Empagliflozin Attenuates Non-Alcoholic Fatty Liver Disease (NAFLD) in High Fat Diet Fed ApoE (-/-) Mice by Activating Autophagy and Reducing ER Stress and Apoptosis

Abstract

Aims/hypothesis: SGLT-2 inhibitors (SGLT-2i) have been studied as potential treatments against NAFLD, showing varying beneficial effects. The molecular mechanisms mediating these effects have not been fully clarified. Herein, we investigated the impact of empagliflozin on NAFLD, focusing particularly on ER stress, autophagy and apoptosis. Methods: Five-week old ApoE(-/-) mice were switched from normal to a high-fat diet (HFD). After five weeks, mice were randomly allocated into a control group (HFD + vehicle) and Empa group (HFD + empagliflozin 10 mg/kg/day) for five weeks. At the end of treatment, histomorphometric analysis was performed in liver, mRNA levels of Fasn, Screbp-1, Scd-1, Ppar-γ, Pck-1, Mcp-1, Tnf-α, Il-6, F4/80, Atf4, Elf2α, Chop, Grp78, Grp94, Χbp1, Ire1α, Atf6, mTor, Lc3b, Beclin-1, P62, Bcl-2 and Bax were measured by qRT-PCR, and protein levels of p-EIF2α, EIF2a, CHOP, LC3II, P62, BECLIN-1 and cleaved CASPASE-8 were assessed by immunoblotting. Results: Empagliflozin-treated mice exhibited reduced fasting glucose, total cholesterol and triglyceride serum levels, as well as decreased NAFLD activity score, decreased expression of lipogenic enzymes (Fasn, Screbp-1c and Pck-1) and inflammatory molecules (Mcp-1 and F4/80), compared to the Control group. Empagliflozin significantly decreased the expression of ER stress molecules Grp78, Ire1α, Xbp1, Elf2α, Atf4, Atf6, Chop, P62(Sqstm1) and Grp94; whilst activating autophagy via increased AMPK phosphorylation, decreased mTOR and increased LC3B expression. Finally, empagliflozin increased the Bcl2/Bax ratio and inhibited CASPASE-8 cleavage, reducing liver cell apoptosis. Immunoblotting analysis confirmed the qPCR results. Conclusion: These novel findings indicate that empagliflozin treatment for five weeks attenuates NAFLD progression in ApoE(-/-) mice by promoting autophagy, reducing ER stress and inhibiting hepatic apoptosis.

Publication DOI: https://doi.org/10.3390/ijms22020818
Divisions: College of Health & Life Sciences > Aston Medical School
Additional Information: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Uncontrolled Keywords: Apoptosis,Autophagy,ER stress,Inflammation,NAFLD,SGLT-2 inhibitors,Catalysis,Molecular Biology,Spectroscopy,Computer Science Applications,Physical and Theoretical Chemistry,Organic Chemistry,Inorganic Chemistry
Publication ISSN: 1422-0067
Last Modified: 15 Nov 2024 08:16
Date Deposited: 22 Sep 2023 13:31
Full Text Link:
Related URLs: https://www.mdp ... 2-0067/22/2/818 (Publisher URL)
http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2021-01-15
Accepted Date: 2021-01-12
Authors: Nasiri-Ansari, Narjes
Nikolopoulou, Chrysa
Papoutsi, Katerina
Kyrou, Ioannis (ORCID Profile 0000-0002-6997-3439)
Mantzoros, Christos S.
Kyriakopoulos, Georgios
Chatzigeorgiou, Antonios
Kalotychou, Vassiliki
Randeva, Manpal S.
Chatha, Kamaljit
Kontzoglou, Konstantinos
Kaltsas, Gregory
Papavassiliou, Athanasios G.
Randeva, Harpal S.
Kassi, Eva

Download

[img]

Version: Published Version

License: Creative Commons Attribution

| Preview

Export / Share Citation


Statistics

Additional statistics for this record