The use of enzymes in organic solvents in polytransesterification reactions


The aim of this research project was to identify the factors affecting the porcine pancreatic lipase (PPL.)-catalysed polytransesterification of a diester and a diol in organic solvents. It was hoped that by modifying reaction conditions a commercially acceptable polymer molecular weight (Mn) of 20,000 daltons might be attained. Exploratory investigations were carried out using 1,4-butanediolibis(2,2,2- trichloroethyl) adipate and glutarate systems in diethyl ether, with and without molecular sieves. It was found that molecular sieves promoted the reaction by reducing hydrolysis of the ester end-groups, resulting in polymer molecular weights between 1.2 and 2.2 times greater than those obtainable without molecular sieves. Investigations were then concentrated on the PPL-catalysed polytransesterification of 1,4-butanediol with divinyl adipate. The particular advantage of this system is that the reaction is irreversible. The effects of varying substrate concentration, mass of drying agent, reaction solvent, reaction temperature, mass of enzyme and also enzyme immobilisation on the 1,4-butanediolidivinyl adipate system were investigated. The highest molecular weight polymer obtained for the PPL-catalysed polytransesterification of 1,4-butanedial with divinyl adipate in diethyl ether was Mn -8,000. In higher boiling ether solvents molecular weights as high as Mn -9,200 were obtained for this system at elevated temperatures. It was found that the major factor limiting polymerisation was the low solubility of the polymer in the solvent which resulted in precipitation of the polymer onto the surface of the enzyme.

Divisions: College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry
Additional Information: Department: Chemical Engineering and Applied Chemistry If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: Enzymes in organic solvents,polytransesterification reactions
Last Modified: 08 Dec 2023 08:31
Date Deposited: 01 Dec 2010 15:22
Completed Date: 1998
Authors: Wiggett, Adrian J.


Export / Share Citation


Additional statistics for this record