Anionic block copolymer vesicles act as Trojan horses to enable efficient occlusion of guest species into host calcite crystals


We report a versatile ‘Trojan Horse’ strategy using highly anionic poly(methacrylic acid)–poly(benzyl methacrylate) vesicles to incorporate two types of model payloads, i.e. either silica nanoparticles or an organic dye (fluorescein), within CaCO3 (calcite). Uniform occlusion of silica-loaded vesicles was confirmed by scanning electron microscopy, while thermogravimetry studies indicated extents of vesicle occlusion of up to 9.4% by mass (∼33% by volume). Efficient dye-loaded vesicle occlusion produces highly fluorescent calcite crystals as judged by fluorescence microscopy. In control experiments, silica nanoparticles alone are barely occluded, while only very weakly fluorescent calcite crystals are obtained when using just the fluorescein dye. This new ‘Trojan Horse’ strategy opens up a generic route for the efficient occlusion of various nanoparticles and organic molecules within inorganic host crystals.

Publication DOI:
Divisions: College of Engineering & Physical Sciences
College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry
Additional Information: This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Publication ISSN: 2041-6539
Full Text Link:
Related URLs: ... 3C#!divAbstract (Publisher URL)
PURE Output Type: Article
Published Date: 2018-09-10
Accepted Date: 2018-09-08
Authors: Ning, Yin
Whitaker, Daniel J.
Mable, Charlotte J.
Derry, Matthew J. (ORCID Profile 0000-0001-5010-6725)
Penfold, Nicholas J. w.
Kulak, Alexander N.
Green, David C.
Meldrum, Fiona C.
Armes, Steven P.



Version: Published Version

License: Creative Commons Attribution

| Preview

Export / Share Citation


Additional statistics for this record