Another solution is to use a ‘loop-
back’ configuration from the same site, whereby all TCP traffic to/from the
experimental server is routed out onto the Internet, traverses a wider area network,

and 1s then re-routed back to the same site directly to/from the 802.11 WLAN.

This thesis has provided many interesting insights into the interactions between a
fixed TCP sender and conditions over the last-hop 802.11 WLAN. This provides a
natural base for studying potential cross-layer interactions between the TCP
protocol and the 802.11 MAC protocol. A possible suggestion is to use the idea of
a loss differentiation algorithm (LDA) applied to a TCP sender that is specifically
aimed at estimating conditions over an 802.11 WLAN, be it data segment losses or
ACK losses, or even delays caused by contention issues due to an increased
number of end-devices and traffic over the WLAN. By using the capabilities of the
testbed to the fullest, many studies could be undertaken to assess whether or not
there is a relationship between the two protocols. Extensive measurements from the
testbed may even assist researchers to develop an analytical framework that can
better predict TCP performance based on specific parameters/settings over the
WLAN. For example, given that there are multiple 802.11g devices in a last-hop
WLAN, and that the average SNR across all devices can be obtained, the average
delays for TCP data segments and ACKs can be obtained, the delays and
bandwidths over the fixed path can be obtained, then a single equation could be
developed that can calculate the expected sending rate of a particular sender-side

TCP variant for the entire wired-to-wireless path.

In Chapters 6 and 7 there were several references to the TCP sender’s RTO timer
and how it could be better tuned to meet the dynamic nature of fluctuating delay
conditions over an 802.11 WLAN. The aim here is to prevent unnecessary
retransmissions of TCP data segments and subsequent reductions in the sender’s
cwnd size when there are sudden or spurious delays. Hence a possible avenue of
work in this area could investigate the actual delays experienced by a TCP sender
and how it impacts its RTT calculation based on a wide range of conditions over
the 802.11 WLAN. Again, the proposed testbed and techniques could be used to

perform an extensive set of experiments in order to collect a wide range of data. An

255

analysis of the captured data could then be carried out to assist researchers in
developing a delay distribution or an RTT delay model for a TCP sender to refer to
at times of unexpected delays. The distribution of 802.11 frame retransmission
probabilities produced by the testbed would prove to be very useful here as they
would allow the TCP sender to make calculated decisions as to the most likely
cause of the unexpected delay. For example, if an unexpected delay suddenly
causes a hike in the sender’s RTT computation, then traditionally the sender is
likely to timeout due to the RTO timer being exceeded. If then the sender could
somehow detect the cause of the delay hike, then it is better able to maintain a
higher sending rate by only reducing the cwnd size if data segment losses are
deemed to have occurred in the wired path. Of course, knowing whether a TCP
data segment loss or a TCP ACK loss has occurred are also important pieces of
information. Again, a suggestion is to use a LDA at the sender-side in conjunction
with known characteristics of the target last-hop 802.11 WLAN to determine what
exactly has been lost, a data segment or a TCP ACK. If a TCP ACK has been lost

then a retransmission by the sender may not be necessary.

256

List of Publications

R. Taank and X-H. Peng, “An Experimental Evaluation of Sender-Side TCP
Enhancements for Wired-to-Wireless Paths: A Real-World Home WLAN Case
Study”, Proc. of 23" IEEE International Conference on
Advanced Information Networking and Applications (AINA '09), UK (Bradford), 2009.

R. Taank and X-H. Peng, “Impact of Error Characteristics of an Indoor 802.11g
WLAN on TCP Retransmissions”, Proc. of 4th IEEE International Conference on
Wireless Communications, Networking and Mobile Computing (WiCOM ‘08), China
(Dalian), 2008.

R. Taank and X-H. Peng, “An Experimental Testbed for Evaluating End-to-End TCP
Performance over Wired-to-Wireless Paths™, Proc. of 5th IEEE Consumer

Communications & Networking Conference (CCNC '08), USA (Las Vegas), 2008.

R. Taank and X-H. Peng, “Investigation of the Effects of Feedback Channel Losses
for Wireless TCP Experiments”, Proc. of IEEE] 8™ Annual International Symposium
on Personal, Indoor and Mobile Radio Communications (PIMRC °07), Greece
(Athens), 2007.

R. Taank and X-H. Peng, “Performance Evaluation of TCP over Wireless Channel
Conditions”, Proc. of 7th Annual Symposium on the Convergence of
Telecommunications, Networking and Broadcasting (PGNet '06), UK (Liverpool),
2006.

257

Glossary of Terms

ACK (Acknowledgement)

An ACK is a transmission control packet transmitted by the receiving station as an
affirmative response to the sending station. The ACK function is heavily used by error
detection functions in popular transport protocols. The ACKs are numbered in

coordination with data that has been received, and then sent to the transmitter.

AIMD (Additive Increase, Multiplicative Decrease)
The AIMD algorithm is a feedback control algorithm used by TCP during congestion
control. Basically, AIMD represents a linear growth of a sending TCP’s congestion

window, combined with an exponential reduction when a congestion event takes place.

AP (Access Point)
An AP is a network device that allows wireless communication devices to connect to a
wireless network or domain. The AP itself usually connects to an underlying wired

network, and can relay data between the wireless domain and wired domain.

ARQ (Automatic Repeat Request)
ARQ is an error control method for data transmissions that use acknowledgments and
timeouts to achieve reliable data transmission through retransmissions over an

unreliable path.

Bandwidth
Bandwidth may refer to bandwidth capacity or available bandwidth in bits/s, which
typically means the net bit rate, channel capacity or the maximum throughput of a

logical or physical communication path in a digital communication system.
BER (Bit Error Rate)

The bit error ratio - also sometimes referred to as bit error rate, is the number of

erroneous bits received divided by the total number of bits transmitted.

258

Congestion Control

Congestion control is concerned with controlling traffic entry into a
telecommunications network, so as to avoid congestive collapse by attempting to avoid
oversubscription of any of the processing or link capabilities of the intermediate nodes
and networks and taking resource reducing steps, such as reducing the rate of sending

packets.

Congestion Window (cwnd)

The cwnd determines the number of TCP bytes that can be outstanding (i.e.
unacknowledged) at any time. This is a means of stopping the link between two
endpoints from getting overloaded with too much traffic. The size of this window 1is

calculated by estimating how much congestion there is between the two places.

CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance)
CSMA/CA 1s a network contention protocol that listens to the network in order to
avoid collisions. If the channel is sensed "idle" then transmissions are permitted. If the

channel is sensed as "busy" then transmission must be deferred.

Data Rate
The number of bits that are conveyed or processed per unit of time by a sending

protocol, usually quantified in bits/s.

DCF
DCF is based on the CSMA/CA protocol. With DCF, 802.11 stations contend for
access to the radio channel and attempt to send frames when there is no other station

transmitting.

DUPACK (Duplicate ACK)

The difference between DUPACKs and normal ACKs is that while a normal ACK
acknowledges one or more previously unacknowledged packets, a DUPACK re-
acknowledges the same packet as the previous acknowledgement. DUPACKSs are

generated in response to packets arriving at the receiver out of order.

259

Encapsulation
A method of designing modular communication protocols in which logically separate
functions in the network are abstracted from their underlying structures by inclusion or

information hidden within higher level objects.

End-To-End

The end-to-end principle is one of the central design principles of the Internet and is
implemented in the design of the underlying methods and protocols in the Internet. It
states that, whenever possible, protocol operations should be defined to occur at the
end-points of a communications system, or as close as possible to the resource being

controlled.

Ethernet

Ethernet is a family of frame-based computer networking technologies for local area
networks (LANs). It defines a number of wiring and signalling standards for the PHY -
layer of the OSI networking model through means of network access at the MAC-layer

and Link-layer, and a common addressing format.

FCS (Frame Check Sequence)
A frame check sequence (FCS) refers to the extra checksum characters added to a

frame in a communication protocol for error detection and correction purposes.

FER (Frame Error Rate)
The ratio of data frames received with errors to total data frames received. It is used to

determine the quality of a signal connection.

FTP (File Transfer Protocol)

A protocol for transferring files efficiently over the Internet.

HTTP (Hypertext Transfer Protocol)

A protocol for distributed, collaborative, and hypermedia information sharing.

260

IEEE 802.11

A set of standards for carrying out WLAN computer communications in the 2.4, 3.6
and 5 GHz frequency bands. They are implemented by the IEEE LAN/MAN Standards
Committee (IEEE 802).

IEEE 802.11b
An expansion on the original 802.11 standard in July 1999, creating the 802.11b
WLAN specification, supporting radio bandwidths up to 11 Mbps.

IEEE 802.11g
In June the 802.11¢ standard was ratified by the IEEE. It operates in the 2.4 GHz band
(like 802.11b), but supports bandwidths up to 54 Mbps.

ISM

The industrial, scientific and medical (ISM) radio bands were originally reserved
internationally for the use of RF electromagnetic fields for industrial, scientific and
medical purposes other than communications. In general, communications equipment

must accept any interference generated by ISM equipment.

Linux

Linux is a generic term referring to Unix-like computer operating systems based on the
Linux kernel. Its development is one of the most prominent examples of free and open
source software collaborations; typically all the underlying source code can be used,
freely modified, and redistributed by anyone under the terms of the GNU GPL and

other free licenses.

MAC-layer

The MAC data communication protocol is a sub-layer of the Data-Link-layer specified
in the seven-layer OSI model. It provides addressing and channel access control
mechanisms that make it possible for several terminals or network nodes to

communicate within a multipoint network.

261

MSS (Maximum Segment Size)
The MSS is the largest amount of data, specified in bytes, that a computer or

communications device can handle in a single, unfragmented unit.

NIC (Network Interface Card)

An item of computer hardware used to physically interface a computer to a network.

PHY-layer
The PHY-layer connects a link layer device (often called a MAC) to a physical

medium such as an optical fibre or copper cable.

OSI (Open Systems Interconnection) Model

The OSI Model is an abstract description for layered communications and computer
network protocol design. It divides network architecture into seven layers which, from
top to bottom, are the Application, Presentation, Session, Transport, Network, Data-

Link, and Physical Layers.

Radiowave
Radiowaves are electromagnetic waves occurring on the radio frequency portion of the

electromagnetic spectrum.

RTO (Retransmission Timeout)
A TCP RTO occurs when an ACK does not arrive within a certain timeframe. Usually,

the RTO is not a fixed value, but changes to gain better network performance.

RTT (Round-Trip Time)
The elapsed time for a packet to traverse successfully across the network, and for its

corresponding acknowledgement to return back to the sender.
SACK (Selective ACK)

A TCP receiver explicitly conveys to the sender which packets, messages, or segments

in a stream are acknowledged (or those that have arrived successfully).

262

Slow Start Threshold (ssthresh)
A variable maintained by the TCP sender, whose value determines the point at which

the slow start algorithm should terminate based on the size of the congestion window.

SNR (Signal-to-Noise Ratio)

The SNR is defined as the ratio of the signal power to the noise power corrupting the
signal. In less technical terms, signal-to-noise ratio compares the level of a desired
signal to the level of background noise. The higher the ratio, the less interference there

is from the background noise.

TCP (Transmission Control Protocol)
A connection-oriented transport layer protocol in widespread use in the Internet,

providing reliable end-to-end transmissions of data.

Throughput
Throughput is the average rate of successful message delivery over a communication

channel, as experienced by the receiving endpoint.

WLAN (Wireless Local Area Network)
A WLAN connects two or more devices using a radiowave technology to enable
wireless communication between devices in a limited area. It offers device mobility

within a broad coverage area whilst still remaining connected to the network.

263

References

[1]
[2]

[3]
[4]

[5]
[6]

(7]

8]

191
[10]

(1]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

J. B. Postel, “Transmission Control Protocol,” RFC 793, 1981.

S. Rewaskar, J. Kaur, and F. D. Smith, "A Performance Study of Loss
Detection/Recovery in Real-world TCP Implementations." IEEE International
Conference on Network Protocols ICNP '07, pp. 256-265, 2007.

M. Welzl, Network Congestion Control: Managing Internet Traffic: John
Wiley & Sons, 2005.

T. Shih-Ching, L. Yuan-Cheng, and L. Ying-Dar, “Taxonomy and Evaluation
of TCP-Friendly Congestion-Control Schemes on Fairness, Aggressiveness,
and Responsiveness,” IEEE Network, vol. 21, no. 6, pp. 6-15, 2007.

G. Huston, “A Decade in the Life of the Internet,” The Internet Protocol
Journal, vol. 11, no. 2, pp. 7-18, 2008.

S. Biaz, and N. H. Vaidya, “"De-Randomizing" congestion losses to improve
TCP performance over wired-wireless networks,” IEEE/ACM Transactions on
Networking, vol. 13, no. 3, pp. 596-608, 2005.

S. Farrell, V. Cahill, D. Geraghty ef al, “When TCP Breaks: Delay- and
Disruption- Tolerant Networking,” IEEE Internet Computing, vol. 10, no. 4,
pp. 72-78, 2006.

A. Medina, M. Allman, and S. Floyd, “Measuring the Evolution of Transport
Protocols in the Internet,” ACM Computer Communication Review (CCR), vol.
35, no. 2, pp. 37 - 52-37 - 52, 2005.

V. Cerf, “A Decade of Internet Evolution,” The Internet Protocol Journal, vol.
11, no. 2, pp. 2-6, 2008.

S. Floyd, and V. Paxson, “Difficulties in Simulating the Internet,” IEEE/ACM
Transactions on Networking, vol. 9, no. 4, August 2001, 2001.

Y. Tian, K. Xu, and N. Ansari, “TCP in Wireless Environments: Problems and
Solutions,” IEEE (Radio) Communications Magazine, vol. 43, no. 3, pp. S27 -
S32, 2005.

F. Racaru, M. Diaz, and C. Chassot, "Quality of Service Management in
Heterogeneous Networks." Infernational Conference on Communication
Theory, Reliability, and Quality of Service CTRQ '08, pp. 83-88, 2008.

H. ElAarag, “Improving TCP Performance over Mobile Networks,” ACM
Computing Surveys, vol. 34, no. 3, pp. 357 - 374, 2002.

F. Ren, X. Huang, F. Liu et al, “Improving TCP Throughput over HSDPA
Networks,” IEEE Transactions on Wireless Communications, vol. 7, no. 6, pp.
1993-1998, 2008.

G. Huston, “TCP in a Wireless World,” IEEE Internet Computing, vol. 5, no. 2,
pp. 82 - 84-82 - 84, 2001.

S. Haykin, and M. Moher, Modern Wireless Communications, International
ed.: Prentice Hall, 2004.

M. C. Chan, and R. Ramjee, "Improving TCP/IP performance over third
generation wireless networks." IEEE INFOCOM '04, pp. 1893-1904, vol.3,
2004.

A. H. Zahran, B. Liang, and A. Saleh, “Mobility Modeling and Performance
Evaluation of Heterogeneous Wireless Networks,” IEEE Transactions on
Mobile Computing, vol. 7, no. 8, pp. 1041-1056, 2008.

264

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

[27]

(28]

[29]

130]

[35]

[36]

[37]

A. C. B. Linwa, and S. Pierre, “Discovering the architecture of geo-located web
services for next generation mobile networks,” IEEE Transactions on Mobile
Computing, vol. 5, no. 7, pp. 784-798, 2006.

IEEE 802 Working Group 11, “Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications,” IEEE Working Group for
WLAN Standards, 2007,

M. Gerami, and J. Hwang, "Analysis of Broadband Diffusion in OECD
Countries." International Multi-Conference on Computing in the Global
Information Technology, pp. 11-11, 2007.

B. P. Crow, I. Widjaja, L. G. Kim et al., “IEEE 802.11 Wireless Local Area
Networks,” IEEE Communications Magazine, vol. 35, no. 9, pp. 116-126,
1997.

M. S. Gast, 802.11 Wireless Networks: The Definitive Guide, First ed.: O'Reilly
& Associates, 2002.

T. Braun, G. Carle, S. Fahmy ef al., Wired/Wireless Internet Communications:
Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 2006.

T. S. Rappaport, Wireless Communications: Principles and Practice: Prentice
Hall, 2002.

H. Balakrishnan, V. N. Padmanabhan, S. Seshan er al, “A Comparison of
Mechanisms for Improving TCP Performance over Wireless Links,”
IEEE/ACM Transactions on Networking, vol. 5, no. 6, December 1997.

K. Pentikousis, “TCP in Wired-Cum-Wireless Environments,” [EEE
Communications Surveys & Tutorials, vol. 3, no. 4, 2000.

V. Tsaoussidis, and 1. Matta, “Open Issues on TCP for Mobile Computing,”
Journal of Wireless Communications and Mobile Computing, vol. 2, no. 1,
2002,

W. Stallings, Wireless Communications and Networks: Pearson Education,
2004.

G. Xylomenos, G. C. Polyzos, P. Mahonen ef al., "TCP/IP Performance over
Wireless Networks," High Performance TCP/IP Networking: Prentice Hall,
2002.

A. Gurtov, and S. Floyd, “Modeling Wireless Links for Transport Protocols,”
ACM SIGCOMM Computer Communication Review (CCR), vol. 34, no. 2, pp.
85 - 96-85 - 96, 2004.

U. Varshney, “The Status and [Future of 802.11-Based WLANSs,” IEEE
Computer, vol. 36, no. 6, pp. 102 - 105, 2003.

H. Wu, Y. Peng, K. Long et al., "Performance of Reliable Transport Protocol
over IEEE 802.11 Wireless LAN: Analysis and Enhancement." I[EEE
INFOCOM '02, 2002.

V. Vasudevan, M. Parikh, K. Chandra ef al., "TCP and IEEE 802.11b Protocol
Performance in Indoor Wireless Channels." IEEE Sarnoff Symposium, pp. 257-
261, March 2003.

Ng, D. Malone, and D. J. Leith, "Experimental Evaluation of TCP Performance
and Fairness in an 802.11e Test-bed." ACM SIGCOMM '05, pp. 17 - 22, 2005.
D. J. Leith, and P. Clifford, "Modelling TCP dynamics in wireless networks."
Wireless Networks, Communications and Mobile Computing Conference, pp.
906-911, 2005.

Y. Jeonggyun, and C. Sunghyun, "Modeling and analysis of TCP dynamics
over IEEE 802.11 WLAN." Wireless On-demand Network Systems and
Services Conference, pp. 154-161, 2007.

265

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

R. Bruno, M. Conti, and E. Gregori, “Throughput Analysis and Measurements
in IEEE 802.11 WLANs with TCP and UDP Traffic Flows,” IEEE
Transactions on Mobile Computing, vol. 7, no. 2, pp. 171-186, 2008.

L. Tianji, and D. J. Leith, “Buffer Sizing for TCP Flows in 802.11¢ WL ANs,”
IEEE Communications Letters, vol. 12, no. 3, pp. 216-218, 2008.

R. Jiang, V. Gupta, and C. V. Ravishankar, "Interactions between TCP and the
IEEE 802.11 MAC protocol." DARPA Information Survivability Conference
and Exposition (DISCEX '03), pp. 273 - 282, 2003.

A. D. Vendictis, F. Vacirca, and A. Baiocchi, "Experimental Analysis of TCP
and UDP Traffic Performance over Infra-structured 802.11b WLANs." COST
279, Technical Document 279 TD(04)033, Ghent, Belgium, 2004.

B. Adida, “It all starts at the server [World Wide Web and FastCGI],” IEEE
Internet Computing, vol. 1, no. 1, pp. 75-77, 1997.

M. Mathis, J. Heffner, and R. Reddy, “Web100: Extended TCP Instrumentation
for Research, Education, and Diagnosis,” ACM SIGCOMM Computer
Communication Review, vol. 33, no. 3, pp. 69 - 79, 2003.

M. Allman, “A Web Server's View of the Transport Layer,” ACM Computer
Communication Review, vol. 30, no. 5, 2000.

S. Floyd, and K. Fall, “Promoting the use of end-to-end congestion control in
the Internet,” IEEE/ACM Transactions on Networking, vol. 7, no. 4, pp. 458-
472, 1999.

G. Karlsson, and I. Mas, “Quality of Service and the End-to-End Argument,”
IEEE Network, vol. 21, no. 6, pp. 16-21, 2007.

A. Prasad, and N. Prasad, 802.11 WLANs and IP Networking: Security, QoS,
and Mobility: Artech House, 2005.

D. Damjanovic, M. Welzl, and K. Munir, "Modern TCPs in the Internet:
Survival of the Fittest." EuroFGI Workshop on IP QoS and Traffic Control,
December 2007.

W. R. Stevens, TCP/IP Illustrated, Volume 1. Addison Wesley, 1994.

C. H. Nam, S. C. Liew, and C. P. Fu, "An experimental study of ARQ protocol
in 802.11b Wireless LAN." Wireless Personal Multimedia Communications
(WPMC '02), October 2002.

M. Franceschinis, M. Mellia, M. Meo et al., "Measuring TCP over WiFi: A
Real Case." WinMee: 1st Workshop on Wireless Network Measurements, 2005.
J. S. Vardakas, 1. Papapanagiotou, M. D. Logothetis ef al., "On the End-to-End
Delay Analysis of the IEEE 802.11 Distributed Coordination Function."
Second International Conference on Internet Monitoring and Protection
ICIMP 07, pp. 16-16, 2007.

G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination
function,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 3,
pp. 535-547, 2000.

A. Kumar, “Comparative Performance Analysis of Versions of TCP in a Local

Network with a Lossy Link,” JEEE/ACM Transactions on Networking (TON),

vol. 6, no. 4, pp. 485 - 498, August 1998, 1998.

F. Zheng, M. Li, and C. Gao, "An analytic throughput model for TCP Reno
over wireless networks." International Conference on Computer Networks and
Mobile Computing, pp. 111-116, 2001.

F. Anjum, and L. Tassiulas, “Comparative Study of Various TCP Versions
Over a Wireless Link With Correlated Losses,” IEEE/ACM Transactions on
Networking (TON), vol. 11, no. 3, pp. 370 - 383, June 2003, 2003.

266

[57]

(58]

[59]

[60]
[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]
[72]

[73]

[74]

[75]

F. Vacirca, A. D. Vendictis, A. Todini ef al., "On the Effects of ARQ
Mechanisms on TCP Performance in Wireless Environments." IEEE Globecom
'03,2003.

H. ElAarag, and M. Bassiouni, "Simulation of Transport Protocols over
Wireless Communication Networks." Winter Simulation Conference '02, pp.
1235 - 1241, 2002.

G. Judd, and P. Steenkiste, "Using emulation to understand and improve
wireless networks and applications." 2nd ACM Symposium on Networked
Systems Design & Implementation, pp. 203-216, 2005.

DARPA, NSF, and ACIRI, "The Network Simulator." www.isi.edu/nsnam/ns/
OPNET Technologies. "http://www.opnet.com/."

J. Heidemann, N. Bulusu, J. Elson et al., "Effects of detail in wireless network
simulation." SCS Multiconference on Distributed Simulation, pp. 3-11, January
2001.

D. Kotz, C. Newport, and C. Elliot, “The Mistaken Axioms of Wireless-
Network Research,” Technical Report TR2003-467, 2003.

P. Zheng, and L. M. Ni, "EMPOWER: A Network Emulator for Wireline and
Wireless Networks." IEEE INFOCOM '03, pp. 1933 - 1942, 2003.

P. Ikkurthy, J. Shahbazian, M. A. Labrador et al, "Testing large scale
streaming Internet applications over wireless LANs." FEighth IEEE
International Symposium on High Assurance Systems Engineering, pp. 109-
115, 2004.

R. Beuran, J. Nakata, T. Okada ef al., "A Multi-Purpose Wireless Network
Emulator: QOMET." 22nd International Conference on Advanced Information
Networking and Applications - Workshops AINAW '08, pp. 223-228, 2008.

S. Guruprasad, R. Ricci, and J. Lepreau, "Integrated network experimentation
using simulation and emulation." TRIDENTCOM '05, pp. 204-212, 2005.

D. Raychaudhuri, I. Seskar, M. Ott ef al., "Overview of the ORBIT radio grid
testbed for evaluation of next-generation wireless network protocols." IEEE
Wireless Communications and Networking Conference, pp. 1664-1669 Vol. 3.
E. David, and S. Peter, "Measurement and analysis of the error characteristics
of an in-building wireless network.", Applications, technologies, architectures,
and protocols for computer communications, 1996.

P. Chatzimisios, V. Vitsas, and A. C. Boucouvalas, "Revisit of fading channel
characteristics in IEEE 802.11 WLANSs: independent and burst transmission
errors." IEEE PIMRC '06, pp. 1-6, 2006.

S. Mukherjee, K. Jones, M. O'Shea et al., "The Digital Patient Push - Using
Location to Streamline the Surgical Journey." MEDSIP '06, pp. 1-4, 2006.

B. Alexander, 802.11 Wireless Network Site Surveying and Installation: Cisco
Presss, 2004.

A. Willig, M. Kubisch, C. Hoene ef al., “Measurements of a wireless link in an
industrial environment using an IEEE 802.11-compliant physical layer,” IEEE
Transactions on Industrial Electronics, vol. 49, no. 6, pp. 1265-1282, 2002.

Y. Jihwang, and A. Agrawala, "Packet error model for the IEEE 802.11 MAC
protocol." IEEE PIMRC '03, pp. 1722-1726, vol.2, 2003.

D. Malone, P. Clifford, and D. J. Leith, “MAC Layer Channel Quality
Measurement in 802.11,” IEEE Communications Letters, vol. 11, no. 2, pp.
143-145, 2007.

267

[76]

1771

[78]

[79]

[80]

[81]
[82]

[83]

[84]

[85]
[86]
[87]
(88]
[89]

[90]
[91]

[92]
[93]

[94]

[95]

J. Yeo, S. Banerjee, and A. Agrawala, Measuring Traffic on the Wireless
Medium: Experience and Pitfalls, Technical Report CS-TR 4421, University of
Maryland, 2002.

F. Filali, "Impact of Link-Layer Fragmentation and Retransmissions on TCP
performance in 802.11-based Networks." IEEE International Conference on
Mobile and Wireless Communication Networks, September 2005.

L. Pavilanskas, "Analysis of TCP algorithms in the reliable IEEE 802.11b
link." ASMTA 05, 2005.

W. Ge, Y. Shu, L. Zhang er al, "Measurement and Analysis of TCP
Performance in IEEE 802.11 Wireless Network." Canadian Conference on
Electrical and Computer Engineering, pp. 1846 - 1849, 2006.

H. Xie, and B. Yi, "A MAC-Layer Adaptation Algorithm Based On TCP
Control Segment in Wireless LANs." International Workshop on Cross Layer
Design IWCLD '07, pp. 105-108, 2007.

T. F. Herbert, The Linux TCP/IP Stack: Networking for Embedded Systems:
Charles River Media, 2004,

P. Sarolahti, and A. Kuznetsov, "Congestion Control in Linux TCP." USENIX
02, 2002.

I. McDonald, and R. Nelson, “Congestion Control Advancements in Linux,” in
Australia’s National Linux Conference (LCA '06), Dunedin, New Zealand,
2006.

S. P. Bhattacharya, and V. Apte, "A Measurement Study of the Linux TCP/IP
Stack Performance and Scalability on SMP systems." First International
Conference on Communication System Software and Middleware, pp. 1-10,
2006.

The Apache HTTP Server Project, http://httpd.apache.org/.

L. Yee-Ting, D. Leith, and R. N. Shorten, “Experimental Evaluation of TCP
Protocols for High-Speed Networks,” IEEE/ACM Transactions on Networking,
vol. 15, no. 5, pp. 1109-1122, 2007.

V. Cerf, and Y. Dalal, “Specification of Internet Transmission Control
Program,” RFC 675, 1974.

R. Braden, “Requirements for Internet Hosts - Communication Layers,” RFC
1122, 1989.

DoD, “The Internet Protocol Suite (TCP/IP),” Defense Advanced Research
Projects Agency (DARPA), 1983.

J. Nagle, “Congestion control in IP/TCP internetworks,” RFC 896, 1984.

V. Jacobson, and M. J. Karels, “Congestion Avoidance and Control,” ACM
CCR, vol. 18, no. 4, pp. 314 - 329, 1988.

D. M. Chiu, and R. Jain, “Analysis of the increase and decrease algorithms for
congestion avoidance in computer networks,” Computer Networks and ISDN
Systems, vol. 17, no. 1, pp. 1-14, 1989.

V. Jacobson, “Modified TCP Congestion Avoidance Algorithm,” End2End -
Interest Mailing List, 1990.

L. Zhang, S. Shenker, and D. D. Clark, "Observations on the Dynamics of a
congestion control Algorithm: The Effects of Two-Way Traffic." SIGCOMM
Symposium on Communications Architectures and Protocols, pp. 133-147,
1991.

L. Brakmo, O. O'Malley, and L. Peterson, "TCP Vegas: New Techniques for
Congestion Detection and Avoidance." SIGCOMM '94 Symposium, pp. 24 - 35,
1994.

268

[96]

[97]

[98]

[99]

[100]
[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]

[110]

[111]

[112]
[113]

[114]
[115]

[116]
[117]
[118]

[119]

J. Hoe, “Improving the start-up behavior of a congestion control scheme for
TCP,” ACM SIGCOMM Computer Communication Review, vol. 26, no. 4, pp.
270-280, 1996.

W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and
Fast Recovery Algorithms,” RFC 2001, 1997.

V. Paxson, M. Allman, S. Dawson ef al, “Known TCP Implementation
Problems,” RFC 2525, 1999,

M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,” RFC
2581, 1999,

B. Moraru, F. Copaciu, L. Gabriel et al, "Practical Analysis of TCP
Implementations: Tahoe, Reno, NewReno." RoEduNet '03, 2003.

J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-End Arguments in System
Design,” ACM Transactions on Computer Systems, vol. 2, no. 4, pp. 277 - 288-
277 - 288, 1984.

S. Floyd, “Congestion Control Principles,” RFC 2914, 2000.

V. Jacobson, and R. Braden, “TCP extensions for long-delay paths,” RFC
1072, 1988.

M. Allman, and V. Paxson, "On Estimating End-to-End Network Path
Properties." ACM SIGCOMM 99, 1999,

I. Psaras, and V. Tsaoussidis, "CAMO02-2: WB-RTO: A Window-Based
Retransmission Timeout for TCP." IEEE GLOBECOM '02, pp. 1-6, 2002.

N. Seddigh, and M. Devetsikiotis, "Studies of TCP's retransmission timeout
mechanism." JICC 01, pp. 1834 - 1840 vol.6, 2001.

V. Paxson, and M. Allman, Computing TCP's Retransmission Timer, RFC
2988, 2000.

M. Allman, and A. Falk, “On the Effective Evaluation of TCP,” ACM
Computer Communication Review (CCR), vol. 5, no. 29, 1999.

V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for High
Performance,” RFC 1323, 1992.

K. Fall, and S. Floyd, “Simulation-based Comparisons of Tahoe, Reno, and
SACK TCP,” ACM Computer Communication Review (CCR), vol. 26, no. 3,
pp. 5-21-5-21, 1996.

R. Bruyeron, B. Hemon, and L. Zhang, “Experimentations with TCP Selective
Acknowledgment,” ACM Computer Communication Review, vol. 28, no. 2,
1998.

M. Mathis, S. Mahdavi, S. Floyd et al., “TCP Selective Acknowledgement
Options,” RFC 2018, 1996.

S. Floyd, T. Henderson, and A. Gurtov, “The NewReno Modification to TCP's
Fast Recovery Algorithm,” RFC 3782, 2004,

J. B. Postel, “TCP maximum segment size and related topics,” RFC 879, 1983.

S. Ubik, and P. Cimbal, "Achieving reliable high performance in LFNs."
Terena Networking Conference, 2003.

D. D. Clark, “Window and Acknowledgement Strategy in TCP,” RFC 813,
1982.

R. Prasad, and M. Ruggieri, Technology Trends in Wireless Communications:
Artech House, 2003.

M. Khosrow-Pour, Emerging Trends And Challenges in Information
Technology Management: 1G1 Publishing, 2006.

J. Proakis, Digital Communications: McGraw-Hill Higher Education, 2000.

269

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

IEEE 802.11b, “Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications: Higher-Speed Physical Layer Extension
in the 2.4 GHz Band,” IEEE Working Group for WLAN Standards, 1999.

IEEE 802.11g, “Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications: Further Higher-Speed Physical Layer
Extension in the 2.4 GHz Band,” IEEE Working Group for WLAN Standards,
2003.

I. Howitt, “Bluetooth performance in the presence of 802.11b WLAN,” IEEE
Transactions on Vehicular Technology, vol. 51, no. 6, pp. 1640-1651, 2002.

H. ElAarag, and M. Bassiouni, "Transport Control Protocols for Wireless
Connections." [EEE 49th Vehicular Technology Conference, pp. 337 - 341,
1999.

L. Peterson, and B. Davie, Computer Networks: A Systems Approach: Morgan
Kaufmann, 2003.

G. Xylomenos, G. C. Polyzos, P. Mahonen ef al., “TCP Performance Issues
over Wireless Links,” IEEE Communications Magazine, vol. 39, no. 4, pp. 52 -
58-52 - 58,2001.

W. C. Y. Lee, Mobile Communications Design Fundamentals: John Wiley and
Sons, 1993,

T. V. Lakshman, and U. Madhow, “The Performance of TCP/IP for Networks
with High Bandwidth-Delay Products and Random Loss,” IEEE/ACM
Transactions on Networking, vol. 5, no. 3, pp. 336 - 350-336 - 350, 1997.

H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz, “The Effects of
Asymmetry on TCP Performance,” ACM Mobile Networks and Applications
(MONET), vol. 4, no. 3, 1999.

H. Balakrishnan, V. N. Padmanabhan, S. Seshan et al., "TCP Improvements for
Hetergeneous Networks: The Daedalus Approach." 35th Annual Allerton
Conference on Communication, Control, and Computing, 1997.

G. T. Nguyen, R. H. Katz, B. Noble ef al, "A Trace-Based Approach for
Modeling Wireless Channel Behavior." 28th Conference on Winter Simulation,
pp. 597 - 604, 1996.

D. Eckhardt, and P. Steenkiste, "Measurement and Analysis of the Error
Characteristics of an In-Building Wireless Network." ACM SIGCOMM '96, pp.
243-254, 1996.

L. Xiaolong, and Z. Qing-An, "Influence of Bit Error Rate on the Performance
of IEEE 802.11 MAC Protocol." WCNC 07, pp. 367-372, 2007.

P. Chatzimisios, A. C. Boucouvalas, and V. Vitsas, "Performance analysis of
IEEE 802.11 DCF in presence of transmission errors." IEEE ICC '04, pp. 3854-
3858 vol.7, 2004.

D. A. Eckhardt, and P. Steenkiste, "Improving wireless LAN performance via
adaptive local error control." Sixth International Conference on Network
Protocols, pp. 327-338, 1998.

C. E. Palazzi, G. Pau, M. Roccetti et al., "In-home online entertainment:
analyzing the impact of the wireless MAC-transport protocols interference."
International Conference on Wireless Networks, Communications and Mobile
Computing, pp. 516-521 vol.1, 2005.

P. Qixiang, S. C. Liew, and V. C. M. Leung, "Performance improvement of
802.11 wireless network with TCP ACK agent and auto-zoom backoff
algorithm." Vehicular Technology Conference VTC '05, pp. 2046-2050 vol. 3,
2005.

270

[137]
[138]

[139]

[140]

[141]

[142]

[143]
[144]

[145]

[146]

[147)

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

P. E. Engelstad, and O. N. Osterbo, "Analysis of the Total Delay of IEEE
802.11e EDCA and 802.11 DCF." IEEE ICC '06, pp. 552-559, 2006.

Y. Li, K.-P. Long, W.-L. Zhao ef al., "Analyzing the channel access delay of
IEEE 802.11 DCF." IEEE GLOBECOM 05, 2005.

N. T. Dao, and R. A. Malaney, "Throughput Performance of Saturated 802.11g
Networks." 2nd International Conference on Wireless Broadband and Ultra
Wideband Communications, pp. 31-31, 2007.

P. Barsocchi, G. Oligeri, and F. Potorti, "Packet Loss in TCP Hybrid Wireless
Networks." Advanced Satellite Mobile Systems Conference ASMS '06, 2006.

J. Tourrilhes, "PiggyData: reducing CSMA/CA collisions for multimedia and
TCP connections." Vehicular Technology Conference VIC '99, pp. 1675-1679
vol.3, 1999,

W.-Y. Choi, “A Real-Time Algorithm for MAC Throughput Enhancement by
Dynamic RTS-CTS Threshold in IEEE 802-11 Wireless LANSs,” Journal of RF
Engineering and Telecommunications, vol. 59, pp. 171-176, 2005.

A. Rahman, and P. Gburzynski, "Hidden Problems with the Hidden Node
Problem." 23rd Biennial Symposium on Communications, pp. 270-273, 2006.
W.-Y. Choi, "Clustering Algorithm for Hidden Node Problem In Infrastructure
Mode IEEE 802.11 Wireless LANs." 10th International Conference on
Advanced Communication Technology ICACT '08, pp. 1335-1338, 2008.

P. Sarolahti, "Congestion control on spurious TCP retransmission timeouts."
IEEE GLOBECOM 03, pp. 682-686 vol.2, 2003.

M. Changming, and L. Ka-Cheong, "Improving TCP robustness under
reordering network environment." /[EEE GLOBECOM '04, pp. 828-832 vol.2,
2004.

S. Bhandarkar, N. E. Sadry, A. L. N. Reddy er al, “TCP-DCR: a novel
protocol for tolerating wireless channel errors,” IEEE Transactions on Mobile
Computing, vol. 4, no. 5, pp. 517-529, 2005.

A. Gurtov, and R. Ludwig, "Responding to Spurious Timeouts in TCP." IEEE
INFOCOM '03, 2003.

D. Malone, D. J. Leith, A. Aggarwal ef al., "Spurious TCP Timeouts in 802.11
Networks." Workshop on Wireless Network Measurement WiNMee '08, 2008.
P. Sarolahti, M. Kojo, and K. Raatikainen, F-RTO: A New Recovery Algorithm
for TCP Retransmission Timeouts, University of Helsinki, 2002.

G. Xylomenos, and G. C. Polyzos, "TCP and UDP Performance over a
Wireless LAN." IEEE INFOCOM '99, 1999.

M. Bottigliengo, C. Casetti, C. F. Chiasserini ef al., "Smart traffic scheduling in
802.11 WLANSs with access point." Vehicular Technology Conference VIC '03,
pp. 2227-2231 vol.4, 2003.

A. C. H. Ng, D. Malone, and D. J. Leith, "Experimental Evaluation of TCP
Performance and Fairness in an 802.11¢ Test-bed." ACM SIGCOMM '05, pp.
17 -22,2005.

S. Pilosof, R. Ramjee, D. Raz ef al, "Understanding TCP fairness over
Wireless LAN." IEEE INFOCOM '03, 2003.

N. Blefari-Melazzi, A. Detti, A. Ordine ef al., "A mechanism to enforce TCP
Fairness in 802.11 wireless LANs and its performance evaluation in a real test-
bed." IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks WoWMoM '07, pp. 1-7, 2007.

271

[156]

[157]

[158]

[159]

[160]

[161]

[162]
[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

Y. Wu, Z. Niu, and J. Zhu, "Upstream/Downstream Unfairness Issue of TCP
over Wireless LANs with Per-flow Queueing." IEEE ICC '05, pp. 3543 - 3547,
2005.

E. R. Gomez, and M. Davis, "The Impact of TCP Sliding Window on the
Performance of IEEE 802.11 WLANS." Irish Signals and Systems Conference,
pp. 231 - 234, 2006.

M. Bottigliengo, C. Casetti, C. F. Chiasserini ef al., "Short-term Fairness for
TCP Flows in 802.11b WLANS." IEEE INFOCOM '04, 2004.

7. Hadzi-Velkov, and B. Spasenovski, "Capture effect in [EEE 802.11 basic
service area under influence of Rayleigh fading and near/far effect." IEEE
PIMRC '02, pp. 172-176 vol.1, 2002.

A. Nyandoro, L. Libman, and M. Hassan, “Service Differentiation Using the
Capture Effect in 802.11 Wireless LANSs,” IEEE Transactions on Wireless
Communications, vol. 6, no. 8, pp. 2961-2971, 2007.

V. Kemerlis, S. Eleftherios, G. Xylomenos et al., "Throughput Unfairness in
TCP over WiFi." 3rd Annual Conference on Wireless On demand Network
Systems and Services WONS '06, 2006.

A. Aaron, and S. Tsao, Techniques to Improve TCP over Wireless Links,
Report EE 359, Stanford University, 2000.

J. Border, M. Kojo, J. Griner ef al., “Performance Enhancing Proxies Intended
to Mitigate Link-Related Degradations,” RFC 3135, 2001.

A. V. Bakre, and B. R. Badrinath, "I-TCP: Indirect TCP for Mobile Hosts."
15th International Conference on Distributed Computing Systems ICDCS '95,
pp. 136 - 143, 1995.

D. Bosau, "Path Tail Emulation: An Approach to Enable End-to-End
Congestion Control for Split Connections and Performance Enhancing
Proxies." KiV'S Kurzbeitréige und Workshop, pp. 33-40, 2005.

P. Sweeney, Error Control Coding: From Theory to Practice: John Wiley &
Sons Ltd, 2002.

C. Parsa, and J. J. Garcia-Luna-Aceves, "Improving TCP congestion control
over Internets with heterogeneous transmission media." Seventh International
Conference on Network Protocols ICNP '99, pp. 213-221, 1999.

H. Balakrishnan, S. Seshan, E. Amir ef al., “Improving TCP/IP Performance
over Wireless Networks,” ACM Wireless Networks, vol. 1, no. 4, pp. 2 - 11-2 -
11, 1995.

C. H. Ng, J. Chow, and L. Trajkovic, "Performance Evaluation of TCP over
WLAN 802.11 with the Snoop Performance Enhancing Proxy." OPNETWORK
'02, 2002.

P. Sinha, N. Venkitaraman, R. Sivakumar et al., “WTCP: A Reliable Transport
Protocol for Wireless Wide-Area Networks,” ACM Wireless Networks, vol. 8,
no. 2 -3, pp. 301 - 316, 2002.

N. H. Vaidya, M. N. Mehta, C. E. Perkins et al., “Delayed Duplicate
Acknowledgements: A TCP-Unaware Approach to Improve Performance of
TCP over Wireless,” Wireless Communications and Mobile Computing, vol. 2,
no. 1, pp. 59 - 70, 2001.

T. Goff, J. Moronski, D. S. Phatak et al., "Freeze-TCP: a true end-to-end TCP
enhancement mechanism for mobile environments." IEEE INFOCOM '00, pp.
1537-1545 vol.3, 2000.

272

[173]

[174]

[175]

[176]

[177]

[178]
[179]

[180]

[181]

[182]

[183]

[184]

[185]
[186]

[187]

[188]

[189]

[190]

I. F. Akyildiz, G. Morabito, and S. Palazzo, “TCP-Peach: a new congestion
control scheme for satellite IP networks,” IEEE/ACM Transactions on
Networking, vol. 9, no. 3, pp. 307-321, 2001.

V. Tsaoussidis, and C. Zhang, “TCP-Real: receiver-oriented congestion
control,” Comput. Netw., vol. 40, no. 4, pp. 477-497, 2002.

R. Krishnan, M. Allman, C. Partridge er al., "Explicit Transport Error
Notification (ETEN) for Error Prone Wireless and Satellite Networks",
International Journal of Computer and Telecommunications Networking, pp.
343 - 362, vol. 46(3), 2004.

W. Xiuchao, C. Mun, and A. L. Ananda, "T'CP HandOff: A Practical TCP
Enhancement for Heterogeneous Mobile Environments." IEEE ICC 07, pp.
6043-6048, 2007.

V. B. Reddy, and A. K. Sarje, "Differentiation of Wireless and Congestion
Losses in TCP." 2nd International Conference on Communication Systems
Software and Middleware COMSWARE 07, pp. 1-5, 2007.

S. Floyd, "A Report on Recent Developments in TCP Congestion Control."
IEEE Communications Magazine, pp. 84-90, April 2001.

S. Floyd, “Issues with TCP SACK,” Technical Report, LBL Network Group,
1996.

H. Jeng-Ji, and C. Jin-Fu, "A new method to improve the performance of TCP
SACK over wireless links." Vehicular Technology Conference VIC '03, pp.
1730-1734 vol.3, 2003.

E. Blanton, M. Allman, K. Fall et al, “A Conservative Selective
Acknowledgment (SACK)-based Loss Recovery Algorithm for TCP,” RFC
3517,2003.

S. Floyd, and T. Henderson, “The NewReno Modification to TCP's Fast
Recovery Algorithm,” RFC 2582, 1999.

J. Zhu, Z. Li, and Z. Niu, "A modified TCP-NewReno retransmission scheme
for lossy network." Fifth Asia-Pacific Conference on Communications and
Fourth Optoelectronics and Communications Conference APCC/OECC '99,
pp. 204-208 vol.1, 1999,

A. Kumar, “Comparative Performance Analysis of Versions of TCP in a Local
Network with a Lossy Link,” IEEE/ACM Transactions on Networking, vol. 6,
no. 4, 1998.

K. Soomin, C. Sunwoong, and K. Chongkwon, “Instantaneous variant of TCP
NewReno,” Electronics Letters, vol. 36, no. 19, pp. 1669-1670, 2000.

S. Floyd, S. Mahdavi, M. Mathis ef al., “An Extension to the Selective
Acknowledgement (SACK) Option for TCP,” RFC 2883, 2000.

E. Blanton, and M. Allman, “On making TCP more robust to packet
reordering,” ACM Computer Communication Review, vol. 32, no. 1, pp. 20-30,
2002.

Z. Ming, B. Karp, S. Floyd et al, "RR-TCP: a reordering-robust TCP with
DSACK." 11th IEEE International Conference on Network Protocols, pp. 95-
106, 2003.

A. Chrungoo, V. Gupta, H. Saran ef al., "TCP k-SACK: a simple protocol to
improve performance over lossy links." IEEE GLOBECOM 01, pp. 1713-1717
vol.3, 2001.

K. Beomjoon, K. Dongmin, and L. Jaiyong, “Lost retransmission detection for
TCP SACK,” Communications Letters, IEEE, vol. 8, no. 9, pp. 600-602, 2004.

273

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

D. Lin, and H. T. Kung, "TCP fast recovery strategies: analysis and
improvements." IEEE INFOCOM "98, pp. 263-271, 1998.

K. Beomjoon, and L. Jaiyong, “Retransmission loss recovery by duplicate
acknowledgment counting,” Communications Letters, IEEE, vol. 8, no. 1, pp.
69-71, 2004.

L. Brakmo, and L. Peterson, “TCP Vegas: End to End Congestion Avoidance
on a Global Internet,” IEEE Journal of Selected Areas in Communications
(JSAC), vol. 13, no. 8, pp. 1465-1480, 1995.

Y. Leang Tzeh, J. Liew, and W. K. G. Seah, "Experimentation of TCP schemes
over GPRS & WLAN." 4th International Workshop on Mobile and Wireless
Communications Network, pp. 234-238, 2002.

R. Ferorelli, L. A. Grieco, S. Mascolo ef al., "Live Internet measurements using
Westwood+ TCP congestion control." JEEE GLOBECOM '02, pp. 2583-2587
vol.3, 2002.

L. A. Grieco, and S. Mascolo, “Performance Evaluation and Comparison of
Westwood+, New Reno, and Vegas TCP Congestion Control,” ACM
SIGCOMM Computer Communication Review (CCR), vol. 34, no. 2, pp. 25 -
28-25 - 28.

L. A. Grieco, and S. Mascolo, "Performance evaluation of Westwood+ TCP
over WLANs with local error control." 28th Annual IEEE International
Conference on Local Computer Networks LCN '03, pp. 440-448, 2003.

L. Cui, J. K. Seok, P. Jung Soo et al, "Enhanced Westwood+ TCP for
Wireless/Heterogeneous ~ Networks." Asia-Pacific ~ Conference on
Communications APCC '06, pp. 1-5, 2006.

C. P. Fu, and S. C. Liew, “TCP Veno: TCP Enhancement for Transmission
over Wireless Access Networks,” [EEE Journal of Selected Areas in
Communications (JSAC), vol. 21, no. 2, 2003.

Q. Pang, S. C. Liew, C. P. Fu ef al., “Performance Study of TCP Veno over
WLAN and RED Router,” Wireless Communications and Mobile Computing,
vol. 4, no. 8, pp. 867 - 879, 2004.

F. Cheng Biao, J. L. Wang, C. P. Fu ef al., "Performance study of TCP Veno in
wireless/asymmetric links." International Conference on Cyberworlds, pp.
447-451, 2004.

I. E. Khayat, P. Geurts, and G. Leduc, "Improving TCP in Wireless Networks
with an Adaptive Machine-Learnt Classifier of Packet Loss Causes." IFIP-TC6
Networking '05, pp. 549 - 560, 2005.

Z. Zixuan, L. Bu Sung, and F. Cheng Peng, "Packet loss and congestion state in
TCP Veno." 12th IEEE International Conference on Networks ICON 2004, pp.
731-735 vol.2, 2004.

Z. Ke, and F. Cheng Peng, "The Performance Study of TCP Veno Under
Different Recovery Schemes." Asia-Pacific Conference on Communications
APCC 06, pp. 1-5, 2006.

Z. ZiXuan, F. Cheng Peng, and L. Bu Sung, "A refinement to improve TCP
Veno performance under bursty congestion." I[EEE GLOBECOM '05, 2005.

K. Zhang, C. P. Fu, and Z. ZiXuan, "WLC47-3: Loss Distinguishing Accuracy
in TCP Veno and its Performance Influence." IEEE GLOBECOM '06, pp. 1-5,
2006.

M. Todorovic, and N. Lopez-Benitez, "Efficiency Study of TCP Protocols in
InfrastructuredWireless Networks." Infernational conference on Networking
and Services ICNS '06, pp. 103-103, 2006.

274

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

C. Caini, and R. Firrincieli, “TCP Hybla: a TCP enhancement for
heterogeneous networks,” International Journal of Satellite Communications
and Networking, vol. 22, pp. 547-566, 2004.

C. Carlo, L. Nico Candio, F. Rosario ef al., "TCP Hybla Performance in GEO
Satellite Networks: Simulations and Testbed." International Workshop on
Satellite and Space Communications, pp. 41-45, 2006.

C. Caini, R. Firrincieli, D. Lacamera et al., "TCP Live Experiments on a Real
GEO Satellite Testbed." 12th IEEE Symposium on Computers and
Communications 1ISCC '07, pp. 523-529, 2007.

E. H. K. Wu, and C. Mei-Zhen, “JTCP: jitter-based TCP for heterogeneous
wireless networks,” IEEE Journal on Selected Areas in Communications, vol.
22, no. 4, pp. 757-766, 2004.

H. Schulzrinne, S. Casner, R. Frederick ef al., “RTP: A Transport Protocol for
Real-Time Applications,” RFC 1889, 1996.

E. H. K. Wy, . H. Ming, C. Mei-Zhen et al., "JTCP: congestion distinction by
the jitter-based scheme over wireless networks." IEEE PIMRC '04, pp. 2473-
2477 vol.4, 2004.

Y. Daiqin, L. Ka-Cheong, and V. O. K. Li, "Simulation-Based Comparisons of
Solutions for TCP Packet Reordering in Wireless Networks." IEEE Wireless
Communications and Networking Conference WCNC 07, pp. 3238-3243, 2007.
K. K. Leung, T. E. Klein, C. F. Mooney ef al., "Methods to improve TCP
throughput in wireless networks with high delay variability [3G network
examplel." Vehicular Technology Conference VIC '04, pp. 3015-3019 vol. 4,
2004.

P. Karn, and C. Partridge, “Improving round-trip time estimates in reliable
transport protocols,” SIGCOMM Computer Communication Review, vol. 17,
no. S5, pp. 2-7, 1987.

R. Ludwig, and R. H. Katz, “The Eifel Algorithm: Making TCP Robust
Against Spurious Retransmissions,” ACM Computer Communication Review,
vol. 30, no. 1, 2000.

R. Ludwig, and M. Meyer, “The Eifel Detection Algorithm for TCP,” RFC
3522,2003.

H. Ekstrom, and R. Ludwig, "The peak-hopper: a new end-to-end
retransmission timer for reliable unicast transport." IEEE INFOCOM '04, pp.
2502-2513 vol.4, 2004.

I. Psaras, V. Tsaoussidis, and L. Mamatas, "CA-RTO: a contention-adaptive
retransmission timeout." [4th International Conference on Computer
Communications and Networks ICCCN '05, pp. 179-184, 2005.

J. Cobb, and P. Agrawal, "Congestion or Corruption? A strategy for efficient
wireless TCP sessions." IEEE Symposium on Computers and Communications,
pp. 262-268, 1995.

S. Biaz, and N. H. Vaidya, "Distinguishing congestion losses from wireless
transmission losses: a negative result." 7th International Conference on
Computer Communications and Networks, pp. 722-731, 1998.

D. Barman, and 1. Matta, “A Bayesian Approach for TCP to Distinguish
Congestion from Wireless Losses,” BUCS Technical Report 2003-030, Boston
University, Department of Computer Science, 2003.

S. Cen, P. C. Cosman, and G. M. Voelker, “End-to-end differentiation of
congestion and wireless losses,” IEEE/ACM Transactions on Networking, vol.
11, no. 5, pp. 703-717, 2003.

275

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

C. H. Lim, and J. W. Jang, “Robust end-to-end loss differentiation scheme for
transport control protocol over wired/wireless networks,” Communications,
IET, vol. 2, no. 2, pp. 284-291, 2008.

S. Bregni, D. Caratti, and F. Martignon, "Enhanced loss differentiation
algorithms for use in TCP sources over heterogeneous wireless networks."
IEEE GLOBECOM 03, pp. 666-670 vol.2, 2003.

N. K. G. Samaraweera, “Non-congestion packet loss detection for TCP error
recovery using wireless links,” Communications, IEEE, vol. 146, no. 4, pp.
222-230, 1999.

V. Tsaoussidis, and H. Badr, "TCP-probing: towards an error control schema
with energy and throughput performance gains." International Conference on
Network Protocols, pp. 12-21, 2000.

J. Liu, I. Matta, and M. Crovella, "End-to-End Inference of Loss Nature in a
Hybrid Wired/Wireless Environment." Modeling and Optimization in Mobile,
Ad Hoc and Wireless Networks WiOpt'03, 2003.

J. Liu, and M. Crovella, "Using loss pairs to discover network properties.”
ACM SIGCOMM Internet Measurement Workshop, 2001.

S. Biaz, and N. H. Vaidya, "Discriminating congestion losses from wireless
losses using inter-arrival times at the receiver." I[EEE Symposium on
Application-Specific Systems and Software Engineering and Technology
ASSET '99, pp. 10-17, 1999.

Y. Tobe, Y. Tamura, A. Molano et al., "Achieving moderate fairness for UDP
flows by path-status classification." 25th Annual IEEE Conference on Local
Computer Networks LCN "00, pp. 252-261, 2000.

Y. Guang, W. Ren, M. Y. Sanadidi er al., "TCPW with bulk repeat in next
generation wireless networks." IEEE ICC '03, pp. 674-678 vol.1, 2003.

S. Mascolo, C. Casetti, M. Gerla et al, "TCP Westwood: Bandwidth
Estimation for Enhanced Transport over Wireless Links." ACM MOBICOM
‘01, pp. 287 - 297, 2001.

M. V. Delibasic, and 1. D. Radusinovic, "LD-LogWestwood+ TCP for Wireless
Networks." 8th International Conference on Telecommunications in Modern
Satellite, Cable and Broadcasting Services TELSIKS 07, pp. 389-392, 2007.

D. Kliazovich, F. Granelli, and D. Miorandi, "TCP Westwood+ Enhancement
in High-Speed Long-Distance Networks." IEEE ICC '06, pp. 710-715, 2006.

M. V. Delibasic, and 1. D. Radusinovic, "Performance Evaluation of
LogWestwood+ TCP in Wired/Wireless Networks." FEuropean Wireless
Conference '07, 2007.

L. Carvalho, J. Angeja, and A. Navarro, “A new packet loss model of the IEEE
802.11g wireless network for multimedia communications,” I[EEE
Transactions on Consumer Electronics, vol. 51, no. 3, pp. 809-814, 2005.

Y. Dae Gil, S. Soo Young, K. Wook Hyun ef al., "Packet Error Rate Analysis
of IEEE 802.11b under IEEE 802.15.4 Interference." Vehicular Technology
Conference VIC '06, pp. 1186-1190, 2006.

M. R. Souryal, L. Klein-Berndt, L. E. Miller et al., "Link assessment in an
indoor 802.11 network." IEEE Wireless Communications and Networking
Conference WCNC 06, pp. 1402-1407, 2006.

W. Hneiti, and N. Ajlouni, "Performance Enhancement of Wireless Local Area
Networks." Information and Communication Technologies ICTTA '06, pp.
2400-2404, 2006.

276

[242]

[243]
[244]

[245]

[246]
[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

[260]

D. Youngju, L. Seungbeom, and P. Sin-Chong, "Adaptive Acknowledgment
schemes of the [EEE 802.11e EDCA." The 9th International Conference on
Advanced Communication Technology, pp. 1679-1683, 2007.

P. Chatzimisios, A. C. Boucouvalas, and V. Vitsas, “Influence of channel BER
on IEEE 802.11 DCF,” Electronics Letters, vol. 39, no. 23, pp. 1687-9, 2003.
X. Chang, "Network Simulations with OPNET." 31st Winter Simulation
Conference, 1999.

M. N. Akhtar, M. A. O. Barry, and H. S. Al-Raweshidy, "Modified Tahoe TCP
for Wireless Networks Using OPNET Simulator." London Communications
Symposium LCS '03, 2003.

J. Song, and L. Trajkovic, "Enhancements and Performance Evaluation of
Wireless Local Area Networks." OPNETWORK '03, 2003.

M. Omueti, and L. Trajkovic, "OPNET model of TCP with adaptive delay and
loss response for broadband GEO satellite networks." OPNETWORK 07, 2007.
A. Jayananthan, H. Sirisena, and V. Garg, "Analytical Model of TCP with
Enhanced Recovery Mechanism for Wireless Environments." IEEE ICC 07,
pp. 4506-4511, 2007

G. Flores-Lucio, M. Paredes-Farrera, E. Jammeh et al., "OPNET-Modeler and
NS-2: Comparing the Accuracy of Network Simulators for Packet-Level
Analysis using a Network Testbed." 3rd WEAS Int. Conf. on Simulation,
Modelling and Optimization ICOSMO '03, pp. 700-707, 2003.

"Understanding TCP Model Internals and Interfaces: Discrete Event Simulation
for R&D (Session 1508)," OPNETWORK '07, 2007.

"Understanding Wireless LAN Model Internals and Interfaces: Discrete Event
Simulation for R&D (Session 1529)," OPNETWORK 07, 2007.

E. Casilari, F. J. Gonzblez, and F. Sandoval, “Modeling of HTTP traffic,”
Communications Letters, IEEE, vol. 5, no. 6, pp. 272-274, 2001.

R. Fielding, J. Gettys, J. C. Mogull et al., Hypertext transfer protocol --
HTTP/1.1, HTTP Working Group, 1997.

D. Barman, and . Matta, "Model-based Loss Inference by TCP over
Heterogeneous Networks." Intl. Symposium on Modeling and Optimization in
Mobile, Ad Hoc, and Wireless Networks WiOpt '05, 2005.

A. K. Ghosh, S. Das, R. Roy ef al., "Sender Side Intelligence for TCP
Throughput Enhancement in Wired-Cum-Wireless Network." IEEE PIMRC
‘07, pp. 1-5, 2007.

M. Gerla, K. Tang, and R. Bagrodia, "TCP Performance in Wireless Multi-hop
Networks." Mobile Computing Systems and Applications, 1999,

Q. Ni, T. Turletti, and W. Fu, "Simulation-based Analysis of TCP Behavior
Over Hybrid Wireless and Wired Network." International Conference on
Internet Computing, pp. 27-36, 2002.

S. Gopal, and D. Raychaudhuri, "Experimental evalvation of the TCP
simultaneous-send problem in 802.11 wireless local area networks." ACM
SIGCOMM Workshop on Experimental Approaches to Wireless Network
Design and Analysis, pp. 23-28, 2005.

C. Barakat, and E. Altman, “On ACK Filtering on a Slow Reverse Channel,”
International Journal of Satellite Communications and Networking, vol. 21, pp.
241-258, 2003.

V. T. Raisinghani, A. Patil, and S. Iyer, "Mild Aggression : A New Approach
for Improving TCP Performance in Asymmetric Networks." Asian
International Mobile Computing Conference, 2000.

277

[261]

[262]
[263]
[264]
[265]

[266]
[267]
[268]

[269]

[270]

[271]

[272]

[273]

[274]

[275]

[276]

[277]

[278]
[279]
[280]

[281]
[282]

C. Shan, B. Bensaou, and Z. Junhua, "On Estimating the Bandwidth Share of
TCP Connections in Presence of Reverse Traffic." Workshop on High
Performance Switching and Routing HPSR '07, pp. 1-6, 2007.

R. Y. Awdeh, and S. Akhtar, “Comparing TCP variants in presence of reverse
traffic,” Electronics Letters, vol. 40, no. 11, pp. 706-708, 2004.

"Net:Netem - Linux Foundation," www.linuxfoundation.org/en/Net:Netem.
"Net:Bridge - Linux Foundation," www.linuxfoundation.org/en/Net:Bridge.

J. Yu, Performance Evaluation of Linux Bridge, DePaul University, School of
CTI, 2004.

NLANR/DAST, “Iperf.” http://dast.nlanr.net/Projects/Iperf/.

I. McDonald, and R. Nelson, "Congestion Control Advancements in Linux."
Australia’s National Linux Conference LCA '06, 2006.

X. Lisong, K. Harfoush, and R. Injong, "Binary increase congestion control
(BIC) for fast long-distance networks." IEEE INFOCOM '04, pp. 2514-2524
vol.4, 2004.

P. De, A. Raniwala, S. Sharma et a/., "MiNT: a miniaturized network testbed
for mobile wireless research." IEEE INFOCOM '05, pp. 2731-2742 vol. 4,
2005.

J. Liu, and S. Singh, “ATCP: TCP for Mobile Ad Hoc Networks,” IEEE
Journal of Selected Areas in Communications (JSAC), 2001.

M. Kojo, A. Gurtov, and J. Manner, "Seawind: A Wireless Network Emulator.”
ITG Conference on Measuring, Modelling and Evaluation of Computer and
Communication Systems, 2001.

P. Zheng, and L. M. Ni, "EMPOWER: A Network Emulator for Wireline and
Wireless Networks." IEEE INFOCOM 03, pp. 1933 - 1942, 2003.

A. Wennstrom, A. Brunstrom, J. Rendon et al., "A GPRS Testbed for TCP
Measurements." 4th International Workshop on Mobile and Wireless
Communications Network, pp. 320 - 324, 2002.

A. Hafslund, L. Landmark, P. Engelstad et al., "Testing and Analyzing TCP
Performance in a Wireless-Wired Mobile Ad Hoc Test Bed." IWWAN '04, pp.
115-119, 2004.

M. Borri, M. Casoni, and M. L. Merani, "An experimental study on congestion
control in wireless and wired networks." IEEE ICC 05, pp. 3570-3575 vol. 5,
2005.

M. Yajnik, S. Moon, J. Kurose et al., "Measurement and Modelling of the
Temporal Dependence in Packet Loss." IEEE INFOCOM 99, pp. 345 - 352,
1999.

A. Bon, C. Caini, T. D. Cola et al, "An Integrated Testbed for Wireless
Advanced Transport Protocols and Architectures." Testbeds and Research
Infrastructures for the Development of Networks and Communities
TRIDENTCOM '06, pp. 526 - 529, 2006.

BrainSlayer. "DD-WRT," http://www.dd-wrt.com/dd-wrtv3/index.php.

CACE Technologies, "AirPcap." http://www.cacetech.com/.

M. Mathis, J. Heffner, and R. Reddy, “Web100: Extended TCP Instrumentation
for Research, Education, and Diagnosis,” ACM SIGCOMM Computer
Communication Review, vol. 33, no. 3, pp. 69 - 79, 2003.

NSF, "The Web100 Project." http://www.web100.org/

S. Bassi, and M. A. Labrador, "Setting up a Web100-Dummynet Testbed for
Research in Transport Layer Protocols." ACM Southeast Regional Conference,
pp. 65 - 69, 2005.

278

[283]
[284]

[285]

[286]

[287]

[288]
[289]
[290]
[291]
[292]
[293]
[294]
[295]

[296]

[297]

S. Floyd, “HighSpeed TCP for Large Congestion Windows,” RFC 3649, 2003.
R. N. Shorten, and D. J. Leith, "H-TCP: TCP for high-speed and long-distance
networks." 2nd International Workshop on Protocols for Fast Long-Distance
Networks PFLDnet '04, 2004.

T. Kelly, “Scalable TCP: Improving Performance in High Speed Wide Area
Networks,” ACM Computer Communication Review, vol. 32, no. 2, 2003.

L. Xu, and I. Rhee, "CUBIC: A new TCP-Friendly High-speed TCP variant."
3rd International Workshop on Protocols for Fast Long-Distance Networks
PFLDnet '05, 2005.

A. Kuzmanovic, and E. W. Knightly, “TCP-LP: Low-Priority Service via End-
Point Congestion Control,” ACM Transactions on Networking, vol. 14, no. 4,
2003.

LBL, "tcpdump" http://www.tcpdump.org/.

S. Ostermann, "tcptrace™ http://www.tcptrace.org/

"Linux Advanced Routing & Traffic Control" http://lartc.org/.

B. D. Schuymer, "ebtables" http://ebtables.sourceforge.net/.

B. A. Mah, "pchar" http://www kitchenlab.org/www/bmah/Software/pchar/.

G. Combs, "Wireshark" http://www.wireshark.org/.

M. Milner, "Netstumbler” http://www.stumbler.net/.

R. Taank, and P. Xiao-Hong, "An Experimental Testbed for Evaluating End-to-
End TCP Performance Over Wired-to-Wireless Paths." 5th IEEE Consumer
Communications and Networking Conference CCNC 08, pp. 523-527, 2008.

A. Grilo, and M. Nunes, "Performance evaluation of IEEE 802.11e." IEEE
PIMRC 02, pp. 511-517 vol.1, 2002.

M. J. Ho, J. Wang, K. Shelby et al., "IEEE 802.11g OFDM WLAN throughput
performance." Vehicular Technology Conference VIC '03, pp. 2252-2256
vol.4, 2003.

279

