Three-dimensional smoothed particle hydrodynamics modeling of near-shore current flows over rough topographic surface

Abstract

In this study, a three-dimensional (3D) numerical model based on the smoothed particle hydrodynamics (SPH) approach was developed to simulate the near-shore current flows over a rough topographic surface in the coastal area, where the flows are shallow and demonstrate strong turbulent characteristics. The numerical program is based on the open-source code SPHysics (http://www.sphysics.org), and two major improvements are made to treat the turbulence and rough boundary effects: A modified sub-particle-scale (SPS) eddy viscosity model is developed to address the turbulence transfer of flows, and a drag force equation is included in the momentum equations to account for the influence of roughness element on the bed and lateral boundaries. The computed results of flow velocity, shear stress, and free surface characteristics are compared with the laboratory measurements for a variety of test conditions. It has shown that the present SPH model can accurately simulate 3D-free surface near-shore current flows over a realistic topography with roughness.

Publication DOI: https://doi.org/10.3389/fmars.2022.935098
Divisions: College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Civil Engineering
College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering
Additional Information: Copyright © 2022 Gabreil, Wu, Chen, Li, Rubinato, Zheng and Shao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Uncontrolled Keywords: drag force,near-shore current,rough topography,SPH,SPHysics,turbulence,SDG 13 - Climate Action,SDG 9 - Industry, Innovation, and Infrastructure,SDG 11 - Sustainable Cities and Communities
Publication ISSN: 2296-7745
Last Modified: 19 Dec 2024 08:22
Date Deposited: 26 Sep 2024 13:42
Full Text Link:
Related URLs: https://www.fro ... 022.935098/full (Publisher URL)
PURE Output Type: Article
Published Date: 2022-07-29
Published Online Date: 2022-07-29
Accepted Date: 2022-06-29
Authors: Gabreil, Eslam
Wu, Haitao
Chen, Chen
Li, Jiaye
Rubinato, Matteo (ORCID Profile 0000-0002-8446-4448)
Zheng, Xing
Shao, Songdong

Download

[img]

Version: Published Version

License: Creative Commons Attribution

| Preview

Export / Share Citation


Statistics

Additional statistics for this record