Ocular biomaterials and the anterior eye


Hydrogels, water swollen polymer matrices, have been utilised in many biomedical applications, as there is the potential to manipulate the properties for a given application by changing the chemical structure of the constituent monomers The eye provides an excellent site to examne the interaction between a synthetic material and a complex biological fluid without invasive surgery. There is a need for the development of new synthetic hydrogels for use in the anterior eye, Three applications of hydrogels in the eye were considered in this thesis. For some patients, the only hope of any visual improvement lies in the use of an artificial cornea, or keratoprosthesis, Preliminary investigations of a series of simple homogeneous hydrogel copolymers revealed that the mechanical properties required to withstand surgery and in eye stresses, were not achieved This lead to work on the development of semi-interpenetrating polymer networks based on the aforementioned copolymers, Manufacture of the device and cell response were also studied. Lasers have been employed in ocular surgery to correct refractive defects. If an irregular surface is ablated, an irregular surface is obtained. A hydrogel system was investigated that could be applied to the eye prior to ablation to create a smooth surface. Factors that may influence ablation rate were explored, Soft contact lenses can be used as a probe to study the interaction between synthetic materials and the biological constituents of tears. This has lead to the development of many sensitive analytical techniques for protein and lipid deposition, one of which is fluorescence spectrophotometry. Various commercially available soft contact lenses were worn for different periods of time and then analysed for protein and lipid deposition using fluorescence spectrophotometry, The influence of water content, degree of ionicity and the lens material on the level and type of deposition was investigated.

Divisions: College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry
Additional Information: Department: Chemical Engineering and Applied Chemistry If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either theirs or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: hydrogel,fluorescence spectrophotometry,laser ablation,keratoprosthesis,contact lenses
Last Modified: 08 Dec 2023 08:30
Date Deposited: 29 Nov 2010 14:58
Completed Date: 1997-09
Authors: Evans, Kathryn R.


Export / Share Citation


Additional statistics for this record