Assessment on the Achievable Throughput of Multi-band ITU-T G.652.D Fiber Transmission Systems


Fiber-optic multi-band transmission (MBT) aims at exploiting the low-loss spectral windows of single-mode fibers (SMFs) for data transport, expanding by ∼11× the available bandwidth of C-band line systems and by ∼5× C+L-band line systems'. MBT offers a high potential for cost-efficient throughput upgrades of optical networks, even in absence of available dark-fibers, as it utilizes more efficiently the existing infrastructures. This represents the main advantage compared to approaches such as multi-mode/-core fibers or spatial division multiplexing. Furthermore, the industrial trend is clear: the first commercial C+L-band systems are entering the market and research has moved toward the neighboring S-band. This article discusses the potential and challenges of MBT covering the ITU-T optical bands O → L. MBT performance is assessed by addressing the generalized SNR (GSNR) including both the linear and non-linear fiber propagation effects. Non-linear fiber propagation is taken into account by computing the generated non-linear interference by using the generalized Gaussian-noise (GGN) model, which takes into account the interaction of non-linear fiber propagation with stimulated Raman scattering (SRS), and in general considers wavelength-dependent fiber parameters. For linear effects, we hypothesize typical components' figures and discussion on components' limitations, such as transceivers,' amplifiers' and filters' are not part of this work. We focus on assessing the transmission throughput that is realistic to achieve by using feasible multi-band components without specific optimizations and implementation discussion. So, results are meant to address the potential throughput scaling by turning-on excess fiber transmission bands. As transmission fiber, we focus exclusively on the ITU-T G.652.D, since it is the most widely deployed fiber type worldwide and the mostly suitable to multi-band transmission, thanks to its ultra-wide low-loss single-mode high-dispersion spectral region. Similar analyses could be carried out for other single-mode fiber types. We estimate a total single-fiber throughput of 450 Tb/s over a distance of 50 km and 220 Tb/s over regional distances of 600 km: ∼ 10 × and 8× more than C-band transmission respectively and ∼ 2.5× more than full C+L.

Publication DOI:
Divisions: College of Engineering & Physical Sciences > School of Informatics and Digital Engineering > Electrical and Electronic Engineering
Additional Information: © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Funding: This work was fundedby the H2020 Metro-Haul project, no. 761727; and by the European Union Horizon 2020 research and innovation program under the Marie Skłodowska-Curie ETN WON, grant agreements 814276.
Uncontrolled Keywords: Multi-band fiber transmission,elastic optical networks,high-capacity systems,Atomic and Molecular Physics, and Optics
Publication ISSN: 1558-2213
Full Text Link:
Related URLs: https://ieeexpl ... cument/9076329/ (Publisher URL)
http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2020-08-15
Published Online Date: 2020-04-22
Accepted Date: 2020-04-01
Authors: Ferrari, Alessio
Napoli, Antonio
Fischer, Johannes Karl
Costa, Nelson Manuel Simoes Da
D'amico, Andrea
Pedro, Joao
Forysiak, Wladek (ORCID Profile 0000-0001-5411-1193)
Pincemin, Erwan
Lord, Andrew
Stavdas, Alexandros
Fernandez-palacios Gimenez, Juan Pedro
Roelkens, Gunther
Calabretta, Nicola
Abrate, Silvio
Sommerkorn-krombholz, Bernd
Curri, Vittorio



Version: Accepted Version

| Preview

Export / Share Citation


Additional statistics for this record