Mechanisms of convective drying in thick beds of solids


The literature on heat and mass transfer mechanisms in the convective drying of thick beds of solids has been critically reviewed. Related mathematical models of heat transfer are also considered. Experimental and theoretical studies were made of the temperature distribution within beds, and of drying rates, with various materials undergoing convective drying. The experimental work covered thick beds of hygroscopic and non-hygroscopic materials (glass beads of different diameters, polystyrene pellets, activated alumina and wood powder) at air temperatures of 54°C to 84°C. Tests were carried out in a laboratory drying apparatus comprising a wind tunnel through which the air, of controlled temperature and humidity, was passed over a sample suspended from a balance. Thermocouples were inserted at different depths within the sample bed. The temperature distribution profiles for both hygroscopic and non-hygroscopic beds exhibited a clear difference between the temperatures at the surface and bottom during the constant rate period. An effective method was introduced for predicting the critical moisture content. During the falling rate the profiles showed the existence of a receding evaporation plane; this divided the system into a hotter dry zone in the upper section and a wet zone near the bottom. A graphical procedure was established to predict accurately the position of the receding evaporation front at any time. A new mathematical model, based on the receding evaporation front phenomenon, was proposed to predict temperature distributions throughout a bed during drying. Good agreement was obtained when the model was validated by comparing its predictions with experimental data. The model was also able to predict the duration of each drying stage. In experiments using sample trays of different diameters, the drying rate was found to increase with a decrease in the effective length of the bed surface. During the constant rate period with trays of a small effective length, i.e. less than 0.08 m, an 'inversion' in temperature distribution occurred in the bed; the bottom temperature increased and became greater than that of the surface. Experimental measurements were verified in several ways to ensure this phenomenon was real. Theoretical explanations are given for both the effective length and temperature inversion phenomena.

Divisions: College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry
Additional Information: Department: Chemical Engineering and Applied Chemistry If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either theirs or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: temperature distribution profiles,recding evaporation front,convective drying rate,effective length
Last Modified: 08 Dec 2023 08:28
Date Deposited: 25 Nov 2010 14:21
Completed Date: 1995-10
Authors: Almubarak, Abdulaziz A.


Export / Share Citation


Additional statistics for this record