Thermally triggerable, anchoring block copolymers for use in aqueous inkjet printing


Towards the goal of shifting from toxic organic solvents to aqueous-based formulations in commercial inkjet printing, a series of well-defined poly[(2-hydroxyethyl acrylate-stat-N-hydroxymethyl acrylamide)-block-propyl methacrylate], P[(HEA-st-HMAA)-b-PMA], amphiphilic block copolymers with varying degrees of polymerization and comonomer compositions were synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization. Optimized RAFT polymerization conditions were found to allow larger batch synthesis (>20 g scale) without compromise over molecular design control (molecular mass, hydrophobic/hydrophilic balance, dispersity, etc.). The copolymers were subsequently investigated for their crosslinking and adhesive properties, as well as jetting performance, to determine their suitability for use in aqueous ink formulations. Crosslinking was found to occur much faster for copolymers containing more of the crosslinkable HMAA monomer units and at higher molecular masses, allowing control over the required post-deposition processing time. The amphiphilic block copolymers synthesized herein demonstrate enhanced adhesive properties compared to a selection of commercial inks whilst also achieving high print quality and performance for use in aqueous continuous inkjet (CIJ) printing, which is a key step towards greener processes in the packaging industries, where printing onto hydrophobic substrates is needed.

Publication DOI:
Divisions: College of Engineering & Physical Sciences > School of Engineering and Technology > Mechanical, Biomedical & Design
College of Engineering & Physical Sciences
College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry
College of Engineering & Physical Sciences > Aston Institute of Materials Research (AIMR)
Additional Information: © The Royal Society of Chemistry 2020
Uncontrolled Keywords: Bioengineering,Biochemistry,Polymers and Plastics,Organic Chemistry
Publication ISSN: 1759-9962
Last Modified: 15 Jul 2024 08:04
Date Deposited: 09 Apr 2020 12:23
Full Text Link:
Related URLs: ... 4E#!divAbstract (Publisher URL)
http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2020-04-28
Published Online Date: 2020-03-25
Accepted Date: 2020-03-24
Authors: Parkes, George E.
Hutchins-Crawford, Helena J.
Bourdin, Claire
Reynolds, Stuart
Leslie, Laura J. (ORCID Profile 0000-0002-7925-9589)
Derry, Matthew J. (ORCID Profile 0000-0001-5010-6725)
Harries, Josephine L.
Topham, Paul D. (ORCID Profile 0000-0003-4152-6976)



Version: Accepted Version

| Preview

Export / Share Citation


Additional statistics for this record