Numerical Analyses of the Polarization Dependent Cladding Mode Coupling in Localized Fiber Bragg Gratings


The polarization dependence of cladding mode coupling in fiber Bragg grating (FBG) plays a significant role in the excitation of surface plasmon resonances (SPR) for sensing applications. In this work, we numerically analyze the polarization dependent cladding mode coupling enabled by localized fiber Bragg gratings (LFBGs), focusing on the properties that generate from the modal structures and the position of the localized refractive index modifications (RIMs). Our analyses reveal that, both centric and eccentric LFBGs allow strong coupling to cladding modes. In centric LFBGs, coupling to EH/ HE1,m modes dominates, whereas in eccentric LFBG, additional coupling to high azimuthal order cladding modes is permitted. Strong polarization dependence is found in eccentric LFBG: for certain cladding modes, coupling from one polarization can be suppressed due to the cancellation of negative and positive mode coupling. More interestingly, we found that cladding modes with even and odd azimuthal orders response differently to input polarizations, which accounts for the unique polarization dependence (i.e., neighboring resonances exhibit opposite polarization preference in the transmission spectra) in eccentric LFBG. Our numerical results can be verified by the good agreement with existed experimental reports.

Publication DOI:
Divisions: College of Engineering & Physical Sciences > Aston Institute of Photonics Technology (AIPT)
Additional Information: This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
Publication ISSN: 2169-3536
Last Modified: 27 Dec 2023 09:24
Date Deposited: 14 Jan 2021 08:20
Full Text Link:
Related URLs: https://ieeexpl ... cument/9316701/ (Publisher URL)
PURE Output Type: Article
Published Date: 2021-01-08
Accepted Date: 2021-01-04
Authors: Shen, Fangcheng
Zhang, Tingting (ORCID Profile 0000-0002-3901-6267)



Version: Published Version

License: Creative Commons Attribution

| Preview

Export / Share Citation


Additional statistics for this record