Recent Advances in Numerical and Experimental Downwind Sail Aerodynamics

Abstract

Over the past two decades, the numerical and experimental progresses made in the field of downwind sail aerodynamics have contributed to a new understanding of their behaviour and improved designs. Contemporary advances include the numerical and experimental evidence of the leading-edge vortex, as well as greater correlation between model and full-scale testing. Nevertheless, much remains to be understood on the aerodynamics of downwind sails and their flow structures. In this paper, a detailed review of the different flow features of downwind sails, including the effect of separation bubbles and leading-edge vortices will be discussed. New experimental measurements of the flow field around a highly cambered thin circular arc geometry, representative of a bi-dimensional section of a spinnaker, will also be presented here for the first time. These results allow interpretation of some inconsistent data from past experiments and simulations, and to provide guidance for future model testing and sail design.

Divisions: College of Engineering & Physical Sciences > School of Engineering and Technology > Mechanical, Biomedical & Design
Additional Information: © 2019 SNAME
Publication ISSN: 2475-370X
Last Modified: 29 Oct 2024 14:50
Date Deposited: 18 Feb 2020 10:54
Full Text Link:
Related URLs: https://www.sna ... nology/articles (Publisher URL)
PURE Output Type: Article
Published Date: 2019-09-11
Accepted Date: 2019-09-11
Authors: Souppez, Jean-Baptiste (ORCID Profile 0000-0003-0217-5819)
Arredondo-Galeana, Abel
Viola, Ignazio Maria

Download

[img]

Version: Published Version

Access Restriction: Restricted to Repository staff only


Export / Share Citation


Statistics

Additional statistics for this record