Computational mechanics reveals nanosecond time correlations in molecular dynamics of liquid systems

Abstract

Statistical complexity, a measure introduced in computational mechanics has been applied to MD simulated liquid water and other molecular systems. It has been found that statistical complexity does not converge in these systems but grows logarithmically without a limit. The coefficient of the growth has been introduced as a new molecular parameter which is invariant for a given liquid system. Using this new parameter extremely long time correlations in the system undetectable by traditional methods are elucidated. The existence of hundreds of picosecond and even nanosecond long correlations in bulk water has been demonstrated.

Publication DOI: https://doi.org/10.1016/j.cplett.2008.04.043
Divisions: College of Engineering & Physical Sciences > Systems analytics research institute (SARI)
Additional Information: Erratum published: Nerukh, D. (2008). Erratum to "Computational mechanics reveals nanosecond time correlations in molecular dynamics of liquid systems" [Chem. Phys. Lett. 457 (2008) 439] DOI:10.1016/j.cplett.2008.04.043). Chemical physics letters, 459(1-6), 203. 10.1016/j.cplett.2008.05.059 NOTICE: this is the author’s version of a work that was accepted for publication in Chemical Physics Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Nerukh, D, 'Computational mechanics reveals nanosecond time correlations in molecular dynamics of liquid systems', Chemical Physics Letters, vol 457, no. 4-6 (2008) DOI http://dx.doi.org/10.1016/j.cplett.2008.04.043
Publication ISSN: 1873-4448
Last Modified: 03 Jan 2024 08:05
Date Deposited: 11 Mar 2019 18:06
Full Text Link: http://www.scop ... tnerID=8YFLogxK
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2008-05-27
Published Online Date: 2008-04-14
Authors: Nerukh, D. (ORCID Profile 0000-0001-9005-9919)

Download

[img]

Version: Accepted Version

| Preview

Export / Share Citation


Statistics

Additional statistics for this record