Numerical model of hybrid mode-locked Tm-doped all-fibre laser

Abstract

Abstract: Ultrafast Tm-doped fibre lasers have been actively studied for the last decade due to their potential applications in precise mid-IR spectroscopy, LIDARs, material processing and more. The majority of research papers is devoted to the comparison between a numerical modelling and experimental results; however, little attention is being paid to the comprehensive description of the mathematical models and parameters of the active and passive components forming cavities of Tm-doped all-fibre lasers. Thus, here we report a numerical model of a stretched-pulsed Tm-doped fibre laser with hybrid mode-locking and compare it with experimental results. The key feature of the developed numerical model is employment of the experimentally measured dispersion coefficients and optimisation of some model parameters, such as the bandwidth of the spectral filter spectral filtering and the saturation power of the active fibre, for a conformity with the experiment. The developed laser emits 331.7 fs pulses with a 23.8 MHz repetition rate, 6 mW of average power, 0.25 nJ of pulse energy, and a 21.66 nm spectral bandwidth at a peak wavelength of 1899.5 nm. The numerical model characteristics coincide with experimentally achieved spectral width, pulse duration, and average power with inaccuracy of 4.7%, 5.4%, and 22.9%, respectively. Moreover, in the discussion of the work the main possible reasons influencing this inaccuracy are highlighted. Elimination of those factors might allow to increase accuracy even more. We show that numerical model has a good agreement with the experiment and can be used for development of ultrafast Tm-doped fibre laser systems.

Publication DOI: https://doi.org/10.1038/s41598-020-74194-7
Divisions: College of Engineering & Physical Sciences > School of Informatics and Digital Engineering > Electrical and Electronic Engineering
Additional Information: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Funding: A.D. is grateful for being funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 814276. The authors acknowledge the financial support of Russian Science Foundation (Project No. 17-79-20431).
Uncontrolled Keywords: General
Publication ISSN: 2045-2322
Full Text Link:
Related URLs: https://www.nat ... 598-020-74194-7 (Publisher URL)
http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2020-10-15
Accepted Date: 2020-09-24
Authors: Donodin, Aleksandr
Voropaev, Vasilii
Batov, Daniil
Vlasov, Dmitrii
Lazarev, Vladimir
Tarabrin, Mikhail
Khegai, Aleksandr
Likhachev, Mikhail

Download

[img]

Version: Published Version

License: Creative Commons Attribution

| Preview

Export / Share Citation


Statistics

Additional statistics for this record