Thawer, Ruqayya, Baker, Stuart N. and Zaaimi, Boubker (2026). Breathing-Driven Modulation of Reticulospinal Tract Activity. Experimental Physiology ,
Abstract
Breathing rhythms influence brain activity, but whether they modulate the excitability of the reticulospinal tract (RST; a key pathway for motor control and recovery after stroke) remains unknown. In this study, we used the StartReact paradigm to examine how respiratory rhythms modulate RST excitability during motor tasks, measuring reaction times across visual, visual–auditory and visual–auditory startling conditions in three arm muscles (first dorsal interosseous, flexor digitorum superficialis and biceps) of healthy adults (n = 13). Reaction times decreased significantly from visual to visual–auditory to visual–auditory startling conditions. Crucially, respiratory-phase transitions, particularly from inspiration to expiration, significantly enhanced RST excitability specifically during startle-evoked responses, with StartReact effects being significantly stronger during respiratory transitions compared with mid-phases (P ≤ 0.011). These findings suggest that respiratory rhythms modulate RST excitability dynamically in a phase- and condition-specific manner. The identification of respiratory transition phases as optimal periods for RST activation could inform new neurorehabilitation strategies, such as respiratory-phase-aligned stimulation, to enhance motor recovery following corticospinal lesions.
| Publication DOI: | https://doi.org/10.1113/EP093536 |
|---|---|
| Divisions: | College of Health & Life Sciences > Aston Pharmacy School College of Health & Life Sciences > Aston Institute of Health & Neurodevelopment (AIHN) College of Health & Life Sciences Aston University (General) |
| Funding Information: | This work was supported by Aston University and Newcastle University. No external funding was received for this study. |
| Additional Information: | Copyright © 2026 The Author(s). Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| Uncontrolled Keywords: | neurorehabilitation,reaction times,respiratory rhythms,reticulospinal tract,StartReact paradigm |
| Publication ISSN: | 1469-445X |
| Last Modified: | 17 Feb 2026 08:07 |
| Date Deposited: | 16 Feb 2026 17:03 |
| Full Text Link: |
https://www.bio ... .03.02.641029v1 |
| Related URLs: |
https://physoc. ... 0.1113/EP093536
(Publisher URL) |
PURE Output Type: | Article |
| Published Date: | 2026-02-15 |
| Published Online Date: | 2026-02-15 |
| Accepted Date: | 2026-01-22 |
| Authors: |
Thawer, Ruqayya
Baker, Stuart N. Zaaimi, Boubker (
0000-0003-0210-8747)
|
0000-0003-0210-8747