Fenwick, Kevin S. (1996). Flow patterns on distillation trays. PHD thesis, Aston University.
Abstract
Studies into the two-phase flow patterns produced on a sieve tray were carried out using an air-water simulator of 2.44 m in diameter. The flow patterns were investigated by a number of methods, direct observation using directional flow pointers; by water-cooling to simulate mass transfer; and by measurement of the height of clear liquid across the tray with manometers. The flow rates used were designed to show how the flow pattern changed with the change in the gas and liquid rates. The results from water-only studies on an un-perforated tray were compared with those produced on a sieve tray with holes of 12.7 mm diameter. The presence of regions on the sides of the tray where the liquid was circulating was noted from the water-only experiments. The presence and magnitude of the circulations was reduced when the air was passed through the liquid. These were similar to the findings of Hine (1990) and Chambers (1993). When circulation occurred, the flow separated at the ends of the inlet downcomer and circulations of up to 30% of the tray area were observed. Water-cooling and the manometer measurements were used to show the effect of the flow pattern on the tray efficiency and the height of clear liquid respectively. The efficiency was severely reduced by the presence of circulations. The height of clear liquid tended to rise in these areas. A comparison of data collected on trays with different hole diameters showed that the larger hole diameter inhibited the on-set of separation to a greater extent than small hole diameters. The tray efficiency was affected by a combination of the better mixing on smaller hole trays and detrimental effect of greater circulation on these trays. Work on a rectangular tray geometry was carried out to assess the effect of hole size on the height of clear liquid. It was found that the gradient on the outlet half of the tray was very small and that the highest clear liquid height was given by the highest hole size. Overall, the experiments helped to clarify the effect that the flow pattern had on the operation of the tray. It is hoped that the work can be of use in the development of models to predict the flow pattern and hence the tray efficiency.
Divisions: | College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry |
---|---|
Additional Information: | Department: Chemical Engineering and Applied Chemistry If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately. |
Institution: | Aston University |
Uncontrolled Keywords: | Flow patterns,distillation trays |
Last Modified: | 30 Sep 2024 07:57 |
Date Deposited: | 08 Dec 2010 09:15 |
Completed Date: | 1996 |
Authors: |
Fenwick, Kevin S.
|