Experimental and theoretical study of a piezoelectric vibration energy harvester under high temperature

Abstract

This paper focuses on studying the effect of increasing the ambient temperature up to 160 °C on the power harvested by an MEMS piezoelectric micro-cantilever manufactured using an aluminum nitride-on-silicon fabrication process. An experimental study shows that the peak output power decreases by 60% to 70% depending on the input acceleration. A theoretical study establishes the relationship of all important parameters with temperature and includes them into a temperature-dependent model. This model shows that around 50% of the power drop can be explained by a decreasing quality factor, and that thermal stresses account for around 30% of this decrease.

Publication DOI: https://doi.org/10.1109/JMEMS.2017.2723626
Divisions: College of Engineering & Physical Sciences > School of Engineering and Technology > Mechanical, Biomedical & Design
Additional Information: © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Publication ISSN: 1057-7157
Last Modified: 12 Feb 2024 08:24
Date Deposited: 25 Mar 2019 14:20
Full Text Link: https://chester ... le/10034/620624
Related URLs: https://ieeexpl ... ocument/7999189 (Publisher URL)
PURE Output Type: Article
Published Date: 2017-08-01
Published Online Date: 2017-07-31
Accepted Date: 2017-06-22
Authors: Arroyo, Emmanuelle
Jia, Yu (ORCID Profile 0000-0001-9640-1666)
Du, Sijun
Chen, Shao-Tuan
Seshia, Ashwin A

Download

[img]

Version: Accepted Version

| Preview

Export / Share Citation


Statistics

Additional statistics for this record