Characteristics and stability of soliton crystals in optical fibres for the purpose of optical frequency comb generation


We study the properties of a soliton crystal, a bound state of several optical pulses that propagate with a fixed temporal separation through the optical fibres of the proposed approach for generation of optical frequency combs (OFC) for astronomical spectrograph calibration. This approach - also being suitable for subpicosecond pulse generation for other applications - consists of a conventional single-mode fibre and a suitably pumped Erbium-doped fibre. Two continuous-wave lasers are used as light source. The soliton crystal arises out of the initial deeply modulated laser field at low input powers; for higher input powers, it dissolves into free solitons. We study the soliton crystal build-up in the first fibre stage with respect to different fibre parameters (group-velocity dispersion, nonlinearity, and optical losses) and to the light source characteristics (laser frequency separation and intensity difference). We show that the soliton crystal can be described by two quantities, its fundamental frequency and the laser power-threshold at which the crystal dissolves into free solitons. The soliton crystal exhibits features of a linear and nonlinear optical pattern at the same time and is insensitive to the initial laser power fluctuations. We perform our studies using the numerical technique called Soliton Radiation Beat Analysis.

Publication DOI:
Divisions: College of Engineering & Physical Sciences > Aston Institute of Photonics Technology (AIPT)
College of Engineering & Physical Sciences
College of Engineering & Physical Sciences > Adaptive communications networks research group
Additional Information: © 2017 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Uncontrolled Keywords: Astro-combs,Generalised nonlinear Schrödinger equation,Optical frequency combs,Optical solitons,Soliton crystal,Soliton radiation beat analysis,Electronic, Optical and Magnetic Materials,Atomic and Molecular Physics, and Optics,Physical and Theoretical Chemistry,Electrical and Electronic Engineering
Publication ISSN: 1873-0310
Last Modified: 17 Jun 2024 07:45
Date Deposited: 24 Oct 2019 12:40
Full Text Link: https://arxiv.o ... bs/1704.06083v1
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
https://www.sci ... 1232?via%3Dihub (Publisher URL)
PURE Output Type: Article
Published Date: 2017-06-15
Published Online Date: 2017-02-20
Accepted Date: 2017-02-13
Authors: Zajnulina, M. (ORCID Profile 0000-0002-9666-0534)
Böhm, M.
Bodenmüller, D.
Blow, K. (ORCID Profile 0000-0002-7859-3438)
Boggio, J. M.Chavez
Rieznik, A. A.
Roth, M. M.

Export / Share Citation


Additional statistics for this record