Godwin, Larry, Trevelyan, Philip, Akinaga, Takeshi and Generalis, Sotos (2024). Energy Budget Characterisation of the Optimal Disturbance in Stratified Shear Flow. Fluids, 9 (5),
Abstract
Stratified Taylor–Couette flow (STCF) undergoes transient growth. Recent studies have shown that there exists transient amplification in the linear regime of counter-rotating STCF. The kinetic budget of the optimal transient perturbation is analysed numerically to simulate the interaction of the shear production (SP), buoyancy flux (BP), and other energy components that contributes to the total optimal transient kinetic energy. These contributions affect the total energy by influencing the perturbation to extract kinetic energy (KE) from the mean flow. The decay of the amplification factor resulted from the positive amplification of both BP and SP, while the growth is attributed to the negative and positive amplification of BP and SP, respectively. The optimal SP is positively amplified, implying that there is the possibility of constant linear growth. These findings agree with the linear growth rate for increasing values of Grashof number.
Publication DOI: | https://doi.org/10.3390/fluids9050106 |
---|---|
Divisions: | College of Engineering & Physical Sciences > School of Computer Science and Digital Technologies > Applied Mathematics & Data Science College of Engineering & Physical Sciences > Aston Fluids Group College of Engineering & Physical Sciences > School of Computer Science and Digital Technologies College of Engineering & Physical Sciences College of Engineering & Physical Sciences > Systems analytics research institute (SARI) Aston University (General) |
Funding Information: | This research was funded by RISE EU Horizon 2020 ATM2BT, Atomistic to Molecular Turbulence, Grant No. 824022, PTDF ED/PHD/GLE/826/16 scholarship and DTI EPSRC grant, Aston University sponsorship. |
Additional Information: | Copyright © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/) |
Uncontrolled Keywords: | bifurcation,stability,thermal diffusivity,buoyancy,convection,Taylor–Couette flow,nonlinear dynamics,General Mathematics |
Publication ISSN: | 2311-5521 |
Data Access Statement: | The Matlab sources codes used to generate the data in this study can be<br/>made available upon request. |
Last Modified: | 09 Dec 2024 09:12 |
Date Deposited: | 01 May 2024 10:43 |
Full Text Link: | |
Related URLs: |
https://www.mdp ... 11-5521/9/5/106
(Publisher URL) |
PURE Output Type: | Article |
Published Date: | 2024-05 |
Published Online Date: | 2024-04-29 |
Accepted Date: | 2024-04-28 |
Authors: |
Godwin, Larry
Trevelyan, Philip ( 0000-0003-2780-6680) Akinaga, Takeshi ( 0000-0001-7402-5436) Generalis, Sotos ( 0000-0001-7660-0633) |