Investigation of High-Efficiency Wireless Power Transfer Criteria of Resonantly-Coupled Loops and Dipoles through Analysis of the Figure of Merit


The efficiency of a Wireless Power Transfer (WPT) system is greatly dependent on both the geometry and operating frequency of the transmitting and receiving structures. By using Coupled Mode Theory (CMT), the figure of merit is calculated for resonantly-coupled loop and dipole systems. An in-depth analysis of the figure of merit is performed with respect to the key geometric parameters of the loops and dipoles, along with the resonant frequency, in order to identify the key relationships leading to high-efficiency WPT. For systems consisting of two identical single-turn loops, it is shown that the choice of both the loop radius and resonant frequency are essential in achieving high-efficiency WPT. For the dipole geometries studied, it is shown that the choice of length is largely irrelevant and that as a result of their capacitive nature, low-MHz frequency dipoles are able to produce significantly higher figures of merit than those of the loops considered. The results of the figure of merit analysis are used to propose and subsequently compare two mid-range loop and dipole WPT systems of equal size and operating frequency, where it is shown that the dipole system is able to achieve higher efficiencies than the loop system of the distance range examined

Publication DOI:
Divisions: College of Engineering & Physical Sciences
College of Engineering & Physical Sciences > School of Engineering and Technology > Mechanical, Biomedical & Design
Additional Information: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
Publication ISSN: 1996-1073
Last Modified: 03 Jun 2024 07:42
Date Deposited: 02 Aug 2019 15:26
Full Text Link:
Related URLs: http://www.mdpi ... 1073/8/10/11342 (Publisher URL)
PURE Output Type: Article
Published Date: 2015-10-13
Authors: Moorey, Charles
Holderbaum, William (ORCID Profile 0000-0002-1677-9624)
Potter, Ben



Version: Published Version

License: Creative Commons Attribution

| Preview

Export / Share Citation


Additional statistics for this record