Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation

Abstract

The use of Reverse Osmosis (RO) desalination has grown considerably in response to water scarcity. Despite steady improvements in efficiency, RO desalination remains an energy-intensive process. Numerous studies focussed on using mature Renewable Energy Sources (RES), such as wind and solar photovoltaic (PV) energy, to drive RO plants on a small scale. However, RES have not been used to drive large plants, except with a grid connection, due to the intermittency and fluctuation of such sources. Direct coupling of the RO plant to a RES requires variable-speed operation and/or modular operation to match the load to the available power. This review presents the state-of-the-art in wind and solar-PV powered RO to identify technical challenges and potential solutions regarding large-scale implementation. Recent studies using wind and solar-PV to drive RO are analysed while considering the plant configuration, operational strategy, control system and methods used to improve the plant adaptability to the RES. Technical challenges may include shortened membrane life and reduced performance of energy recovery devices. Potential strategies for incorporating modular and variable-speed operation in commercial RO plants are presented. Control strategies are reviewed, including Model Predictive Control, Neural Networks and classical Proportional-Integral-Differential feedback control. Recommendations are made on future research necessary for operation of commercial RO plant operation from renewable energy.

Publication DOI: https://doi.org/10.1016/j.rser.2019.06.008
Divisions: College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Engineering Systems and Supply Chain Management
College of Engineering & Physical Sciences > School of Engineering and Technology > Mechanical, Biomedical & Design
College of Engineering & Physical Sciences
Aston University (General)
Additional Information: © 2019, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Uncontrolled Keywords: Control system,Desalination,Membranes,Renewable energy,Reverse osmosis,Solar PV energy,Variable operation,Wind energy,Renewable Energy, Sustainability and the Environment
Publication ISSN: 1879-0690
Last Modified: 19 Dec 2024 08:14
Date Deposited: 24 Jun 2019 14:59
Full Text Link:
Related URLs: https://www.sci ... 3995?via%3Dihub (Publisher URL)
http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2019-09-01
Published Online Date: 2019-06-18
Accepted Date: 2019-06-05
Authors: Mito, Mohamed (ORCID Profile 0000-0001-5851-8513)
Ma, Xianghong (ORCID Profile 0000-0003-4957-2942)
Albuflasa, Hanan
Davies, Philip A

Export / Share Citation


Statistics

Additional statistics for this record