Rastegarpanah, Alireza, Mineo, Carmelo, Contreras, Cesar Alan, Stolkin, Rustam, Shaarawy, Abdelaziz, Paragliola, Giovanni and Stolkin, Rustam (2025). Haptic Teleoperation in Extended Reality for Electric Vehicle Battery Disassembly using Gaussian Mixture Regression. Journal of Field Robotics ,
Abstract
We present a comprehensive teleoperation framework for electric vehicle (EV) battery cell handling, integrating haptic feedback, extended reality (XR) visualization, and task-parameterized Gaussian mixture regression (TP-GMR) for adaptive, real-time trajectory generation. The system enables seamless switching between manual and autonomous operation through a variable autonomy mechanism, while constraint barrier functions (CBFs) enforce spatial safety constraints. A lightweight intent prediction module anticipates user deviation and precomputes corrective trajectories, reducing response time from 2.0 s to under 1 ms. The framework is implemented on an industrial KUKA robotic manipulator and validated in structured and real-world EV battery disassembly scenarios. Results show that combining XR and haptic feedback reduces task completion time by up to 48% and path deviation by 32%, compared to manual teleoperation without assistance. Predictive replanning improves continuity of force feedback and reduces unnecessary user motion. The integration of XR-based spatial computing, learning-from-demonstration, and real-time control enables safe, precise, and efficient manipulation in high-risk environments. This study demonstrates a scalable human-in-the-loop solution for battery recycling and other semi-structured tasks, where full automation is impractical. The proposed system significantly improves operator performance while maintaining safety and flexibility, marking a meaningful advancement in collaborative field robotics.
Publication DOI: | https://doi.org/10.1002/rob.70079 |
---|---|
Divisions: | College of Engineering & Physical Sciences > School of Computer Science and Digital Technologies > Applied AI & Robotics College of Engineering & Physical Sciences > School of Computer Science and Digital Technologies Aston University (General) |
Funding Information: | This study was supported by the project called “Research and Development of a Highly Automated and Safe Streamlined Process for Increase Lithium‐ion Battery Repurposing and Recycling” (REBELION) under Grant 101104241 and by the project called “Mutual cros |
Additional Information: | Copyright © 2025 The Author(s). Journal of Field Robotics published by Wiley Periodicals LLC. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
Publication ISSN: | 1556-4959 |
Last Modified: | 30 Sep 2025 07:12 |
Date Deposited: | 25 Sep 2025 12:59 |
Full Text Link: | |
Related URLs: |
https://onlinel ... .1002/rob.70079
(Publisher URL) |
PURE Output Type: | Article |
Published Date: | 2025-09-25 |
Published Online Date: | 2025-09-25 |
Accepted Date: | 2025-08-23 |
Authors: |
Rastegarpanah, Alireza
(![]() Mineo, Carmelo Contreras, Cesar Alan Stolkin, Rustam Shaarawy, Abdelaziz Paragliola, Giovanni Stolkin, Rustam |