Lopez-oliva, Alejandra P., Warren, Nicholas J., Rajkumar, Arthi, Mykhaylyk, Oleksandr O., Derry, Matthew J., Doncom, Kay E. B., Rymaruk, Matthew J. and Armes, Steven P. (2015). Polydimethylsiloxane-Based Diblock Copolymer Nano-objects Prepared in Nonpolar Media via RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules, 48 (11), pp. 3547-3555.
Abstract
Monocarbinol-functionalized polydimethylsiloxane (PDMS; mean degree of polymerization = 66) was converted via esterification into a chain transfer agent (CTA) for reversible addition–fragmentation chain transfer (RAFT) polymerization. The degree of esterification was determined to be 94 ± 1% by 1H NMR spectroscopy and 92 ± 1% by UV absorption spectroscopy. This PDMS CTA was then utilized for the dispersion polymerization of benzyl methacrylate (BzMA) in n-heptane at 70 °C. As the PBzMA block grows, it becomes insoluble in the reaction medium, which drives the in situ formation of PDMS–PBzMA diblock copolymer nanoparticles via polymerization-induced self-assembly (PISA). Depending on the precise reaction conditions, the final diblock copolymer chains can self-assemble to form spheres, worms, or vesicles. Systematic variation of the copolymer concentration and the target degree of polymerization (DP) of the PBzMA block enables construction of a phase diagram that allows the reproducible targeting of pure copolymer morphologies, as judged by transmission electron microscopy and dynamic light scattering studies. 1H NMR spectroscopy studies confirm that relatively high BzMA conversions (>90%) can be achieved within 8 h at 70 °C. Gel permeation chromatography studies (THF eluent) indicate high blocking efficiencies and relatively low final polydispersities (Mw/Mn = 1.14–1.34). Small-angle X-ray scattering (SAXS) has been used to characterize selected examples of the spherical nanoparticles in order to obtain volume-average diameters, which increase monotonically when targeting longer DPs for the core-forming PBzMA block. A relatively high copolymer concentration (>25% w/v) is required to obtain a pure worm phase, which occupies an extremely narrow region within the phase diagram. Selected worm and vesicle dispersions were also analyzed by SAXS, which enables determination of the mean worm cross section, mean worm length and vesicle membrane thickness. In addition, the highly anisotropic worms formed free-standing gels in n-heptane, with rheology measurements indicating viscoelastic behavior and a gel storage modulus of around 104 Pa.
Publication DOI: | https://doi.org/10.1021/acs.macromol.5b00576 |
---|---|
Divisions: | College of Engineering & Physical Sciences College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry |
Additional Information: | This document is the Accepted Manuscript version of a Published Work that appeared in final form in Macromolecules, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.macromol.5b00576 |
Publication ISSN: | 1520-5835 |
Last Modified: | 31 Oct 2024 18:24 |
Date Deposited: | 07 Jan 2020 12:09 |
Full Text Link: |
http://gateway. ... 000356201100018 |
Related URLs: |
https://pubs.ac ... acromol.5b00576
(Publisher URL) |
PURE Output Type: | Article |
Published Date: | 2015-06-09 |
Published Online Date: | 2015-05-22 |
Accepted Date: | 2015-05-12 |
Authors: |
Lopez-oliva, Alejandra P.
Warren, Nicholas J. Rajkumar, Arthi Mykhaylyk, Oleksandr O. Derry, Matthew J. ( 0000-0001-5010-6725) Doncom, Kay E. B. Rymaruk, Matthew J. Armes, Steven P. |