Label-free detection of hypoxia-induced extracellular vesicle secretion from MCF-7 cells

Abstract

Nanoscale extracellular vesicles (EVs) including exosomes (50-150 nm membrane particles) have emerged as promising cancer biomarkers due to the carried genetic information about the parental cells. However the sensitive detection of these vesicles remains a challenge. Here we present a label-free electrochemical sensor to measure the EVs secretion levels of hypoxic and normoxic MCF-7 cells. The sensor design includes two consecutive steps; i) Au electrode surface functionalization for anti-CD81 Antibody and ii) EVs capture. The label-free detection of EVs was done via Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). The working linear range for the sensor was 102-109 EVs/ml with an LOD 77 EVs/mL and 379 EVs/ml for EIS and DPV based detection. A blood-abundant protein, RhD was used for the selectivity test. In order to assess the performance of the biosensor, the level of EVs secretion by the human breast cancer MCF-7 cell line was compared with enzyme-linked immunosorbent assays (ELISA) and Nanoparticle Tracking Analysis (NTA). Designed label-free electrochemical sensors utilized for quantification of EVs secretion enhancement due to CoCl2-induced hypoxia and 1.23 fold increase with respect to normoxic conditions was found.

Publication DOI: https://doi.org/10.1038/s41598-018-27203-9
Divisions: College of Health & Life Sciences
College of Health & Life Sciences > School of Biosciences > Cell & Tissue Biomedical Research
Additional Information: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Publication ISSN: 2045-2322
Last Modified: 02 Jan 2025 08:26
Date Deposited: 03 Apr 2019 08:35
Full Text Link:
Related URLs: https://www.nat ... 598-018-27203-9 (Publisher URL)
PURE Output Type: Article
Published Date: 2018-06-20
Accepted Date: 2018-05-10
Authors: Kilic, Tugba
Valinhas, Ana Teresa De Sousa
Wall, Ivan (ORCID Profile 0000-0001-6294-8348)
Renaud, Philippe
Carrara, Sandro

Download

[img]

Version: Published Version

License: Creative Commons Attribution

| Preview

Export / Share Citation


Statistics

Additional statistics for this record