Sher, Farooq, Iqbal, Sania Z., Liu, Hao, Imran, Muhammad and Snape, Colin E. (2020). Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: A way forward to renewable energy sources. Energy Conversion and Management, 203 ,
Abstract
This study investigates the thermal and kinetic analysis of six diverse biomass fuels, in order to provide valuable information for power and energy generation. Pyrolytic, combustion and kinetic analyses of barley straw, miscanthus, waste wood, wheat straw, short rotation coppicing (SRC) willow and wood pellet were examined by non-isothermal thermogravimetry analyser (TGA), differential thermogravimetric (DTG) and differential scanning calorimetry (DSC) techniques. Biomass fuels were thermally degraded under N2, air, CO2 and the selected oxy-fuel (30% O2/70% CO2) reaction environments. The thermal degradation under inert N2 and CO2 atmospheres showed an almost identical rate of weight loss (R), reactivity (RM × 103) and activation energy (Ea) profiles. Similar profiles for R, RM and Ea were observed for the environments under air (21% O2/79% N2) and the oxy-fuel combustion. Results indicated that the thermal decomposition rate for biomass fuels in an oxidising condition was faster than in an inert atmosphere, favourable effect on thermal degradation of biomass fuels was observed when oxygen content increased from 21 to 30%. Higher activation energies with lower reactivity were observed for the biomass fuels that have low cellulosic contents as compared to the other fuels. Regression analysis confirmed that the reaction order 0.5 modelled fitted well for all biomass samples. All these findings will provide valuable information and promote the advancement of future researches in this field.
Publication DOI: | https://doi.org/10.1016/j.enconman.2019.112266 |
---|---|
Divisions: | College of Engineering & Physical Sciences > School of Engineering and Technology > Mechanical, Biomedical & Design College of Engineering & Physical Sciences |
Additional Information: | © 2019, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Uncontrolled Keywords: | Activation energy,Biomass,Heat flow kinetics and Carbon emissions,Oxy-fuel combustion,Renewable energy,Renewable Energy, Sustainability and the Environment,Nuclear Energy and Engineering,Fuel Technology,Energy Engineering and Power Technology |
Publication ISSN: | 1879-2227 |
Last Modified: | 17 Jan 2025 08:15 |
Date Deposited: | 06 Dec 2019 14:33 |
Full Text Link: | |
Related URLs: |
https://www.sci ... 2725?via%3Dihub
(Publisher URL) http://www.scop ... tnerID=8YFLogxK (Scopus URL) |
PURE Output Type: | Article |
Published Date: | 2020-01-01 |
Published Online Date: | 2019-11-20 |
Accepted Date: | 2019-11-07 |
Authors: |
Sher, Farooq
Iqbal, Sania Z. Liu, Hao Imran, Muhammad ( 0000-0002-3057-1301) Snape, Colin E. |
Download
Version: Accepted Version
License: Creative Commons Attribution Non-commercial No Derivatives
| PreviewVersion: Accepted Version
License: Creative Commons Attribution Non-commercial No Derivatives
| Preview