Atypical Cortical Connectivity in Autism Spectrum Disorder (ASD) as Measured by Magnetoencephalography (MEG)

Abstract

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition, characterised by impairments in social interaction and communication, the presence of repetitive behaviours, and multisensory hyper- and hypo-sensitives. This thesis utilised magnetoencephalography, in combination with robust analysis techniques, to investigate the neural basis of ASD. Based on previous research, it was hypothesised that cortical activity in ASD would be associated with disruptions to oscillatory synchronisation during sensory processing, as well as during high-level perspective-taking. More specifically, a novel framework was introduced, based on local gamma-band dysregulation, global hypoconnectivity and deficient predictive-coding. To test this framework, data were collected from adolescents diagnosed with ASD and age-matched controls. Using a visual grating stimulus, it was found that in primary visual cortex, ASD participants had reduced coupling between the phase of alpha oscillations and the amplitude of gamma oscillations (i.e. phase amplitude coupling), suggesting dysregulated visual gamma in ASD. These findings were based on a robust analysis pipeline outlined in Chapter 2. Next, directed connectivity in the visual system was quantified using Granger causality. Compared with controls, ASD participants showed reductions in feedback connectivity, mediated by alpha oscillations, but no differences in inter-regional feedforward connectivity, mediated by gamma oscillations. In the auditory domain, it was found that ASD participants had reduced steady-state responses at 40Hz, in terms of oscillatory power and inter-trial coherence, again suggesting dysregulated gamma. Investigating predictive-coding theories of ASD using an auditory oddball paradigm, it was found that evoked responses to the omission of an expected tone were reduced for ASD participants. Finally, we found reductions in theta-band oscillatory power and connectivity for ASD participants, during embodied perspective-taking. Overall, these findings fit the proposed framework, and demonstrate that cortical activity in ASD is characterised by disruptions to oscillatory synchronisation, at the local and global scales, during both sensory processing and higher-level perspective-taking.

Publication DOI: https://doi.org/10.48780/publications.aston.ac.uk.00046089
Divisions: College of Health & Life Sciences > School of Psychology
Additional Information: Copyright © Robert Seymour, 2019. Robert Seymour asserts their moral right to be identified as the author of this thesis. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without appropriate permission or acknowledgement. If you have discovered material in Aston Publications Explorer which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: Autism Spectrum Disorder;,Magnetoencephalography,Oscillations,Phase Amplitude Coupling,Connectivity
Last Modified: 21 Feb 2024 15:13
Date Deposited: 21 Feb 2024 15:13
Completed Date: 2019
Authors: Seymour, Robert (ORCID Profile 0000-0001-8600-8123)

Export / Share Citation


Statistics

Additional statistics for this record