Controlling particle size in the Stöber process and incorporation of calcium

Abstract

The Stӧber process is commonly used for synthesising spherical silica particles. This article reports the first comprehensive study of how the process variables can be used to obtain monodispersed particles of specific size. The modal particle size could be selected within in the range 20 – 500 nm. There is great therapeutic potential for bioactive glass nanoparticles, as they can be internalised within cells and perform sustained delivery of active ions. Biodegradable bioactive glass nanoparticles are also used in nanocomposites. Modification of the Stӧber process so that the particles can contain cations such as calcium, while maintaining monodispersity, is desirable. Here, while calcium incorporation is achieved, with a homogenous distribution, careful characterisation shows that much of the calcium is not incorporated. A maximum of 10 mol% CaO can be achieved and previous reports are likely to have overestimated the amount of calcium incorporated.

Publication DOI: https://doi.org/10.1016/j.jcis.2016.01.065
Divisions: College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry
College of Engineering & Physical Sciences > Aston Institute of Materials Research (AIMR)
Additional Information: © 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ Funding: EPSRC (EP/I020861/1 and EP/M004414/1); Imperial College London; University of Warwick; Birmingham Science City: Innovative Uses for Advanced Materials in the Modern World (West Midlands Centre for Advanced Materials Projects 1 and 2), with support from Advantage West Midlands (AWM); and European Regional Development Fund (ERDF);STFC for funding a Global Challenge studentship.
Uncontrolled Keywords: Stӧber process,bioactive glass,nanoparticles,biodegradable,Sol-gel,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials,Biomaterials,Colloid and Surface Chemistry
Publication ISSN: 1095-7103
Last Modified: 10 Apr 2024 07:12
Date Deposited: 19 Aug 2019 10:08
Full Text Link:
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2016-05-01
Published Online Date: 2016-02-03
Accepted Date: 2016-01-27
Submitted Date: 2015-08-23
Authors: Greasley, Sarah L.
Page, Samuel J.
Sirovica, Slobodan
Chen, Shu
Martin, Richard A. (ORCID Profile 0000-0002-6013-2334)
Riveiro, Antonio
Hanna, John V.
Porter, Alexandra E.
Jones, Julian R.

Export / Share Citation


Statistics

Additional statistics for this record